
MF1200-01a

CMOS 32-BIT SINGLE CHIP MICROCOMPUTER E0C33 Family

MON33 DEBUG MONITOR MANUAL

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written
permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice.
Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material
or due to its application or use in any product or circuit and, further, there is no representation that this material
is applicable to products requiring high level reliability, such as medical products. Moreover, no license to any
intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that
anything made in accordance with this material will be free from any patent or copyright infringement of a third
party. This material or portions thereof may contain technology or the subject relating to strategic products under
the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from
the Ministry of International Trade and Industry or other approval from another government agency.

Windows95 and Windows NT are registered trademarks of Microsoft Corporation, U.S.A.
PC/AT and IBM are registered trademarks of International Business Machines Corporation, U.S.A.
All other product names mentioned herein are trademarks and/or registered trademarks of their respective owners.

© SEIKO EPSON CORPORATION 1999 All rights reserved.

TABLE OF CONTENTS

E0C33 FAMILY MON33 DEBUG MONITOR MANUAL EPSON i

Preface
Written for those who develop applications using the E0C33 Family of microcomputers, this manual describes how
to implement the E0C33 Family debug monitor library MON33 and how to debug the target program.

Table of Contents

1 MON33 Package .1
1.1 Features .. 1

1.2 Components of MON33 Package .. 2

1.3 Installation .. 2

2 Implementing the Debug .4
2.1 Resources Required for the Debug Monitor... 4

2.2 Starting Up the Debug Monitor.. 5

2.3 Building an Application Program ... 6

2.4 Creating Communication Control Routines.. 7

3 Target Program and Debugging . 10
3.1 Notes for Creating Target Programs .. 10

3.2 Parameter File for Debugging... 10

3.3 Starting Up and Terminating Procedure of Debugging ... 11

3.4 Debugging Method ... 12

3.5 Precautions for Debugging... 14
3.5.1 Restriction on Debugging Command.. 14
3.5.2 Other Precautions.. 14

Appendix DMT33MON Board . 15
A.1 Outline of DMT33MON Board... 15

A.2 Names and Functions of Each Part ... 15

A.3 Connecting the System... 16

A.4 DMT33MON Block Diagram... 17

A.5 Program Debugging with a DMT Board and MON33 ... 18

A.6 Indispensable Signal Pins of DMT33MON... 21

1 MON33 PACKAGE

E0C33 FAMILY MON33 DEBUG MONITOR MANUAL EPSON 1

1 MON33 Package
The Debug Monitor MON33 is a middleware designed for E0C33 Family single-chip microcomputers.

It provides program-debugging functions on the user target board or for the actual product.

1.1 Features
The following lists the features of MON33:

• It is provided as a library file that can be linked to the user program.
This package also contains source codes of all the modules.

• MON 33 u se s a pp r ox . 1 0KB RO M, a pp r ox . 2 .5K B RA M a nd a c ha n ne l o f s er i a l i nt er f a c e o n t he E0 C3 3 c hi p. I t
allows direct program debugging via the DMT33MON board using the debugger db33 on the personal computer.

• Allows debugging of the target program in the RAM, ROM or Flash memory on the target board.

• Supports the following debugging functions:
- Successive execution and step execution of the program
- PC break and data break
- Memory/register operation
- Flash memory writing

A configuration of the debugging system is shown in Figure 1.1.1.

E0C33XXX

External
RAM

External
ROM

FLASH
memory

Serial
interface

Target board

RS232C

115,200 bps

DMT33MON
interface board

Debugger
db33

EPSON

Figure 1.1.1 Configuration of debugging system

1 MON33 PACKAGE

EPSON E0C33 FAMILY MON33 DEBUG MONITOR MANUAL2

1.2 Components of MON33 Package
The following lists the contents of MON33 Package:
When unpacking, make sure that all of the following components are included.
(1) Tool disk (3.5' FD for PC/AT, 1.44MB) 1
(2) E0C33 Family MON33 Debug Monitor Manual (this manual) 2 (1 English/1 Japanese)
(3) Warranty 2 (1 English/1 Japanese)

1.3 Installation
MON33 needs to be linked with the user program as it is implemented. Therefore, make sure all tools of the "E0C33
Family C Compiler Package" have been installed in the personal computer and are ready to run before installing the
MON33 files. The basic system configuration is described below.

• Personal computer:
 IBM PC/AT or compatible
 (PC with Pentium 90 MHz or higher and 32MB or more memory recommended)
 One channel of the serial port is used to communicate with the debug monitor.

• OS:
Windows95, Windows NT 4.0 or higher version (English version or Japanese version)

All the MON33 files are supplied on one floppy disk. Execute the self-extract file "mon33vXX.exe" on the FD to
install the files. ("XX" in the file name represents the version number, for example, "mon33v10.exe" is the file
name of MON33 ver. 1.0.)
When "mon33vXX.exe" is started up by double-clicking the file icon, the following dialog box appears.

Enter a path/folder name in the text box then click
[Unzip]. The specified folder will be created and all the
files will be copied to the folder.

When the specified folder already exists on the specified
path, the folder will be overwritten without prompting if
[Overwrite Files Without Prompting] is checked.

The following lists the configuration of directories and files after copying.

 (root)\ (default: C:\E0C33\MON33\)
readme.txt Supplementary explanation (in English)
readmeja.txt Supplementary explanation (in Japanese)

lib\ MON33 library
mon33ch0.lib MON33 library that uses the serial I/F Ch.0 on the E0C33xxx
mon33ch1.lib MON33 library that uses the serial I/F Ch.1 on the E0C33xxx
mon33.lib MON33 library that does not use a serial I/F on the E0C33xxx

... These libraries cannot be used with the ICE or the ICD.
Normally, either "mon33ch0.lib" or "mon33ch1.lib" is used
according to the serial I/F channel used. Use "mon33.lib" when
providing a serial I/O circuit separately and when not using the
DMT33MON board.

mon33ice.lib Library that does not use a serial I/F on the E0C33xxx for
debugging the MON33 using the ICE or the ICD

1 MON33 PACKAGE

E0C33 FAMILY MON33 DEBUG MONITOR MANUAL EPSON 3

mon33ch0.mak Make file for building mon33ch0.lib
mon33ch1.mak Make file for building mon33ch1.lib
mon33.mak Make file for building mon33.lib
mon33ice.mak Make file for building mon33ice.lib

src\ MON33 source files
m33_def.h MON33 definition file
m3c_brk.c C source file for break functions
m3c_exe.c C source file for program execution
m3c_flsh.c C source file for Flash memory operation
m3c_main.c MON33 main C source file
m3c_mem.c C source file for memory operation
m3c_othe.c C source file for other functions
m3c_sci.c C source file for sending/receiving messages
m3s_exe.s Assembly source file for program execution
m3s_flsh.s Assembly source file for Flash memory operation
m3s_init.s Assembly source file for MON33 initial set-up
m3s_mem.s Assembly source file for memory operation
m3s_sci.s Assembly source file for sending/receiving messages

dmt33xxx\ Sample source files for the DMT33xxx, MON33 build files and related files
A sample program for blinking the LED on the DMT33xxx, a source for the on-board
Flash memory write/erase routines and the make files are included in each dmt33xxx
folder. The source files can be modified to use in the application program if necessary.
Refer to "readme.txt" or "readmeja.txt" for the contents of the dmt33xxx folder.

