MF1200-01a EPSON

CMOS 32-BIT SINGLE CHIP MicRocoMPUTER EOC33 Family

MON33 DEBUG MoONITOR MANUAL

ENERGY

SAVING
EPSON

SEIKO EPSON CORPORATION

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written
permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice.
Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material
or due to its application or use in any product or circuit and, further, there is no representation that this material
is applicable to products requiring high level reliability, such as medical products. Moreover, no license to any
intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that
anything made in accordance with this material will be free from any patent or copyright infringement of a third
party. This material or portions thereof may contain technology or the subject relating to strategic products under
the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from
the Ministry of International Trade and Industry or other approval from another government agency.

Windows95 and Windows NT are registered trademarks of Microsoft Corporation, U.S.A.
PC/AT and IBM are registered trademarks of International Business Machines Corporation, U.S.A.
All other product names mentioned herein are trademarks and/or registered trademarks of their respective owners.

© SEIKO EPSON CORPORATION 1999 All rights reserved.

TABLE OF CONTENTS

Preface

Written for those who develop applications using the EOC33 Family of microcomputers, thismanual describeshow
to implement the EOC33 Family debug monitor library MON33 and how to debug the target program.

Table of Contents

LT MONBS PaCK A - . ettt ettt e e 1
R I ==] = PN 1

1.2 Components 0f MONB3 PACKAGEuuuiniiiiiiie e 2

LB INStAIALION .. e 2
2Implementing the DebUG ..o e 4
2.1 Resources Required for the Debug MONITOr.ouiiiiiiiii e 4

2.2 Starting Up the Debug MONITOT ... aens 5

2.3 Building an Application PrOgram e 6

2.4 Creating Communication Control ROULINES.........c.iuiuiiiiii e 7

3 Target Program and Debuggingoiuiii i 10
3.1 Notes for Creating Target Programsouiuiuiiieie e 10

3.2 Parameter File for DebUGQINGuiuiniiiiii e 10

3.3 Starting Up and Terminating Procedure of Debuggingcoooiiiiiiiiiiiiies 11

3.4 Debugging METNOG 12

3.5 Precautions for DeBUGQINGcuiuii e 14

3.5.1 Restriction on Debugging Command............c.ouiiniiiiiiiiiie e aeaes 14

3.5.2 Other PreCaULIONSuuiiiiet et 14

Appendix DMT33MON BOArdoouuiiiiiii i 15
A.1 Outline of DMT33MON BOAI........cuitiiiiiie et 15

A.2 Names and Functions of EACh Partcoooiiiiiiiiii e 15

A.3 CoNNECtiNg the SYSteM e 16

A.4 DMT33MON BIOCK DIagIam.uuenieiiieiie et 17

A.5 Program Debugging with a DMT Board and MONB3.........cciiiiiiiiiiiiiieneee e 18

A.6 Indispensable Signal Pins of DMT33MON. ... 21

EOC33 FAMILY MON33 DEBUG MONITOR MANUAL EPSON i

1 MON33 PACKAGE

1 MONS33 Package

The Debug Monitor MON33 isamiddleware designed for EOC33 Family single-chip microcomputers.
It provides program-debugging functions on the user target board or for the actual product.

1.1 Features

Thefollowing lists the features of MON33:

* Itisprovided as alibrary filethat can be linked to the user program.
This package also contains source codes of all the modules.

* MON33 uses approx. 10KB ROM, approx. 2.5KB RAM and achannel of seial inteface on the EOC33 chip. It
allows direct program debugging viathe DMT33MON board using the debugger db33 on the personal computer.

» Allowsdebugging of thetarget program in the RAM, ROM or Flash memory on the target board.

* Supports the following debugging functions:
- Successive execution and step execution of the program
- PC break and data break
- Memory/register operation
- Flash memory writing

A configuration of the debugging systemisshown in Figure 1.1.1.

Target board
DMT33MON
EOC33XXX interface board
Serial [] RS232C
interface L]
115,200 bps
External External (FLASH)
RAM ROM memory

Figure 1.1.1 Configuration of debugging system

EOC33 FAMILY MON33 DEBUG MONITOR MANUAL EPSON

1 MON33 PACKAGE

1.2 Components of MON33 Package

Thefollowing lists the contents of MON33 Package:
When unpacking, make surethat all of the following components are included.

(1) Tool disk (3.5' FD for PC/AT, 1.44MB) 1
(2) EOC33 Family MON33 Debug Monitor Manual (this manual) 2 (1 English/1 Japanese)
(3) Warranty 2 (1 English/1 Japanese)

1.3 Installation

MON33 needs to be linked with the user program as it isimplemented. Therefore, make sure all toolsof the"EOC33
Family C Compiler Package" have beeninstalled in the personal computer and are ready to run before installing the
MON33 files. The basic system configuration is described below.

¢ Persona computer:
IBM PC/AT or compatible
(PC with Pentium 90 MHz or higher and 32MB or more memory recommended)
One channel of the serial port isused to communicate with the debug monitor.
« OS
Windows95, Windows NT 4.0 or higher version (English version or Japanese version)

All the MON33files are supplied on one floppy disk. Execute the self-extract file "mon33vX X.exe" on the FD to
install thefiles. ("XX" in thefile name represents the version number, for example, "mon33v10.exe” isthefile
name of MON33ver. 1.0.)

When "mon33vXX.exe" is started up by double-clicking thefileicon, the following dialog box appears.

Enter apath/folder name in thetext box then click
[Unzip]. The specified folder will be created and all the
files will be copied to the folder.

Unzip To Folder Fun®inip | | \When the specified folder already exists on the specified
e path, the folder will be overwritten without prompting if
[Overwrite Files Without Prompting] is checked.

WinZip Self-Extractor [MON33V>2{ EXE]

Ta unzip all files in MOM334:3 EXE ta the

i i Unzi
specified folder press the Unzip button. Ll

¥ Owenite Files 'without Prompting
About

Help

ddidid

2 Mico Mak Corputing, Ihe. WA, WIREZID. com

Thefollowing liststhe configuration of directories and files after copying.