2 IMPLEMENTING THE DEBUG MONITOR

EPSON E0C33 FAMILY MON33 DEBUG MONITOR MANUAL4

2 Implementing the Debug Monitor
This chapter describes how to implement the debug monitor and how to start it from the application

program.

2.1 Resources Required for the Debug Monitor
The debug monitor uses the following resources:

• Approximately 10KB of ROM area for the program code of the debug monitor.

• Approximately 2.5KB of RAM area for the work and stack area.

• Since the debug monitor uses the debugging exception of the CPU, addresses 0x0 to 0xF of the built-in RAM area
a r e u se d a s t he v ec t or a nd s ta c k f or p ro c e ss in g d eb ug gi ng e xc e p ti on s. Fu rt he r mo r e , a dd r e ss e s 0 x1 0 t o 0 x2 F a r e
reserved for extending functions.

• One channel (Ch.0 or Ch.1) of the serial interface (8-bit asynchronous mode) is used for communicating with the
debugger db33 on the personal computer.
Figure 2.1.1 shows a connection diagram.

VSS

SOUT0/1
SIN0/1

SCLK0/1

Connected to the personal computer
using the RS232C cable
(Baud rate: 115,200 bps)

E0C33XXX DMT33MON

Target board

 Figure 2.1.1 RS232C connector diagram

• Communication via RS232C is performed by a software polling method without any interrupt related resource.

• A serial I/O device outside the E0C33 chip can be used by customizing the serial I/O routine (see Section 2.4).

• MON 33 u se s t he TX D, RX D a nd s ta tu s r e gi st e r s o f t he c or r e s po nd in g s er i a l i nt er f a c e c ha n ne l e xc l us iv e ly .
Therefore, do not access these control registers.
Furthermore, fix the I/O pins for the channel at the serial interface pins using the port function select register. For
e xa mp le , t he s amp le p ro gr a m " m3s _s c i.s " wr i te s 0 x0 7 t o t he P0 f un c ti on s el e c t r e gi st e r (0x 40 2D 0) wh e n Ch .0 i s
used or 0x70 when Ch.1 is used to set the serial interface pins.

2 IMPLEMENTING THE DEBUG MONITOR

E0C33 FAMILY MON33 DEBUG MONITOR MANUAL EPSON 5

2.2 Starting Up the Debug Monitor
The debug monitor starts by jumping to m_mon_start().
Normally, provide a select switch outside the E0C33 chip for selecting either starting up the debug monitor or a
normal execution and create the program that can jump to m_mon_start() from the boot routine after an initial reset.
Furthermore, start the debug monitor after initializing the BCU if necessary. In case the debug monitor is started
before the BCU is initialized, downloaded data cannot be written to a 8-bit device or in DRAM. However, when the
MON33 itself is placed on the 16-bit ROM and the 16-bit SRAM is used as a work area, it can be operated even in
the default setting (7-wait state) when operating in 20 MHz. In the following example, the initial set-up statements
are described as comments so that the BCU operates by default. By decreasing the wait cycle number (2-wait setting
in the example below), the file loading and other operations may improve the response time (approximately 5 to
10%).

Example: boot routine of "dmt33004\m3s_boot.s"
;**
;
; BOOT program
;
;**
BOOT:

xld.w %r0,0x800
ld.w %sp,%r0

; xld.w %r5,BCU_A10_ADDR ;area9-10 (0x800000-0xffffff)
; xld.w %r4,0b0000000000010010 ;Device 16 bits,delay 1.5, wait 2
; ld.h [%r5]+,%r4
; xld.w %r5,BCU_A8_ADDR ;area8 (0x600000-0x7fffff)
; xld.w %r4,0b0000000000010010 ;Device 16 bits,delay 1.5, wait 2
; ld.h [%r5]+,%r4
; xld.w %r5,BCU_A5_A6_ADDR ;area5-6 (0x200000-0x3fffff)
; xld.w %r4,0b0001001000010010 ;Device 16 bits,delay 1.5, wait 2
; ld.h [%r5]+,%r4

xbtst [K6XD],0x3 ;K63 (debug SW check) 0:MON33 1:USER
xjreq m_mon_start ;MON33 start
jp USER

USER:
xld.w %r4,TBRP
xld.w %r6,0x59
xld.b [%r4],%r6 ;TTBR writable 0x59
xld.w %r4,TTBR
xld.w %r6,0x200000
ld.w [%r4],%r6 ;TTBR set 0x200000
ld.w %r4,[%r6]
jp %r4 ;user application(flash) start

2 IMPLEMENTING THE DEBUG MONITOR

EPSON E0C33 FAMILY MON33 DEBUG MONITOR MANUAL6

2.3 Building an Application Program
The MON33 modules are provided as a library file "mon33*.lib" in the directory "lib\". Link this library to the user
modules.
When using the serial interface on the E0C33 chip and the DMT33MON board, link "mon33ch0.lib" (Ch.0 is used)
or "mon33ch1.lib" (Ch.1 is used) accordingly. When not using the serial interface on the E0C33 chip and the
DMT33MON board, create serial I/O routines separately and link "mon33.lib".
Specify the "lib\" directory of the MON33 as a library path in the linker command file when linking.

Example: "dmt33004\dmt33004.cm"
;Map set

-code 0x0c00000 ; set relative code section start address

-bss 0x06ff640 ; set relative bss section start address

;Library path

-l c:\CC33\lib CC33 standard library path
-l ..\lib MON33 library path (c:\E0C33\mon33\lib)

;Executable file

-o dmt33004.srf

;Object files

m3s_boot.o

;Library files

string.lib

ctype.lib

idiv.lib

mon33ch1.lib MON33 library to be linked

Since all the source codes of the debug monitor are provided in the directory "src\", it is possible to customize the
debug monitor if necessary. In this case, rebuild the library using "mon33*.mak" (make file for creating
"mon33*.lib") in the directory "lib\".

MON33 allows the debugger db33 to write the target program to be debugged in the RAM or Flash memory on the
target board. In this case, it is not necessary to create a target object linked to the debug monitor. When the
DMT33xxx board (DMT33004, DMT33005, etc.) is used, the target program can be downloaded to the RAM or
Flash memory and can be debugged by writing MON33 and a simple boot program to the ROM.
When executing the target program in the external ROM on the target board, link the debug monitor to the target
program and create an object that is mapped to the external ROM.