(root)\ (default: C:\EOC33\MON33\)

readme.txt Supplementary explanation (in English)

readmeja.txt Supplementary explanation (in Japanese)

libh ... MON33 library
mon33ch0.lib MON33 library that uses the seria I/F Ch.0 on the EOC33xxx
mon33chl.lib MON33 library that uses the seria I/F Ch.1 on the EOC33xxx
mon33.lib MON33 library that does not use aserial 1/F on the EOC33xxx

. These libraries cannot be used with the ICE or the ICD.
Normally, either "mon33ch0.lib" or "mon33chl.lib" isused
according to the serial I/F channel used. Use "mon33.1ib" when
providing aserial 1/O circuit separately and when not using the
DMT33MON board.

mon33ice.lib Library that does not use aserial I/F on the EOC33xxx for
debugging the MON33 using the ICE or the ICD

2 EPSON EOC33 FAMILY MON33 DEBUG MONITOR MANUAL

1 MON33 PACKAGE

mon33ch0.mak Make file for building mon33ch0.lib
mon33chl.mak Make filefor building mon33chl.lib
mon33.mak Make filefor building mon33.1ib
mon33ice.mak Make filefor building mon33ice.lib

s L MON33 source files
m33_def.h MON33 definitionfile
m3c_brk.c C source filefor break functions
m3c_exe.c C source filefor program execution
m3c_flsh.c C source filefor Flash memory operation
m3c_main.c MON33 main C source file
m3c_mem.c C source filefor memory operation
m3c_othe.c C source filefor other functions
m3c_sci.c C source file for sending/receiving messages
m3s_exe.s Assembly source filefor program execution
m3s_flsh.s Assembly source filefor Flash memory operation
m3s_init.s Assembly source filefor MON33 initial set-up
m3s_mem.s Assembly source file for memory operation
m3s_sci.s Assembly source file for sending/receiving messages

dmt33xxx\ ... Sample source files for the DM T33xxx, MON33 build files and related files
A sample program for blinking the LED on the DM T33xxx, a source for theon-board
Flash memory write/erase routines and the make files are included in each dmt33xxx
folder. The source files can be modified to use intheapplicationprogramif necessary.
Refer to "readme.txt" or "readmeja.txt" for the contents of the dmt33xxx folder.

EOC33 FAMILY MON33 DEBUG MONITOR MANUAL

EPSON

2

2

IMPLEMENTING THE DEBUG MONITOR

| mplementing the Debug M onitor

This chapter describes how to implement the debug monitor and how to start it from the application

program.

2.1 Resources Required for the Debug Monitor

The debug monitor uses the following resources:

Approximately 10KB of ROM areafor the program code of the debug monitor.

Approximately 2.5KB of RAM areafor the work and stack area.

Since the debug monitor uses the debugging exception of the CPU, addresses 0x0 to OxF of thebuilt-in RAM area
areused asthe vector and stack for processing debugging exceptions Furthermore, addresses 0x10to Ox2F are
reserved for extending functions.

One channel (Ch.0or Ch.1) of the serial interface (8-bit asynchronous mode) is used for communicating with the

debugger db33 on the personal computer.
Figure 2.1.1 shows a connection diagram.

EOC33XXX Vss 7J7 DMT33MON
L Connected to the personal computer
s > ‘ using the RS232C cable
SINO/1 N (Baud rate: 115,200 bps)
SCLKO/1 <

Target board
Figure 2.1.1 RS232C connector diagram

Communication viaRS232C is performed by a software polling method without any interrupt related resource.
A serial 1/O device outside the EOC33 chip can be used by customizing the serial /O routine (see Section 2.4).

MON33 uses the TXD, RXD and status registers of the corresponding seia intaface channel exclusively.
Therefore, do not access these control registers.

Furthermore, fix the 1/0 pinsfor the channel at the serial interface pinsusing the port function select register. For
example, the sample program "m3s_sci.s" writes 0x07 tothe PO function sd ect regiser (0x402D0) when Ch.0is
used or 0x70 when Ch.1 isused to set the seria interface pins.

EPSON EOC33 FAMILY MON33 DEBUG MONITOR MANUAL

2 IMPLEMENTING THE DEBUG MONITOR

2.2 Starting Up the Debug Monitor

The debug monitor starts by jumping tom_mon_start().

Normally, provide aselect switch outside the EOC33 chip for selecting either starting up the debug monitor or a
normal execution and create the program that can jump to m_mon_start() from the boot routine after aninitial reset.
Furthermore, start the debug monitor after initializing the BCU if necessary. In case the debug monitor is started
before the BCU isinitialized, downloaded data cannot be written to a 8-bit device or in DRAM. However, when the
MONS33itself is placed on the 16-bit ROM and the 16-bit SRAM isused as awork areg, it can be operated evenin
the default setting (7-wait state) when operating in 20 MHz. In the following example, the initial set-up statements
are described as comments so that the BCU operates by default. By decreasing the wait cyclenumber (2-wait setting
in the example below), the file loading and other operations may improve the response time (approximately 5 to
10%).

Example: boot routine of "dmt33004\m3s_boot.s"

B R R R R R R
1

BOOT program

;

EEE R R R R S S R R R R R S S R R R R S S R R R R R S R S S S R S R Sk kS R S S S
;

BOOT:
xld. w % 0, 0x800

Id. w Y%sp, %0
; xld.w % 5, BCU_A10_ADDR ;area9-10 (0x800000-0xffffff)
; xld.w % 4, 0b0000000000010010 ;Device 16 bits,delay 1.5, wait 2
; Id.h [%5]+ %4
; xld.w % 5, BCU_A8_ADDR ;area8 (0x600000-0x7fffff)
; x|l d.w % 4, 0b0000000000010010 ;Device 16 bits,delay 1.5, wait 2
; Id.h [%5]+ %4
; xld.w % 5, BCU_A5_A6_ADDR ;areab-6 (0x200000-Ox3fffff)
; x|l d.w % 4, 0b0001001000010010 ;Device 16 bits,delay 1.5, wait 2
; Id.h [%5]+ %4
xbt st [K6XD] , 0x3 ; K63 (debug SWcheck) 0: MON33 1: USER
Xjreq m non_start ; MON33 start
ip USER
USER:
xld.w % 4, TBRP
xld.w % 6, 0x59
xld.b [%4],%6 ; TTBR wri tabl e 0x59
xld.w % 4, TTBR
xld.w % 6, 0x200000
Id.w [%4],%6 ; TTBR set 0x200000
Id w % 4, % 6]
ip % 4 ;user application(flash) start

EOC33 FAMILY MON33 DEBUG MONITOR MANUAL EPSON 5

2 IMPLEMENTING THE DEBUG MONITOR

2.3 Building an Application Program

The MON33 modules are provided as alibrary file "mon33*.lib" in the directory "lib\". Link thislibrary to the user
modules.

When using the seria interface on the EOC33 chip and the DMT33MON board, link "mon33ch0.lib" (Ch.0is used)
or "mon33chl.lib" (Ch.1lisused) accordingly. When not using the serial interface on the EOC33 chip and the
DMT33MON board, create seria 1/0 routines separately and link "mon33.lib".

Specify the"lib\" directory of the MON33 as alibrary path in the linker command file when linking.