2 IMPLEMENTING THE DEBUG MONITOR

E0C33 FAMILY MON33 DEBUG MONITOR MANUAL EPSON 7

2.4 Creating Communication Control Routines
For communicating with the debugger, the debug monitor calls the following four RS232C routines (1 to 4).
"mon33chX.lib" that contains these routines can be used when using the serial interface Ch.0 or Ch.1 on the E0C33
chip and the DMT33MON board. Otherwise, it is necessary to create these routines according to the system since
"mon33.lib" must be used. The sample program "m3s_sci.s" that uses the serial interface Ch.0/Ch.1 of the
E0C33A104/E0C33208 is provided in "src\", so use it after modifying if necessary.

(1) void m_io_init()
This is an initial set-up routine of the serial interface. Return value is not necessary.
Set up I/O terminals, input clock, baud rate and a data format. Select 8-bit asynchronous mode, no parity and 1
stop bit. The baud rate should be set to a value supported by the debugger db33 and the personal computer.
Refer to the "E0C33XXX Technical Manual" for the serial interface and for setting the clock.
The sample program "m3s_sci.s" assumes use of the DMT33MON board. It sets the baud rate to 115.2 kbps
when a 1.843 MHz external clock is used.

Example: "m_io_init() of "m3s_sci.s"
#define MON_VER 0x11 ;monitor firm-ware version

#ifdef SIO0
#define STDR 0x000401e0 ;transmit data register(ch0)
#define SRDR 0x000401e1 ;receive data register(ch0)
#define SSR 0x000401e2 ;serial status register(ch0)
#define SCR 0x000401e3 ;serial control register(ch0)
#define SIR 0x000401e4 ;IrDA control register(ch0)
#define PIO_SET 0x07 ;port function register

#else
#define STDR 0x000401e5 ;transmit data register(ch1)
#define SRDR 0x000401e6 ;receive data register(ch1)
#define SSR 0x000401e7 ;serial status register(ch1)
#define SCR 0x000401e8 ;serial control register(ch1)
#define SIR 0x000401e9 ;IrDA control register(ch1)
#define PIO_SET 0x70 ;port function register

#endif

#define SIR_SET 0x0 ;SIR set(1/16 mode)
#define SCR_SET 0x7 ;SCR set(#SCLK input 1.843MHz 115200bps)
#define SCR_EN 0xc0 ;SCR enable
#define PIO 0x000402d0 ;IO port (P port) register

.code
;**
;
; void m_io_init()
; serial port initial function
;
;**

.global m_io_init
m_io_init:

ld.w %r0,SIR_SET ;1/16 mode
xld.b [SIR],%r0 ;SIR set
ld.w %r0,SCR_SET
xld.b [SCR],%r0 ;SCR set(#SCLK input 1.843MHz)
xld.w %r0,PIO_SET
xld.b [PIO],%r0 ;IO port set
xld.w %r0,SCR_EN|SCR_SET
xld.b [SCR],%r0 ;SCR set
ret

In addition to the sample program above, "dmt33001\m3s_sci.s " is provided. This program sets the baud rate to
38,400 bps based on the 20 MHz E0C33A104 internal clock. Refer to it if necessary.

2 IMPLEMENTING THE DEBUG MONITOR

EPSON E0C33 FAMILY MON33 DEBUG MONITOR MANUAL8

(2) void m_snd_1byte(unsigned char)
This is a routine that sends 1-byte data. This routine receives 1-byte data as the argument (R12 register) and
sends it via the serial interface. Return value is not necessary.

Example: m_snd_1byte() of "m3s_sci.s"
;**
;
; void m_snd_1byte(sdata)
; 1 byte send function
; IN : uchar sdata (R12) send data
;
;**

.global m_snd_1byte
m_snd_1byte:

pushn %r3 ;save r3-r0
snd000:

xbtst [SSR1],0x1 ;TDBE1(bit1) == 0(full) ?
jreq snd000 ;if full, jp snd000
xld.b [STDR1],%r12 ;write data
popn %r3 ;restore r3-r0
ret

(3) unsigned char m_rcv_1byte()
This is a routine that receives 1-byte data. Store received 1-byte data into m_rcv_data. It returns following
error codes (unsigned char) as the return value:
0: received normally
1: framing error
2: parity error
3: overrun error

Example: m_rcv_1byte() of "m3c_sci.s"
;**
;
; uchar m_rcv_1byte()
; 1 byte receive function
; OUT : 0 receive OK
; 1 receive ERROR (framing err)
; 2 (parity err)
; 3 (over run err)
;
;**

.global m_rcv_1byte
m_rcv_1byte:

pushn %r3 ;save r3-r0
rcv000:

xbtst [SSR1],0x0 ;RDBF1(bit0) == 0(empty) ?
jreq rcv000 ;if empty, jp rcv000
ld.w %r10,0x0
xbtst [SSR1],0x4 ;FER1(bit4) == 0 ?
jreq rcv010
xbclr [SSR1],0x4 ;FER1(bit4) 0 clear
ld.w %r10,0x1 ;return 1

rcv010:
xbtst [SSR1],0x3 ;PER1(bit3) == 0 ?
jreq rcv020
xbclr [SSR1],0x3 ;PER1(bit3) 0 clear
ld.w %r10,0x2 ;return 2

rcv020:
xbtst [SSR1],0x2 ;OER1(bit2) == 0 ?
jreq rcv030
xbclr [SSR1],0x2 ;OER1(bit2) 0 clear
ld.w %r10,0x3 ;return 3

rcv030:
xld.b %r0,[SRDR1] ;read data
xld.b [m_rcv_data],%r0 ;read data set
popn %r3 ;restore r3-r0
ret

2 IMPLEMENTING THE DEBUG MONITOR

E0C33 FAMILY MON33 DEBUG MONITOR MANUAL EPSON 9

(4) void m_dummy_rd()
This is a dummy read routine. It reads data from the receive buffer and clears the buffer. Return value is not
necessary.

Example: m_dummy_rd() of "m3s_sci.s"
;**
;
; void m_dummy_rd()
; dummy read function
;
;**

.global m_dummy_rd
m_dummy_rd:

xld.b %r4,[SRDR] ;read data
ret

(5) void m_ver_rd()
This is a version read routine. Modifying the constant MON_VER can change the MON33 version number. It
returns MON_VER as the return value.

Example: m_ver_rd() of "m3s_sci.s"
;**
;
; void m_ver_rd()
; mon firmware version read function
;
;**

.global m_ver_rd
m_ver_rd:

xld.w %r10,MON_VER ;mon firmware version
ret

(6) Sample command file for building
When the above routines are newly created, create a linker command file as the following example and link
"mon33.lib" to the user modules.

Example: dmt330001\dmt33001.cm
;Map set
-code 0x0c00000 ; set relative code section start address
-bss 0x081f640 ; set relative bss section start address

;Library path
-l c:\CC33\lib
-l ..\lib

;Executable file
-o dmt33001.srf

;Object files
m3s_boot.o
m3s_bcu.o
m3s_sci.o Originally created SIO routine

;Library files
string.lib
ctype.lib
fp.lib
idiv.lib
mon33.lib Link "mon33.lib" that does not include SIO routine

3 TARGET PROGRAM AND DEBUGGING

EPSON E0C33 FAMILY MON33 DEBUG MONITOR MANUAL10

3 Target Program and Debugging
This chapter describes precautions for debugging using the debug monitor.

3.1 Notes for Creating Target Programs
Follow the instructions below when creating the target program to be debugged:

• Since the debug monitor uses the debugging exception of the CPU, addresses 0x0 to 0xF of the built-in RAM area
are used as the vector and stack for processing debugging exceptions. Therefore, the target program cannot use this
area. Furthermore, do not use addresses 0x10 to 0x2F.

• Wh e n d eb ug gi ng t he t ar g e t p ro gr a m b y wr i ti ng i n t he RA M o r Fl as h me mor y o n t he t ar g e t b oa r d, ma p t he
program to that address.

• Th e d eb ug mo ni to r d oe s n ot a ll ow f or c e d b re a k f un c ti on s s uc h a s k ey b re a k s. Fo rc e d b re a k f un c ti on s s ho ul d b e
ma de i n t he t ar g e t p ro gr a m u si ng a k ey i np ut i nt er r u pt o r a n NMI i np ut . Se tt in g a h ar d wa r e PC b re a k i n t he
interrupt processing routine makes it possible to execute a forced break.

3.2 Parameter File for Debugging
A debug-parameter file is required to start the debugger. Create the file according to the memory configuration of
the target system. When using the debug monitor, the debugger ignores all the settings for the ICE emulation
memory.
When using a Flash memory, specify it as a RAM.

Example: "dmt33004\sample\33104_m.par"
CHIP 33104 ; chip name (33XXX)

IROM 1000 ; internal ROM is 80000 to 80FFF

FOPT 0000 ; f option size

PRC VER 00 ff ; allow any PRC board

PRC STATUS **************** ; allow any PRC board status

MPU ; 0xC00000 external boot address

VER 1 ; this file version

; Emulation memory allocation (max 8 areas, 1MB/area, 1MB boundary)

EMROM c00000 cfffff ; external ROM 1MB

; Map allocation (max 31 areas, 256bytes boundary)

RAM 0 7FF ; internal RAM area 2KB

IO 40000 4ffff ; internal IO area 64KB

RAM 200000 2fffff ; external FLASH 1MB

RAM 600000 6fffff ; external SRAM 1MB

EROM c00000 cfffff ; external ROM 1MB

; Stack area except internal RAM area (max 8 areas, 256bytes boundary)

STACK 600000 6fffff ; external stack area 1MB

END

3 TARGET PROGRAM AND DEBUGGING

E0C33 FAMILY MON33 DEBUG MONITOR MANUAL EPSON 11

3.3 Starting Up and Terminating Procedure of Debugging
Follow the procedure below to start debugging.
1. Make sure the power of the target board and personal computer are off.
2. Connect the DMT33MON board to the target board in which the debug monitor is implemented and connect the

DMT33MON board to the personal computer with the RS232 cable.
3. Turn the target board on and then start the debug monitor.
4. Turn the personal computer on and start the debugger db33 in debug monitor mode from the work bench wb33 or

DOS prompt.
Example: db33 -mon -b 115200 -p 33104_m.par

Follow the procedure in order from Step 4 to Step 1 to terminate debugging and for power off.

Note: When connecting and disconnecting the RS232C cable, make sure the target board and the
personal computer are off.

3 TARGET PROGRAM AND DEBUGGING

EPSON E0C33 FAMILY MON33 DEBUG MONITOR MANUAL12

3.4 Debugging Method
The following three methods are available for debugging the target program.

1. Debugging in the ROM
Map the target program in the ROM after linking to the debug monitor. The target program can be executed
and debugged in the ROM.
Since the [Source] window of the debugger displays the disassembled content of the ROM on the target system,
it is not necessary to load the target program with the lf command. To display the source, load the same
absolute object file as the one written to the ROM. In this case, by using the ld command instead of the lf
command, the db33, except for the object code, loads only the debugging information.
After starting the debugger, follow the process below before starting to debug:
1. Load the debugging information (when displaying the source or using symbols).
2. Set up a hardware PC break point for the forced break function.

Example: command file example of the above description
ld sample.srf ; Load the debugging information of the target program
bh ESC ; Set up a hardware PC break point at the label ESC (for forced break)*

 * For example, an NMI input switch can be used for the forced break function.

Example: NMI processing routine example for forced break function
NMI: ; nmi

nop
.global ESC

ESC: ; Label set as a hardware PC break point for the forced break function
reti

Note: When debugging the target program in the ROM, the software PC break function (bs command)
cannot be used.

2. Debugging in the RAM
Load the target program into the RAM of the target system with the lf command to debug the program in the
RAM.
After starting the debugger, follow the process below before starting to debug:
1. Set the trap table base address (only when placing the trap table in the RAM).
2. Load the target program.
3. Reset the CPU.
4. Set up a hardware PC break point for the forced break function.

The following shows a debug-command file example in which the above process is described.

Example: "dmt33004\sample\led.cmd"
eb 4812d ; Set up TBRP (TTBR write protection register)
59 ; Remove TTBR write protection
q
ew 48134 ; Set up TTBR (trap table base register)
600000 ; Set up the base address to 0x600000 (external RAM)
q
lf led.srf ; Load the target program (0x600000~)
rsth ; Reset the CPU (reset vector at 0x600000 is set to the PC)
bh ESC ; Set up a hardware PC break at the label ESC (for forced break)

3 TARGET PROGRAM AND DEBUGGING

E0C33 FAMILY MON33 DEBUG MONITOR MANUAL EPSON 13

3. Debugging in the Flash memory
In the target system in which a Flash memory has mounted, the target program can be debugged by writing it
into the Flash memory using the debugger.

Notes: • When debugging the target program in the Flash memory, the software break function (bs
command) cannot be used.

• The debugger db33 ver. 1.72 or later version supports data writing to the Flash memory on the
target board. To debug using the Flash memory, create Flash erase and Flash write routines in
the user program and write the program following the instructions below:

After starting the debugger, follow the process below before starting to debug:
1. Load and initialize the Flash erase/write routines.
2. Erase the Flash memory.
3. Set up the trap table base address.
4. Load the target program.
5. Reset the CPU.
6. Set up a hardware PC break point for the forced break function.

The following shows a debug-command file example in which the above process is described.