Example: " dnt 33004\ dnt 33004. cni

; Map set
-code 0x0c00000 ; set relative code section start address
-bss 0x06ff 640 ; set relative bss section start address

;Library path
-1 ¢c:\CC33\lib CC33 standard library path
-1 .\Ilib MON33 library path (c:\EOC33\mon33\lib)

; Executable file
-0 dnt 33004. srf

;Object files
nm3s_boot. o

;Library files

string.lib

ctype.lib

idiv.lib

nmon33chl.lib MON33 library to be linked
Since al the source codes of the debug monitor are provided in the directory "src\", it is possible to customize the
debug monitor if necessary. In this case, rebuild the library using "mon33*.mak" (make filefor creating
"mon33*.1ib") inthe directory "lib\".

MON33 allows the debugger db33 to write the target program to be debugged inthe RAM or Flash memory on the
target board. In this case, it isnot necessary to create atarget object linked to the debug monitor. When the
DMT33xxx board (DM T33004, DMT33005, etc.) isused, thetarget program can be downloaded to the RAM or
Flash memory and can be debugged by writing MON33 and a simple boot program to the ROM.

When executing the target program in the external ROM on the target board, link the debug monitor to the target
program and create an object that is mapped to the external ROM.

6 EPSON EOC33 FAMILY MON33 DEBUG MONITOR MANUAL

2 IMPLEMENTING THE DEBUG MONITOR

2.4 Creating Communication Control Routines

For communicating with the debugger, the debug monitor cals the following four RS232C routines (1 to 4).
"mon33chX.lib" that contains these routines can be used when using the serial interface Ch.0 or Ch.1 on the EOC33
chip and the DMT33MON board. Otherwise, it is necessary to create these routines according to the system since
"mon33.lib" must be used. The sample program "m3s_sci.s" that uses the seria interface Ch.0/Ch.1 of the
EO0C33A104/E0C33208 is provided in "src\", so useit after modifying if necessary.

(1) void m_io_init()
Thisisan initial set-up routine of the serial interface. Return value is not necessary.
Set up 1/0O terminals, input clock, baud rate and a dataformat. Select 8-bit asynchronous mode, no parity and 1
stop bit. The baud rate should be set to a value supported by the debugger db33 and the personal compuiter.
Refer to the "EOC33X XX Technical Manual"” for the serial interface and for setting the clock.
The sample program "m3s_sci.s" assumes use of the DMT33MON board. It sets the baud rate to 115.2 kbps
when a1.843 MHz external clock is used.

Example: "m_io_init() of "m3s_sci.s"

#defi ne MON_VER 0x11 ;monitor firmware version

#i fdef SI Q0
#define STDR 0x000401e0 ;transmit data register(chQ)
#define SRDR 0x000401el ;receive data register(ch0)
#define SSR 0x000401e2 ;serial status register(chQ)
#define SCR 0x000401e3 ;serial control register(chO0)
#define SIR 0x000401e4 ;1 rDA control register(chO)
#define PIO SET 0x07 ;port function register

#el se
#define STDR 0x000401e5 ;transmit data register(chl)
#define SRDR 0x000401e6 ;receive data register(chl)
#define SSR 0x000401e7 ;serial status register(chl)
#define SCR 0x000401e8 ;serial control register(chl)
#define SIR 0x000401e9 ;1 rDA control register(chl)
#define PIO SET 0x70 ;port function register

#endi f

#defi ne SIR_SET 0x0 ;SIR set (1/16 node)

#defi ne SCR_SET 0x7 ; SCR set (#SCLK i nput 1.843M4z 115200bps)

#defi ne SCR_EN 0xcO ; SCR enabl e

#defi ne Pl O 0x000402d0 ;10 port (P port) register
. code

BRI R R R R R R I
; void mio_init()
; serial port initial function

cchkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhhhhhhhkhhkhhhkhx*x*%
’

.global mio_init

mio_init:
Id. w % 0, SI R_SET ; 1/ 16 node
xld.b [SIR,% 0 ; SIR set
Id. w % 0, SCR_SET
xld. b [SCR], % 0 ; SCR set (#SCLK i nput 1. 843MHz)
xld.w % 0, Pl O_SET
xld. b [PIQ,% 0 ;10 port set
xld.w % 0, SCR_EN| SCR_SET
xld. b [SCR], % 0 ; SCR set
ret

In addition to the sampleprogram above, "dmt33001\m3s_sci.s" is provided. This program setsthe baud rateto
38,400 bps based on the 20 MHz EOC33A 104 internal clock. Refer toit if necessary.

EOC33 FAMILY MON33 DEBUG MONITOR MANUAL EPSON 7

2 IMPLEMENTING THE DEBUG MONITOR

(2) void m_snd_1byte(unsigned char)

Thisisaroutine that sends 1-byte data. Thisroutine receives 1-byte data as the argument (R12 register) and
sendsit viathe serial interface. Return value is not necessary.

Example: m_snd_1byte() of "m3s_sci.s"

B R R R R R R R

; voi d msnd_1lbyte(sdata)
; 1 byte send function

; IN: uchar sdata (R12)
.global msnd_1lbyte
m snd_1lbyte:
pushn % 3 ;save r3-r0
snd000:
xbt st [SSR1], Ox1
jreq snd000 it full,
xld. b [STDR1], % 12 ;wite data
popn % 3 ;restore r3-
ret

(3) unsigned char m_rcv_1byte()

send data

R R R R R

; TDBEL(bit1l) == 0o(full) ?
j p snd000

ro

Thisisaroutine that receives 1-byte data. Store received 1-byte datainto m_rcv_data. It returnsfollowing

error codes (unsigned char) as thereturn value:
0: received normally

1: framing error

2: parity error

3: overrun error

Example: m_rcv_1byte() of "m3c_sci.s"

EEE R Sk Sk Sk S S S S kS S kR Sk S S S S kS kS R Sk kS

; uchar mrcv_1byte()
; 1 byte receive function

; QUT : O receive X

; 1 receive ERROR (framng err)
; 2 (parity err)
; 3 (over run err)

R R R R R R R

.global mrcv_1lbyte

mrcv_lbyte:
pushn % 3 ;save r3-r0

rcv00o0:
xbt st [SSR1], 0x0 ; RDBF1(bit0) == O(enpty) ?
jreq rcv000 ;if enpty, jp rcv000
Id.w % 10, 0x0
xbt st [SSR1], Ox4 ; FERL(bit4) == 0 ?
jreq rcv0ol0
xbcl r [SSR1], Ox4 ; FERL(bit4) 0 clear
Id.w % 10, Ox1 ;return 1

rcv010:
xbt st [SSR1], 0x3 ; PERL(bit3) == 0 ?
jreq rcv020
xbcl r [SSR1], 0x3 ; PER1(bit3) O clear
Id. w % 10, Ox2 ;return 2

rcv020:
xbt st [SSR1], 0x2 ; OER1(bit2) == 0 ?
jreq rcv0o30
xbcl r [SSR1], 0x2 ; OER1(bit2) O clear
Id.w % 10, 0x3 ;return 3

rcv030:
xl d.b % 0, [SRDR1] ;read data
xld. b [mrcv_data], % 0 ;read data set
popn % 3 ;restore r3-r0
ret

EPSON

EOC33 FAMILY MON33 DEBUG MONITOR MANUAL

2 IMPLEMENTING THE DEBUG MONITOR

(4) void m_dummy_rd()
Thisisadummy read routine. It reads datafrom the receive buffer and clears the buffer. Return value is not
necessary.
Example: m_dummy_rd() of "m3s_sci.s"

R R R R R R R R R R R R R R
’

; void m dunmy_rd()
; dummy read function

chkkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhhhhhhhhhhhhhkhx*x*%

’ .global mdumy_rd

m dumy_rd:
xld. b % 4, [SRDR] ;read data
ret

(5) void m_ver_rd()
Thisisaversion read routine. Modifying the constant MON_VER can change the MON33 version number. It
returnsMON_VER as thereturn value.
Example: m_ver_rd() of "m3s_sci.s"
;**
void muver_rd()
; non firmwvare version read function

’
R R R R R R R R R R R R R R
’

.global muver_rd

mver _rd:
xld.w % 10, MON_VER ;mon firmaare version
ret

(6) Sample command file for building
When the above routines are newly created, create alinker command file as the following example and link
"mon33.1ib" to the user modules.

Example: dmt330001\dmt33001.cm

; Map set
- code 0x0c00000 ; set relative code section start address
-bss 0x081f 640 ; set relative bss section start address

;Library path
-1 c:\CC33\1ib
-1 . \lib

; Executable file
-0 dnt 33001. srf

; Object files

n8s_boot . o

nBs_bcu. o

nBs_sci.o Originally created SIO routine

;Library files

string.lib

ctype.lib

fp.lib

idiv.lib

mon33.1ib Link "mon33.lib" that does not include SIO routine

EOC33 FAMILY MON33 DEBUG MONITOR MANUAL EPSON 9

3 TARGET PROGRAM AND DEBUGGING

3 Target Program and Debugging

This chapter describes precautions for debugging using the debug monitor.

3.1 Notes for Creating Target Programs

Follow theinstructions below when creating the target program to be debugged:

¢ Sincethe debug monitor uses the debugging exception of the CPU, addresses 0x0 to OxF of thebuilt-in RAM area
are used asthe vector and stack for processing debugging exceptions. Therefore, the target program cannot use this
area. Furthermore, do not use addresses 0x10 to Ox2F.

« When deébugging the taget program by writing inthe RAM or Flash memory on the target board, map the
program to that address.

e Thedeébug monitor does not allow forced break functions such as key breaks. Forced break functions should be
made in the taget program usng a key input interupt or an NMI input. Setting a hardware PC break in the
interrupt processing routine makesit possible to execute aforced break.

3.2 Parameter File for Debugging

A debug-parameter fileisrequired to start the debugger. Create the file according to the memory configuration of
thetarget system. When using the debug monitor, the debugger ignores all the settings for the ICE emulation
memory.

When using aFlash memory, specify it as aRAM.

Example: "dmt33004\sample\33104_m.par"

CH P 33104 ; chip name (33XXX)

| ROM 1000 ; internal ROMis 80000 to 80FFF
FOPT 0000 ; f option size

PRC VER 00 ff ; allow any PRC board

PRC STATUS Frxkkkkkkkkxkkxxx . gl | ow any PRC board status
MPU ; 0xC00000 external boot address
VER 1 ; this file version

; Emul ation nmenory allocation (max 8 areas, 1MB/area, 1MB boundary)
EMROM c00000 cfffff ; external ROM 1MB

; Map allocation (max 31 areas, 256bytes boundary)

RAM 0 7FF ; internal RAM area 2KB
10 40000 Affff ; internal 10 area 64KB
RAM 200000 2f ffff ; external FLASH 1MB
RAM 600000 6fffff ; external SRAM 1MB
EROM c00000 cfffff ; external ROM 1MB

; Stack area except internal RAM area (max 8 areas, 256bytes boundary)

STACK 600000 6f ffff ; external stack area 1MB

END

10 EPSON EO0C33 FAMILY MON33 DEBUG MONITOR MANUAL

3 TARGET PROGRAM AND DEBUGGING

3.3 Starting Up and Terminating Procedure of Debugging

Follow the procedure below to start debugging.

1. Make surethe power of thetarget board and personal computer are off.

2. Connect the DMT33MON board to the target board in which the debug monitor isimplemented and connect the

DMT33MON board to the personal computer with the RS232 cable.

Turn the target board on and then start the debug monitor.

4. Turnthe personal computer on and start the debugger db33 in debug monitor mode from the work benchwhb33or
DOS prompt.
Example: db33 -nmon -b 115200 -p 33104_m par

w

Follow the procedure in order from Step 4 to Step 1 to terminate debugging and for power off.

Note: When connecting and disconnecting the RS232C cable, make sure the target board and the
personal computer are off.

EOC33 FAMILY MON33 DEBUG MONITOR MANUAL EPSON 11

3 TARGET PROGRAM AND DEBUGGING

3.4 Debugging Method

Thefollowing three methods are available for debugging the target program.

1. Debugging in the ROM

Map thetarget program in the ROM after linking to the debug monitor. The target program can be executed
and debugged in the ROM.

Since the [Source] window of the debugger displaysthe disassembled content of the ROM on the target system,
itisnot necessary to load the target program with the If command. To display the source, load the same
absolute object file as the one written to the ROM. In this case, by using the ld command instead of the If
command, the db33, except for the object code, loads only the debugging information.

After starting the debugger, follow the process below before starting to debug:

1. Load the debugging information (when displaying the source or using symbols).

2. Set up ahardware PC break point for the forced break function.

Example: command file example of the above description
Id sanple.srf ; Load the debugging information of the target program
bh ESC ; Set up a hardware PC break point at the label ESC (for forced break)*

* For example, an NMI input switch can be used for the forced break function.

Example: NMI processing routine example for forced break function
NM : ;onm
nop
.global ESC
ESC: ; Label set as a hardware PC break point for the forced break function
reti

Note: When debugging the target program in the ROM, the software PC break function (bs command)

cannot be used.

2. Debugging in the RAM

Load thetarget program into the RAM of thetarget system with the If command to debug the program in the
RAM.

After starting the debugger, follow the process below before starting to debug:

1. Set the trap table base address (only when placing the trap table in the RAM).

2. Load thetarget program.

3. Reset the CPU.

4. Set up ahardware PC break point for the forced break function.

The following shows a debug-command file example in which the above processis described.