Example: "dmt33004\sample\led2.cmd"
lf ..\sample\flsh\am29f800.srf ; Load the Flash erase/write routines to the built-in RAM
fls ; Flash set up command
1 ; 1: Set up 2: Clear
200000 ; Flash memory start address = 0x200000 (∗ 2)
2fffff ; Flash memory end address = 0x2fffff (∗ 2)
FLASH_ERASE ; Flash erase routine start address (∗ 1)
FLASH_LOAD ; Flash load routine start address (∗ 1)
fle ; Flash memory erase command
0x200000 ; Flash control register = 0x200000
0 ; Erase start block, 0 = All area, 1–19 = Start section
0 ; Erase end block, 1–19 = End section, 0 = Ignored
eb 4812d ; Set up TBRP (TTBR write protection register)
59 ; Remove TTBR write protection
q
ew 48134 ; Set up TTBR (trap table base register)
200000 ; Set up base address to 0x200000 (Flash memory start address)
q
lf led2.srf ; Load the target program (0x200000~)
rsth ; Reset the CPU (reset vector at 0x200000 is set to PC)
bh ESC ; Set up a hardware PC break at the label ESC (for forced break)

*1: "am29f800.srf" is created so as to operate by loading into the built-in RAM (2KB).
When using this source for the E0C33A104 after modifying, use the patch tool "cc33\utility\filter".

* 2 : Th i s s a mp l e (" d mt 3 3 0 0 4 \ s a mp l e \ l e d 2 .s r f ") a s s u me s t h a t a Fl a s h me mo r y o f 1 MB i s l o c a t e d a t
0 x 2 0 0 0 0 0 – 0 x 2 f f f f f .

3 TARGET PROGRAM AND DEBUGGING

EPSON E0C33 FAMILY MON33 DEBUG MONITOR MANUAL14

3.5 Precautions for Debugging

3.5.1 Restriction on Debugging Command
When the debug monitor is used for debugging, the following debugging functions/commands are not available or
allowed to be used.

When the following commands/functions are used, an error message will be displayed.
Error: Command is not supported at present mode.

• Trace function (tm, td, ts and tf commands)

• Sequential break function (bsq command)

• ICE Flash memory function (lfl, sfl and efl commands)

• Option related function (lo and od commands)

• ICE emulation memory

 The following commands/ functions are not available even though no error message will be displayed.

• File loading via a parallel port (lf and lh commands)

• Map break function

• On-the-fly function

• Execution time measurement function

• Key break function

In addition to the functions above, the following functions cannot be used when the program in the ROM or Flash
memory is debugged.

• Software PC break functions (bp, bs and bc commands)

• Commands that use the software PC break function internally (stdin and stdout commands)

• Memory edit functions (eb, eh and ew commands)

• Memory fill functions (fb, fh and fw commands)

• Memory move functions (mv, mvh and mvw commands)

3.5.2 Other Precautions
• Th e d eb ug mo ni to r u se s a dd r e ss e s 0 x0 t o 0 x2 F i n t he b ui lt -i n RA M a nd a pp r ox ima t e ly 2 .5K B (de s c r ib e d l at e r)

p ar t o f t he e xt e r na l RA M. Do n ot r e wr i te t hi s a r e a wi th a me mor y o pe r a ti on c omma n d. Wh e n t hi s a r e a i s
modified, the debug monitor cannot be executed normally.

• The cold reset sequence is the same as the hot reset sequence.
1) The vector value indicated by TTBR is set to the PC.
2) Initial setting: general purpose/special registers = 0xAAAAAAAA, PSR = 0x0, SP = 0xAAAAAA8
In the debug monitor, cold reset is simulated as hot reset.

• The ICE33 and ICD33 halt all the peripheral functions after a break occurs except for the DRAM refresh operation.
I n t he d eb ug mo ni to r, t he p er i ph e r a l f un c ti on s h al t i ns ta nt a ne o us ly wh e n a b re a k o cc u r s o r s uc c e ss iv e /s te p
e xe c u ti on s ta r ts , h owe v e r t he y r e st a r t i mmed ia t e ly . I nt e r r up ts wh il e t he t ar g e t p ro gr a m i s s us pe nd e d a r e d is ab le d
according to the IE-bit status of the PSR.

APPENDIX DMT33MON BOARD

E0C33 FAMILY MON33 DEBUG MONITOR MANUAL EPSON 15

Appendix DMT33MON Board
This chapter describes how to use the DMT33MON board.

A.1 Outline of DMT33MON Board
The DMT33MON board provides the interface for the debug monitor
to the demonstration tools such as the DMT33004 or the user target
board. The DMT33MON allows on-board debugging using the
debugger (db33.exe) on a personal computer by connecting it to the
target board in which the E0C33 Family debug monitor (MON33) has
been implemented.
Two types of boards are available: DMT33MON board for 5 V
operation and DMT33MONLV for 3.3 V operation. Figure A.1.1 DMT33MON board

A.2 Names and Functions of Each Part
The following describes the parts layout on the DMT33MON board as well as the functions of the connectors and
switches:

RS232 connector

SW1
(RESET)

SW2
(NMI)

SW3
(DEBUG)

DMT33xxx/target board I/F connector

ONOFF

1 12

ONOFF

Figure A.2.1 DMT33MON board layout

SW1 (RESET switch)
Sets up the status of the RESET pin at the DMT33xxx/
target board I/F connector. When a DMT33xxx board is
connected, this switch can reset the CPU on the board.
ON: RESET = "0" OFF: RESET = "1"

SW2 (NMI switch)
Sets up the status of the NMI pin at the DMT33xxx/
target board I/F connector. When a DMT33xxx board is
connected, a NMI request can be input to the CPU on
the board.
ON: NMI = "0" OFF: NMI = "1"

SW3 (DEBUG switch)
Sets up the status of the DEBUG pin at the DMT33xxx/target board I/F connector. When the DMT33004/
33005 board is connected, the switch signal is input to the K63 port and can be used to start up the debug
monitor from the boot routine.
ON: DEBUG (K63) = "0" OFF: DEBUG (K63) = "1"
When the switch is ON, the DMT33004/33005 will start the debug monitor. When the switch is OFF, the
DMT33004/33005 will start executing the program stored in the Flash memory. The DMT33004/33005 works
assuming the debug switch is OFF when the DMT33MON is not connected.

RS232C connector
This is a Dsub 9-pin connector for connecting a personal computer. Use the RS232C cable supplied with the
DMT33MON package for connection.

DMT33xxx/target board I/F connector
This connector is used for connecting the DMT33xxx board. The pin layout is as follows:

Table A.2.1 DMT33xxx/target board connector pin layout
No. Signal name No. Signal name () indicates the CPU pin corresponding to
1 VCC [+5 V, +3.3 V] 7 N.C. the signal when the DMT33004/33005 is
2 VCC [+5 V, +3.3 V] 8 DEBUG (K63) connected.
3 RESET (#RESET) 9 VCC [+5 V, +3.3 V] Since the corresponding signals on the
4 TxD (P05) 10 SCLK (P06) DMT33xxx may differ depending on the
5 RxD (P04) 11 GND board, refer to the pin layout table provided in
6 NMI (#NMI) 12 GND the specifications of each DMT33xxx board.