Example: "dmt33004\sample\led.cmd”

eb 4812d ; Set up TBRP (TTBR write protection register)

59 ; Remove TTBR write protection

q

ew 48134 ; Set up TTBR (trap table base register)

600000 ; Set up the base address to 0x600000 (external RAM)

q

I'f led.srf ; Load the target program (0x600000~)

rsth ; Reset the CPU (reset vector at 0x600000 is set to the PC)

bh ESC ; Set up a hardware PC break at the label ESC (for forced break)

12

EPSON EO0C33 FAMILY MON33 DEBUG MONITOR MANUAL

3. Deb
In

3 TARGET PROGRAM AND DEBUGGING

ugging in the Flash memory
the target system in which a Flash memory has mounted, the target program can be debugged by writing it

into the Flash memory using the debugger.

Notes:

* When debugging the target program in the Flash memory, the software break function (bs
command) cannot be used.

» The debugger db33 ver. 1.72 or later version supports data writing to the Flash memory on the
target board. To debug using the Flash memory, create Flash erase and Flash write routines in
the user program and write the program following the instructions below:

After starting the debugger, follow the process bel ow before starting to debug:
1. Load and initialize the Flash erase/write routines.

2. Erase the Flash memory.

3. Set up the trap table base address.

4. Load thetarget program.

5. Reset the CPU.

6. Set up ahardware PC break point for the forced break function.

Th
Ex

*1:

*2:

e following shows a debug-command file example in which the above processis described.
ample: "dmt33004\sample\led2.cmd”
I f ..\sanpl e\flsh\an29f 800. srf ; Load the Flash erase/write routines to the built-in RAM
fls ; Flash set up command
1 ;1:Setup 2: Clear
200000 ; Flash memory start address = 0x200000 ([R)
20 ffff ; Flash memory end address = Ox2fffff ([R)
FLASH_ERASE ; Flash erase routine start address (L)
FLASH_LOAD ; Flashload routine start address (1)
fle ; Flash memory erase command
0x200000 ; Flash control register = 0x200000
0 ; Erase start block, 0 = All area, 1-19 = Start section
0 ; Erase end block, 1-19 = End section, 0 = Ignored
eb 4812d ; Set up TBRP (TTBR write protection register)
59 ; Remove TTBR write protection
q
ew 48134 ; Set up TTBR (trap table base register)
200000 ; Set up base address to 0x200000 (Flash memory start address)
q
I f led2. srf ; Load the target program (0x200000~)
rsth ; Reset the CPU (reset vector at 0x200000 is set to PC)
bh ESC ; Set up a hardware PC break at the label ESC (for forced break)

"am29f800.srf" is created so as to operate by loading into the built-in RAM (2KB).

When using this source for the EOC33A104 after modifying, use the patch tool "cc33\utility\filter".
This sample ("dmt33004\sampl e\led2.srf") assumes that aFlash memory of 1MB islocated at
0x2000 00—-0x 2fff ff.

EOC33 FAMILY MON33 DEBUG MONITOR MANUAL EPSON 13

3 TARGET PROGRAM AND DEBUGGING

3.5 Precautions for Debugging

3.5.1 Restriction on Debugging Command
When the debug monitor isused for debugging, the following debugging functions/'commands are not available or
allowed to be used.

When the following commands/functions are used, an error message will be displayed.
Error: Comand i s not supported at present node.

e Trace function (tm, td, tsand tf commands)

« Sequential break function (bsg command)

« |CE Flash memory function (Ifl, sfl and efl commands)

« Optionrelated function (lo and od commands)

¢ |CE emulation memory

Thefollowing commands/ functions are not available even though no error message will be displayed.
» Fileloading viaaparallel port (If and |h commands)

e Map break function

On-the-fly function

.

« Execution time measurement function

» Key break function

In addition to the functions above, the following functions cannot be used when the program in the ROM or Flash
memory is debugged.

« Software PC break functions (bp, bs and bc commands)

« Commandsthat use the software PC break function internally (stdin and stdout commands)
¢ Memory edit functions (eb, eh and ew commands)

e Memory fill functions (fb, fh and fw commands)

¢ Memory move functions (mv, mvh and mvw commands)

3.5.2 Other Precautions

¢ Thedebug monitor uses addresses 0x0 toOx2F in thebuiltin RAM and approximately 2.5K B (described | er)
pat of the externd RAM. Do not rewrite this area with a memory operation command. When thisarea is
modified, the debug monitor cannot be executed normally.

* Thecold reset sequenceisthe same as the hot reset sequence.
1) Thevector value indicated by TTBR is set to the PC.
2) Initial setting: general purpose/special registers = 0XAAAAAAAA, PSR = 0x0, SP=0xAAAAAA8
In the debug monitor, cold reset issimulated as hot reset.

¢ ThelCE33and ICD33haltall the peripheral functionsafter abreak occursexcept for the DRAM refresh operation.
In the debug monitor, the peaiphera functions hdt instantaneously when a break oacurs or successive/step
execution starts, however they retart immediately. Interrupts whil e the target program is suspended are disebled
according to the |E-bit status of the PSR.

14 EPSON EO0C33 FAMILY MON33 DEBUG MONITOR MANUAL

APPENDIX DMT33MON BOARD

Appendix DMT33MON Board

This chapter describes how to use the DMT33MON board.

A.1 Outline of DMT33MON Board

The DMT33MON board provides the interface for the debug monitor
to the demonstration tools such as the DMT33004 or the user target
board. The DMT33MON allows on-board debugging using the
debugger (db33.exe) on apersonal computer by connecting it to the
target board in which the EOC33 Family debug monitor (MON33) has
been implemented.

Two types of boards are available: DMT33MON board for 5V
operation and DMT33MONLYV for 3.3 V operation. Figure A.1.1 DMT33MON board

A.2 Names and Functions of Each Part

Thefollowing describes the parts layout on the DMT33MON board as well as the functions of the connectors and
switches:

RS232 connector

SW1 (RESET switch)
H_H H_H Sets up the status of the RESET pin at the DM T33xxx/

target board I/F connector. When aDMT33xxx boardis
OFF& ON @‘ i@ OFF 4> ON connected, this switch can reset the CPU on the board.

Sw1 SW3 ON: RESET ="0" OFF: RESET ="1"
(RESET) D D D (DEBUG)

SW2 SW2 (NMI switch

(NMI) () .

5 Q Sets up the status of the NMI pin at the DM T33xxx/

target board I/F connector. When aDMT33xxx board is

(©]

1 12 connected, aNMI request can be input to the CPU on
DMT33xxx/target board I/F connector the board.
Figure A.2.1 DMT33MON board layout ON: NMI ="0" OFF:NM[="1"

SW3 (DEBUG switch)
Sets up the status of the DEBUG pin at the DM T33xxx/target board I/F connector. When the DM T33004/
33005 board is connected, the switch signal isinput to the K63 port and can be used to start up the debug
monitor from the boot routine.
ON: DEBUG (K63) ="0" OFF: DEBUG (K63) ="1"
When the switch is ON, the DM T33004/33005 will start the debug monitor. When the switch is OFF, the
DMT33004/33005 will start executing the program stored in the Flash memory. The DM T33004/33005 works
assuming the debug switch is OFF when the DMT33MON is not connected.

RS232C connector
ThisisaDsub 9-pin connector for connecting a personal computer. Use the RS232C cable supplied with the
DMT33MON package for connection.

DMT33xxx/target board I/F connector
This connector isused for connecting the DM T33xxx board. The pin layout is as follows:

Table A.2.1 DMT33xxx/target board connector pin layout

No. Signal name No. Signal name () indicates the CPU pin corresponding to

1 Vcc [+5 V, +3.3 V] 7 N.C. the signal when the DMT33004/33005 is

2 Vec [+5 'V, +3.3 V] 8 DEBUG (K63) connected.

3 RESET (#RESET) 9 Vcc [+5 V, +3.3 V] Since the corresponding signals on the

4 TxD (P05) 10 SCLK (P06) DMT33xxx may differ depending on the

5 RxD (P04) 11 GND board, refer to the pin layout table provided in
6 NMI (#NMI) 12 GND the specifications of each DMT33xxx board.

EOC33 FAMILY MON33 DEBUG MONITOR MANUAL EPSON 15

APPENDIX DMT33MON BOARD

A.3 Connecting the System

Note: When connecting and disconnecting the system, make sure to turn off the power of the DMT33xxx/
target board and the personal computer.

Connecting to the DMT33xxx board/user target board

DMT33xxx/target board I/F connector The DM T33xxx board has a connector used for

DMT33xxx ° ° connecting with the DMT33MON.
O Connect the DMT33MON to the DM T33xxx
board with the DM T33xxx/target board I/F
connector.

0

DMT33MON I/F connector
Figure A.3.1 Connecting to the DMT33xxx board

DMT33xxx/target board I/F connector When connecting to the user target board, attach

the DMT33MON I/F connector (supplied with
the DMT33MON package) to the target board.
See Table A.2.1 for the pin layout of the
DMT33xxx/target board I/F connector.

User target board

Vee —

SINX
SOUTx
SCLKXx
#RESET
#NMI
(K63)
Vss

EOC33xxx

-

DMT33MON I/F connector
(supplied with the DMT33MON package)

Figure A.3.2 Connecting to the user target board

Connecting to a personal computer
Connect the DMT33MON board to the COMx port connector (the port used for debugging) of the personal
computer with the RS232C cable supplied with the DMT33MON package.

DMT33xxx/ RS232C cable
target board (supplied with the DMT33MON package)

@@jE@D () coms

(male) (female)

RS232C connector (female)

Figure A.3.3 Connecting to a personal computer

16 EPSON EOC33 FAMILY MON33 DEBUG MONITOR MANUAL

A.4 DMT33MON Block Diagram

APPENDIX DMT33MON BOARD

RS232C connector

DMT33xxx/target board I/F connector (12 pins)

(Dsub 9 pins) 1~ Vee 1, 2,9D
3 5

RXD |[] , > UPDA724 ZD

TXD |[|}« < N
7 10

RTS |[H Vee >
E t Vcc 3

cTs |[H 1.843MHz]
4 crystal 6

DTR DE oscillator .]

DSR |[H T N
& O 11,12

=k [

SW1 Sw2 Sw3
(RESET) (NMI) (DEBUG)

Figure A.4.1 DMT33MON block diagram

Vcc

RxD (SINx)

TxD (SOUTX)

SCLK (SCLKXx)

RESET (SW1: ON =L, OFF = H)
NMI (SW2: ON =L, OFF = H)

DEBUG (SW3: ON =L, OFF = H)

GND

EOC33 FAMILY MON33 DEBUG MONITOR MANUAL

EPSON

17

APPENDIX DMT33MON BOARD

A.5 Program Debugging with a DMT Board and MON33

This section describes the debugging procedure of the program on the target system configured with the
DMT33MON board and the DM T33004/33005 board using the MON33. The sample program for the DM T33004/
33005 isused for the explanation. Further, the development tools in the "E0C33 Family C Compiler Package"
including the debugger (db33 ver. 1.72 or later) that supports MON33 should be installed for debugging.

The debugging function of the debug monitor can be tested using the sample file even when using auser target board
aswell asthe DMT board. Use the sample file after modifying thenecessary parts such asthemapping conditionand
the communication routines (refer to Section 2.4) according to the target system.

DMT33004/33005 address map
Figure A.5.1 shows the DM T33004/33005 memory map and the area used by the debug monitor.

CPU: EOC33A104/E0C33208

OxC1FFFF External ROM -
128KB 0xC021FF |Boot routine
0xC00000 0xC00000 |MONS33 library

Ox6FFFFF External RAM Ox6FFFFF MON33 work area

1MB Ox6FF640 |
OxGFFG3F Free area

0x600000 0x600000 |

Ox2FFFFF Flash memory OX2FFFFF |
1MB Free area

0x200000 0x200000 |

OX04FFFF Built-in I/O OXO4FFFF |

Control registers of built-in 1/0
0x040000 0x040000

O Built-in RAM | | Free area

DMT33004: 6KB |0x000030 | [0 0x17FF(33004), Ox1FFF(33005)

DMT33005: 8KB |0x00002F Reserved area for MON33
0x000010 |

0x00000C | RO stack area
0x000008 |PC stack area
0x000000 0x000000 | Debugging vector

Figure A.5.1 DMT33004/33005 memory map

Sample program
"\dmt33004\sample\led.srf" and " dmt33004\sampl e\led2.srf" are sample programs for the DM T33004 that
blinksthe LED on the DMT33004 board. "led.srf" and "led2.srf" are created to be able to debug inthe RAM
(0x600000~) and in the Flash memory (0x200000~), respectively.
For the contents of the program, refer to the source file \dmt33004\samplelled.s).
Sample programs for the DM T33005 are also provided in the "\dmt33005\sample\" directory.