APPENDIX DMT33MON BOARD

EPSON E0C33 FAMILY MON33 DEBUG MONITOR MANUAL16

A.3 Connecting the System

Note: When connecting and disconnecting the system, make sure to turn off the power of the DMT33xxx/
target board and the personal computer.

Connecting to the DMT33xxx board/user target board
DMT33xxx/target board I/F connector

DMT33MON I/F connector

DMT33xxx

Figure A.3.1 Connecting to the DMT33xxx board

The DMT33xxx board has a connector used for
connecting with the DMT33MON.
Connect the DMT33MON to the DMT33xxx
board with the DMT33xxx/target board I/F
connector.

DMT33xxx/target board I/F connector

DMT33MON I/F connector
(supplied with the DMT33MON package)

E0C33xxx

User target board

SINx
SOUTx
SCLKx

#RESET
#NMI
(K63)

VSS

VCC

Figure A.3.2 Connecting to the user target board

When connecting to the user target board, attach
the DMT33MON I/F connector (supplied with
the DMT33MON package) to the target board.
See Table A.2.1 for the pin layout of the
DMT33xxx/target board I/F connector.

Connecting to a personal computer
Connect the DMT33MON board to the COMx port connector (the port used for debugging) of the personal
computer with the RS232C cable supplied with the DMT33MON package.

RS232C cable
(supplied with the DMT33MON package)

COMx

RS232C connector (female)

(male) (female)

DMT33xxx/
target board

EPSON

Figure A.3.3 Connecting to a personal computer

APPENDIX DMT33MON BOARD

E0C33 FAMILY MON33 DEBUG MONITOR MANUAL EPSON 17

A.4 DMT33MON Block Diagram

VCC

VCC
VCC

RXD

TXD

RTS

CTS

DTR

DSR

SG

VCC

RxD (SINx)

TxD (SOUTx)

SCLK (SCLKx)

RESET (SW1: ON = L, OFF = H)

NMI (SW2: ON = L, OFF = H)

DEBUG (SW3: ON = L, OFF = H)

GND

RS232C connector
(Dsub 9 pins)

DMT33xxx/target board I/F connector (12 pins)

3

2

7

8

4

6

5

1, 2, 9

5

4

10

3

6

8

11, 12

UPD4724

1.843MHz
crystal

oscillator

SW1
(RESET)

SW2
(NMI)

SW3
(DEBUG)

Figure A.4.1 DMT33MON block diagram

APPENDIX DMT33MON BOARD

EPSON E0C33 FAMILY MON33 DEBUG MONITOR MANUAL18

A.5 Program Debugging with a DMT Board and MON33
This section describes the debugging procedure of the program on the target system configured with the
DMT33MON board and the DMT33004/33005 board using the MON33. The sample program for the DMT33004/
33005 is used for the explanation. Further, the development tools in the "E0C33 Family C Compiler Package"
including the debugger (db33 ver. 1.72 or later) that supports MON33 should be installed for debugging.
The debugging function of the debug monitor can be tested using the sample file even when using a user target board
as well as the DMT board. Use the sample file after modifying the necessary parts such as the mapping condition and
the communication routines (refer to Section 2.4) according to the target system.

DMT33004/33005 address map
Figure A.5.1 shows the DMT33004/33005 memory map and the area used by the debug monitor.

CPU: E0C33A104/E0C33208

0xC1FFFF External ROM
128KB 0xC021FF Boot routine

0xC00000 0xC00000 MON33 library

0x6FFFFF External RAM
1MB

0x6FFFFF
0x6FF640

MON33 work area

0x600000
0x6FF63F
0x600000

Free area

0x2FFFFF Flash memory 0x2FFFFF
1MB Free area

0x200000 0x200000

0x04FFFF Built-in I/O 0x04FFFF
Control registers of built-in I/O

0x040000 0x040000

∗ Built-in RAM
DMT33004: 6KB

∗
0x000030

Free area
∗ : 0x17FF(33004), 0x1FFF(33005)

DMT33005: 8KB 0x00002F
0x000010

Reserved area for MON33

0x00000C R0 stack area
0x000008 PC stack area

0x000000 0x000000 Debugging vector

Figure A.5.1 DMT33004/33005 memory map

Sample program
"\dmt33004\sample\led.srf" and "dmt33004\sample\led2.srf" are sample programs for the DMT33004 that
blinks the LED on the DMT33004 board. "led.srf" and "led2.srf" are created to be able to debug in the RAM
(0x600000~) and in the Flash memory (0x200000~), respectively.
For the contents of the program, refer to the source file (\dmt33004\sample\led.s).
Sample programs for the DMT33005 are also provided in the "\dmt33005\sample\" directory.

Boot routine and implementing the debug monitor
A boot routine and the debug monitor are written in the external ROM (0xC00000~) on the DMT33004/33005
in advance. Therefore, a sample program/target program can be debugged by loading from the debugger db33
to the RAM or the Flash memory on the DMT33004/33005. It is not necessary to link the MON33 library to
the program to be debugged.
The MON33 library implemented in the DMT33004 is "mon33ch1.lib" that uses the built-in serial interface
Ch.1. The DMT33005 uses "mon33ch0.lib" that supports the built-in serial interface Ch.0.
Refer to "\dmt33004\m3s_boot.s" and "\dmt33005\m3s_boot.s" for the boot routine, "\dmt33004\
dmt33004.cm" and "dmt33005\dmt33005.cm" for the linker commands to implement the debug monitor.

APPENDIX DMT33MON BOARD

E0C33 FAMILY MON33 DEBUG MONITOR MANUAL EPSON 19

Building the sample program
It is not necessary to execute Make when modification of the source is not needed since the executable object
files ("led.srf," "led2.srf") are provided in the "sample\" folder.
When the source is modified, execute Make using the make file provided.

Make execution procedure
1) Set "\dmt33004\sample\" (or "\dmt33005\sample\") as the current directory.
2) Enter the following command at the DOS prompt.

C:\...\SAMPLE\>make -f led.mak ... when creating "led.srf"
C:\...\SAMPLE\>make -f led2.mak ... when creating "led2.srf"

Make can also be executed from the work bench wb33 (refer to the "E0C33 Family C Compiler Package
Manual").

Starting up the debug monitor
The boot routine mapped from address 0xC00000 on the DMT33004/33005 starts the debug monitor when the
K63 input port is set to "0".
Start up the debug monitor following the procedure below after connecting the target system and a personal
computer.
1) Turn SW3[DEBUG] of the DMT33MON on.
2) Turn the power of the DMT33004/33005 on.
3) Reset the DMT33004/33005 (DMT33MON SW1 [RESET] ON→OFF).
4) Turn the personal computer on and start up Windows.
5) Start up the debugger db33 (start-up method is described later).