Boot routine and implementing the debug monitor
A boot routine and the debug monitor are writtenin the external ROM (0xC00000~) on the DM T33004/33005
in advance. Therefore, a sample program/target program can be debugged by loading from the debugger db33
to the RAM or the Flash memory on the DM T33004/33005. It isnot necessary to link the MON33 library to
the program to be debugged.
The MON33 library implemented in the DMT33004 is "mon33chl.lib" that uses the built-in seria interface
Ch.1. The DMT33005 uses "mon33ch0.lib" that supports the built-in serial interface Ch.0.
Refer to "\dmt33004\m3s_boot.s" and "\dmt33005\m3s_boot.s" for the boot routine, "\dmt33004\
dmt33004.cm" and "dmt33005\dmt33005.cm" for the linker commands to implement the debug monitor.

18 EPSON EOC33 FAMILY MON33 DEBUG MONITOR MANUAL

APPENDIX DMT33MON BOARD

Building the sample program
It isnot necessary to execute Make when modification of the source isnot needed since the executable object
files ("led.srf," "led2.srf") are provided in the "sample\" folder.
When the source is modified, execute Make using the make file provided.

Make execution procedure
1) Set "\dmt33004\sample\" (or "\dmt33005\sample\") as the current directory.
2) Enter the following command at the DOS prompt.
C.\ ..\SAMPLE\ >nmake -f |ed. mak ... when creating "led.srf"
C.\ ..\SAMPLE\ >make -f | ed2. mak ... when creating "led2.srf"

Make can aso be executed from the work bench wb33 (refer to the "EOC33 Family C Compiler Package
Manua").

Starting up the debug monitor
The boot routine mapped from address 0xC00000 on the DM T33004/33005 starts the debug monitor whenthe
K63 input port issetto "0".
Start up the debug monitor following the procedure bel ow after connecting the target system and a personal
computer.
1) Turn SW3[DEBUG] of the DMT33MON on.
2) Turn the power of the DMT33004/33005 on.
3) Reset the DMT33004/33005 (DM T33MON SW1[RESET] ON - OFF).
4) Turn the personal computer on and start up Windows.
5) Start up the debugger db33 (start-up method is described later).

Note: When the power of the DMT33004/33005 is turned on while the SW3 [DEBUG] of the DMT33MON
is off, the debug monitor does not startup. The DMT33004/33005 sets TTBR at the beginning of the
Flash memory (0x200000~), so the program sequence branches to the boot address. In this case,
turn the SW3 [DEBUG] on and reset the DMT33004/33005 with the SW1 [RESET] to start up the
debug monitor.

Debugging in the RAM
The sample program for debugging inthe RAM (0x600000~) of the DM T33004/33005 is"led.srf". When
starting up the debugger, specify the debug command file"led.cmd" with the -c option. "led.cmd" sets the trap
table addressto the start address of the RAM and |loads "led.srf" to the RAM.
Operating procedureis as follows:
1) Start up the debug monitor as described above.
2) Set "\dmt33004\sample\" (or "\dmt33005\sample\") as the current directory.
3) Set apath to db33.exe.
4) Start up the debugger with the following command at the DOS prompt.
C.\..\SAMPLE\ >db33 -nmon -b 115200 -p 33104_mpar -c |led.cnd

The debugger startsin debug monitor mode and is ready to debug "led.srf". For example, the LED onthe
DMT33004/33005 board will start blinking by executing the g command.

Refer to "2. Debugging in the RAM" in Section 3.4, "Debugging Method", for the contents of the command
file.

Note: The debugger db33 ver. 1.0 does not support the debug monitor. Use ver. 1.72 or a later version.

EOC33 FAMILY MON33 DEBUG MONITOR MANUAL EPSON 19

APPENDIX DMT33MON BOARD

Debugging in the Flash memory
The sample program for debugging in the Flash memory (0x200000~) of the DM T33004/33005 is"led2.srf".
The debugger db33 ver. 1.72 or later version supports debugging in the Flash memory. Refer to the
"Debugger" section of the "EOC33 Family C Compiler Package Manual" for details of operations.
To write the sample program to the Flash memory, first |oad theFlash erase/write routine "am29f800.srf". Then
initialize the Flash memory functions using the fls and fle commands and load the sample program into the
Flash memory using thelf command. Refer to the sample debug command file "led2.cmd” for executing
procedure.

When starting up the debugger, specify the debug command file "led2.cmd” with the -c option. "led2.cmd"
contains debug commands for 1oading the Flash erase/write routine, setting the trap table address and |oading
"led2.srf" to the Flash memory.
Operating procedureis as follows:
1) Start up the debug monitor as described above.
2) Set "\dmt33004\sample\" (or "\dmt33005\sample\") as the current directory.
3) Set apath to db33.exe.
4) Start up the debugger with the following command at the DOS prompt.
C:\ ..\SAMPLE\ >db33 -non -b 115200 -p 33104_m par -c |ed2.cnd

The debugger startsin debug monitor mode and is ready to debug "led2.srf". For example, the LED on the
DMT33004/33005 board will start blinking by executing the g command.

Refer to"3. Debugging in the Flash memory" in Section 3.4, "Debugging Method", for the contents of the
command file.

When debugging in the Flash memory, be aware that the software PC break function (bs command), memory
edit/fill/move commands and commands not supported by the debug monitor cannot be used.

Forced break
The debug monitor does not support forced break functions such as key break.
In the sample program, the label ESC is described inthe NMI processing routine of thesource ("led.s"). When
the debug command file ("led.cmd", "led2.cmd") is executed, a hardware PC break point is set at the ESC
location after the program has been loaded.
When the SW2 of the DMT33MON isturned on, aNMI is generated and it suspends the program execution
forcibly.

Notes on debugging the user program on the DMT33004/33005 board

» When debugging the user program on the DM T 33004/33005 board, create the program so that it can be
loaded and executed in thefree areaof theRAM or the Flash memory inthe same way as the sample file.
(SeeFigure A5.1)

e The débug monitor on the DMT33004 has been implemented by linking with the "mon33chl.lib".
Therefore, the built-in serial interface Ch.1 cannot be used from the user program.

* The deébug monitor on the DMT33005 has been implemented by linking with the "mon33ch0.lib".
Therefore, the built-in seria interface Ch.0 cannot be used from the user program.

20 EPSON EOC33 FAMILY MON33 DEBUG MONITOR MANUAL

APPENDIX DMT33MON BOARD

A.6 Indispensable Signal Pins of DMT33MON

When using the MON33 it is not absolutely necessary to connect the NMI, RESET and DEBUG switches/signals
on the DMT33MON board. If these switches are not used, the target board can be connected to the DMT33MON
using only the five signals as shown below.

Example: Connecting the target board to DMT33MON with five wires

© © User target board
2 GND
= 10 SCLK
[] 5 SIN
D 4 SOuUT
E Q Q 1 Vcce
o o

The wire length must be within 10 cm.

Figure A.6.1 Connection example using indispensable pins

TheNMI, RESET and/or DEBUG signals should be connected if necessary.