Note: When the power of the DMT33004/33005 is turned on while the SW3 [DEBUG] of the DMT33MON
is off, the debug monitor does not start up. The DMT33004/33005 sets TTBR at the beginning of the
Flash memory (0x200000~), so the program sequence branches to the boot address. In this case,
turn the SW3 [DEBUG] on and reset the DMT33004/33005 with the SW1 [RESET] to start up the
debug monitor.

Debugging in the RAM
The sample program for debugging in the RAM (0x600000~) of the DMT33004/33005 is "led.srf". When
starting up the debugger, specify the debug command file "led.cmd" with the -c option. "led.cmd" sets the trap
table address to the start address of the RAM and loads "led.srf" to the RAM.
Operating procedure is as follows:
1) Start up the debug monitor as described above.
2) Set "\dmt33004\sample\" (or "\dmt33005\sample\") as the current directory.
3) Set a path to db33.exe.
4) Start up the debugger with the following command at the DOS prompt.

C:\...\SAMPLE\>db33 -mon -b 115200 -p 33104_m.par -c led.cmd

The debugger starts in debug monitor mode and is ready to debug "led.srf". For example, the LED on the
DMT33004/33005 board will start blinking by executing the g command.
Refer to "2. Debugging in the RAM" in Section 3.4, "Debugging Method", for the contents of the command
file.

Note: The debugger db33 ver. 1.0 does not support the debug monitor. Use ver. 1.72 or a later version.

APPENDIX DMT33MON BOARD

EPSON E0C33 FAMILY MON33 DEBUG MONITOR MANUAL20

Debugging in the Flash memory
The sample program for debugging in the Flash memory (0x200000~) of the DMT33004/33005 is "led2.srf".
The debugger db33 ver. 1.72 or later version supports debugging in the Flash memory. Refer to the
"Debugger" section of the "E0C33 Family C Compiler Package Manual" for details of operations.
To write the sample program to the Flash memory, first load the Flash erase/write routine "am29f800.srf". Then
initialize the Flash memory functions using the fls and fle commands and load the sample program into the
Flash memory using the lf command. Refer to the sample debug command file "led2.cmd" for executing
procedure.

When starting up the debugger, specify the debug command file "led2.cmd" with the -c option. "led2.cmd"
contains debug commands for loading the Flash erase/write routine, setting the trap table address and loading
"led2.srf" to the Flash memory.
Operating procedure is as follows:
1) Start up the debug monitor as described above.
2) Set "\dmt33004\sample\" (or "\dmt33005\sample\") as the current directory.
3) Set a path to db33.exe.
4) Start up the debugger with the following command at the DOS prompt.

C:\...\SAMPLE\>db33 -mon -b 115200 -p 33104_m.par -c led2.cmd

The debugger starts in debug monitor mode and is ready to debug "led2.srf". For example, the LED on the
DMT33004/33005 board will start blinking by executing the g command.
Refer to "3. Debugging in the Flash memory" in Section 3.4, "Debugging Method", for the contents of the
command file.

When debugging in the Flash memory, be aware that the software PC break function (bs command), memory
edit/fill/move commands and commands not supported by the debug monitor cannot be used.

Forced break
The debug monitor does not support forced break functions such as key break.
In the sample program, the label ESC is described in the NMI processing routine of the source ("led.s"). When
the debug command file ("led.cmd", "led2.cmd") is executed, a hardware PC break point is set at the ESC
location after the program has been loaded.
When the SW2 of the DMT33MON is turned on, a NMI is generated and it suspends the program execution
forcibly.

Notes on debugging the user program on the DMT33004/33005 board

• Wh e n d eb ug gi ng t he u se r p ro gr a m o n t he DMT 33 00 4/ 33 00 5 b oa r d, c r e a te t he p ro gr a m s o t ha t i t c a n b e
l oa de d a nd e xe c u te d i n t he f r e e a r e a o f t he RA M o r t he Fl as h me mor y i n t he s ame wa y a s t he s amp le f il e .
(See Figure A.5.1)

• Th e d eb ug mo ni to r o n t he DMT 33 00 4 h as b ee n i mpl eme n te d b y l in ki ng wi th t he " mon 33 c h1 .l ib ".
Therefore, the built-in serial interface Ch.1 cannot be used from the user program.

• Th e d eb ug mo ni to r o n t he DMT 33 00 5 h as b ee n i mpl eme n te d b y l in ki ng wi th t he " mon 33 c h0 .li b" .
Therefore, the built-in serial interface Ch.0 cannot be used from the user program.

APPENDIX DMT33MON BOARD

E0C33 FAMILY MON33 DEBUG MONITOR MANUAL EPSON 21

A.6 Indispensable Signal Pins of DMT33MON
When using the MON33 it is not absolutely necessary to connect the NMI, RESET and DEBUG switches/signals
on the DMT33MON board. If these switches are not used, the target board can be connected to the DMT33MON
using only the five signals as shown below.

Example: Connecting the target board to DMT33MON with five wires

User target board

The wire length must be within 10 cm.

12

10

5
4

1

GND

SCLK

SIN
SOUT

VCC

Figure A.6.1 Connection example using indispensable pins

The NMI, RESET and/or DEBUG signals should be connected if necessary.

AMERICA

EPSON ELECTRONICS AMERICA, INC.

- HEADQUARTERS -
1960 E. Grand Avenue
EI Segundo, CA 90245, U.S.A.
Phone: +1-310-955-5300 Fax: +1-310-955-5400

- SALES OFFICES -

West
150 River Oaks Parkway
San Jose, CA 95134, U.S.A.
Phone: +1-408-922-0200 Fax: +1-408-922-0238

Central
101 Virginia Street, Suite 290
Crystal Lake, IL 60014, U.S.A.
Phone: +1-815-455-7630 Fax: +1-815-455-7633

Northeast
301 Edgewater Place, Suite 120
Wakefield, MA 01880, U.S.A.
Phone: +1-781-246-3600 Fax: +1-781-246-5443

Southeast
3010 Royal Blvd. South, Suite 170
Alpharetta, GA 30005, U.S.A.
Phone: +1-877-EEA-0020 Fax: +1-770-777-2637

EUROPE

EPSON EUROPE ELECTRONICS GmbH

- HEADQUARTERS -
Riesstrasse 15
80992 Muenchen, GERMANY
Phone: +49-(0)89-14005-0 Fax: +49-(0)89-14005-110

- GERMANY -
SALES OFFICE
Altstadtstrasse 176
51379 Leverkusen, GERMANY
Phone: +49-(0)217-15045-0 Fax: +49-(0)217-15045-10

- UNITED KINGDOM -
UK BRANCH OFFICE
2.4 Doncastle House, Doncastle Road
Bracknell, Berkshire RG12 8PE, ENGLAND
Phone: +44-(0)1344-381700 Fax: +44-(0)1344-381701

- FRANCE -
FRENCH BRANCH OFFICE
1 Avenue de l' Atlantique, LP 915 Les Conquerants
Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE
Phone: +33-(0)1-64862350 Fax: +33-(0)1-64862355

ASIA

- CHINA -
EPSON (CHINA) CO., LTD.
28F, Beijing Silver Tower 2# North RD DongSanHuan
ChaoYang District, Beijing, CHINA
Phone: 64106655 Fax: 64107320

SHANGHAI BRANCH
4F, Bldg., 27, No. 69, Gui Jing Road
Caohejing, Shanghai, CHINA
Phone: 21-6485-5552 Fax: 21-6485-0775

- HONG KONG, CHINA -
EPSON HONG KONG LTD.
20/F., Harbour Centre, 25 Harbour Road
Wanchai, HONG KONG
Phone: +852-2585-4600 Fax: +852-2827-4346
Telex: 65542 EPSCO HX

- TAIWAN, R.O.C. -
EPSON TAIWAN TECHNOLOGY & TRADING LTD.
10F, No. 287, Nanking East Road, Sec. 3
Taipei, TAIWAN, R.O.C.
Phone: 02-2717-7360 Fax: 02-2712-9164
Telex: 24444 EPSONTB

HSINCHU OFFICE
13F-3, No. 295, Kuang-Fu Road, Sec. 2
HsinChu 300, TAIWAN, R.O.C.
Phone: 03-573-9900 Fax: 03-573-9169

- SINGAPORE -
EPSON SINGAPORE PTE., LTD.
No. 1 Temasek Avenue, #36-00
Millenia Tower, SINGAPORE 039192
Phone: +65-337-7911 Fax: +65-334-2716

- KOREA -
SEIKO EPSON CORPORATION KOREA OFFICE
50F, KLI 63 Bldg., 60 Yoido-Dong
Youngdeungpo-Ku, Seoul, 150-010, KOREA
Phone: 02-784-6027 Fax: 02-767-3677

- JAPAN -
SEIKO EPSON CORPORATION
ELECTRONIC DEVICES MARKETING DIVISION

Electronic Device Marketing Department
IC Marketing & Engineering Group
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5816 Fax: +81-(0)42-587-5624

ED International Marketing Department I (Europe & U.S.A.)
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5812 Fax: +81-(0)42-587-5564

ED International Marketing Department II (Asia)
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5814 Fax: +81-(0)42-587-5110

International Sales Operations

In pursuit of “Saving” Technology , Epson electronic devices.
Our lineup of semiconductors, liquid crystal displays and quartz devices

assists in creating the products of our customers’ dreams.
Epson IS energy savings .

ELECTRONIC DEVICES MARKETING DIVISION

■ Electronic devices information on Epson WWW server

http://www.epson.co.jp/device/
Issue APRIL 1999, Printed in Japan M A

	㄀ 䴀伀一㌀㌀ 倀愀挀欀愀最攀
	㄀⸀㄀ 䘀攀愀琀甀爀攀猀
	㄀⸀㈀ 䌀漀洀瀀漀渀攀渀琀猀 漀昀 䴀伀一㌀㌀ 倀愀挀欀愀最攀
	㄀⸀㌀ 䤀渀猀琀愀氀氀愀琀椀漀渀

	㈀ 䤀洀瀀氀攀洀攀渀琀椀渀最 琀栀攀 䐀攀戀甀最 䴀漀渀椀琀漀爀
	㈀⸀㄀ 刀攀猀漀甀爀挀攀猀 刀攀焀甀椀爀攀搀 昀漀爀 琀栀攀 䐀攀戀甀最 䴀漀渀椀琀漀爀
	㈀⸀㈀ 匀琀愀爀琀椀渀最 唀瀀 琀栀攀 䐀攀戀甀最 䴀漀渀椀琀漀爀
	㈀⸀㌀ 䈀甀椀氀搀椀渀最 愀渀 䄀瀀瀀氀椀挀愀琀椀漀渀 倀爀漀最爀愀洀
	㈀⸀㐀 䌀爀攀愀琀椀渀最 䌀漀洀洀甀渀椀挀愀琀椀漀渀 䌀漀渀琀爀漀氀 刀漀甀琀椀渀攀猀

	㌀ 吀愀爀最攀琀 倀爀漀最爀愀洀 愀渀搀 䐀攀戀甀最最椀渀最
	㌀⸀㄀ 一漀琀攀猀 昀漀爀 䌀爀攀愀琀椀渀最 吀愀爀最攀琀 倀爀漀最爀愀洀猀
	㌀⸀㈀ 倀愀爀愀洀攀琀攀爀 䘀椀氀攀 昀漀爀 䐀攀戀甀最最椀渀最
	㌀⸀㌀ 匀琀愀爀琀椀渀最 唀瀀 愀渀搀 吀攀爀洀椀渀愀琀椀渀最 倀爀漀挀攀搀甀爀攀 漀昀 䐀攀戀甀最最椀渀最
	㌀⸀㐀 䐀攀戀甀最最椀渀最 䴀攀琀栀漀搀
	㌀⸀㔀 倀爀攀挀愀甀琀椀漀渀猀 昀漀爀 䐀攀戀甀最最椀渀最
	㌀⸀㔀⸀㄀ 刀攀猀琀爀椀挀琀椀漀渀 漀渀 䐀攀戀甀最最椀渀最 䌀漀洀洀愀渀搀
	㌀⸀㔀⸀㈀ 伀琀栀攀爀 倀爀攀挀愀甀琀椀漀渀猀

	䄀瀀瀀攀渀搀椀砀 䐀䴀吀㌀㌀䴀伀一 䈀漀愀爀搀
	䄀⸀㄀ 伀甀琀氀椀渀攀 漀昀 䐀䴀吀㌀㌀䴀伀一 䈀漀愀爀搀
	䄀⸀㈀ 一愀洀攀猀 愀渀搀 䘀甀渀挀琀椀漀渀猀 漀昀 䔀愀挀栀 倀愀爀琀
	䄀⸀㌀ 䌀漀渀渀攀挀琀椀渀最 琀栀攀 匀礀猀琀攀洀
	䄀⸀㐀 䐀䴀吀㌀㌀䴀伀一 䈀氀漀挀欀 䐀椀愀最爀愀洀
	䄀⸀㔀 倀爀漀最爀愀洀 䐀攀戀甀最最椀渀最 眀椀琀栀 愀 䐀䴀吀 䈀漀愀爀搀 愀渀搀 䴀伀一㌀㌀
	䄀⸀㘀 䤀渀搀椀猀瀀攀渀猀愀戀氀攀 匀椀最渀愀氀 倀椀渀猀 漀昀 䐀䴀吀㌀㌀䴀伀一