EOC33 FAMILY MON33 DEBUG MONITOR MANUAL EPSON 21

EPSON

International Sales Operations

AMERICA ASIA
EPSON ELECTRONICS AMERICA, INC. - CHINA -
- HEADQUARTERS - EPSON (CH|NA) CO,, LTD.

1960 E. Grand Avenue
El Segundo, CA 90245, U.S.A.
Phone: +1-310-955-5300 Fax: +1-310-955-5400

- SALES OFFICES -

West

150 River Oaks Parkway

San Jose, CA 95134, U.S.A.

Phone: +1-408-922-0200 Fax: +1-408-922-0238

Central

101 Virginia Street, Suite 290

Crystal Lake, IL 60014, U.S.A.

Phone: +1-815-455-7630 Fax: +1-815-455-7633

Northeast

301 Edgewater Place, Suite 120

Wakefield, MA 01880, U.S.A.

Phone: +1-781-246-3600 Fax: +1-781-246-5443

Southeast

3010 Royal Blvd. South, Suite 170

Alpharetta, GA 30005, U.S.A.

Phone: +1-877-EEA-0020 Fax: +1-770-777-2637

EUROPE

EPSON EUROPE ELECTRONICS GmbH

- HEADQUARTERS -
Riesstrasse 15

80992 Muenchen, GERMANY
Phone: +49-(0)89-14005-0 Fax: +49-(0)89-14005-110
- GERMANY -

SALES OFFICE

Altstadtstrasse 176

51379 Leverkusen, GERMANY

Phone: +49-(0)217-15045-0 Fax: +49-(0)217-15045-10

- UNITED KINGDOM -

UK BRANCH OFFICE

2.4 Doncastle House, Doncastle Road

Bracknell, Berkshire RG12 8PE, ENGLAND

Phone: +44-(0)1344-381700 Fax: +44-(0)1344-381701

- FRANCE -

FRENCH BRANCH OFFICE

1 Avenue de I' Atlantique, LP 915 Les Conquerants

Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE
Phone: +33-(0)1-64862350 Fax: +33-(0)1-64862355

28F, Beijing Silver Tower 2# North RD DongSanHuan
ChaoYang District, Beijing, CHINA
Phone: 64106655 Fax: 64107320

SHANGHAI BRANCH

4F, Bldg., 27, No. 69, Gui Jing Road
Caohejing, Shanghai, CHINA

Phone: 21-6485-5552 Fax: 21-6485-0775

- HONG KONG, CHINA -

EPSON HONG KONG LTD.

20/F., Harbour Centre, 25 Harbour Road
Wanchai, HONG KONG

Phone: +852-2585-4600 Fax: +852-2827-4346
Telex: 65542 EPSCO HX

- TAIWAN, R.O.C. -

EPSON TAIWAN TECHNOLOGY & TRADING LTD.
10F, No. 287, Nanking East Road, Sec. 3

Taipei, TAIWAN, R.O.C.
Phone: 02-2717-7360
Telex: 24444 EPSONTB

Fax: 02-2712-9164

HSINCHU OFFICE

13F-3, No. 295, Kuang-Fu Road, Sec. 2
HsinChu 300, TAIWAN, R.O.C.

Phone: 03-573-9900 Fax: 03-573-9169

- SINGAPORE -

EPSON SINGAPORE PTE., LTD.

No. 1 Temasek Avenue, #36-00

Millenia Tower, SINGAPORE 039192

Phone: +65-337-7911 Fax: +65-334-2716

- KOREA -

SEIKO EPSON CORPORATION KOREA OFFICE
50F, KLI 63 Bldg., 60 Yoido-Dong

Youngdeungpo-Ku, Seoul, 150-010, KOREA

Phone: 02-784-6027 Fax: 02-767-3677

- JAPAN -
SEIKO EPSON CORPORATION
ELECTRONIC DEVICES MARKETING DIVISION

Electronic Device Marketing Department

IC Marketing & Engineering Group
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5816 Fax: +81-(0)42-587-5624

ED International Marketing Department | (Europe & U.S.A.)
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5812 Fax: +81-(0)42-587-5564

ED International Marketing Department Il (Asia)
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5814 Fax: +81-(0)42-587-5110

ENERGY
SAVING

EPSON

In pursuit of “Saving” Technology , Epson electronic devices.
Our lineup of semiconductors, liquid crystal displays and quartz devices
assists in creating the products of our customers’ dreams.
Epson IS energy savings

EPSON

SEIKO EPSON CORPORATION

m Electronic devices information on Epson WWW server

http:/www.epson.co.jp/device/ l Issue APRIL 1999, Printed in Japan @ A

	㄀ 䴀伀一㌀㌀ 倀愀挀欀愀最攀
	㄀⸀㄀ 䘀攀愀琀甀爀攀猀
	㄀⸀㈀ 䌀漀洀瀀漀渀攀渀琀猀 漀昀 䴀伀一㌀㌀ 倀愀挀欀愀最攀
	㄀⸀㌀ 䤀渀猀琀愀氀氀愀琀椀漀渀

	㈀ 䤀洀瀀氀攀洀攀渀琀椀渀最 琀栀攀 䐀攀戀甀最 䴀漀渀椀琀漀爀
	㈀⸀㄀ 刀攀猀漀甀爀挀攀猀 刀攀焀甀椀爀攀搀 昀漀爀 琀栀攀 䐀攀戀甀最 䴀漀渀椀琀漀爀
	㈀⸀㈀ 匀琀愀爀琀椀渀最 唀瀀 琀栀攀 䐀攀戀甀最 䴀漀渀椀琀漀爀
	㈀⸀㌀ 䈀甀椀氀搀椀渀最 愀渀 䄀瀀瀀氀椀挀愀琀椀漀渀 倀爀漀最爀愀洀
	㈀⸀㐀 䌀爀攀愀琀椀渀最 䌀漀洀洀甀渀椀挀愀琀椀漀渀 䌀漀渀琀爀漀氀 刀漀甀琀椀渀攀猀

	㌀ 吀愀爀最攀琀 倀爀漀最爀愀洀 愀渀搀 䐀攀戀甀最最椀渀最
	㌀⸀㄀ 一漀琀攀猀 昀漀爀 䌀爀攀愀琀椀渀最 吀愀爀最攀琀 倀爀漀最爀愀洀猀
	㌀⸀㈀ 倀愀爀愀洀攀琀攀爀 䘀椀氀攀 昀漀爀 䐀攀戀甀最最椀渀最
	㌀⸀㌀ 匀琀愀爀琀椀渀最 唀瀀 愀渀搀 吀攀爀洀椀渀愀琀椀渀最 倀爀漀挀攀搀甀爀攀 漀昀 䐀攀戀甀最最椀渀最
	㌀⸀㐀 䐀攀戀甀最最椀渀最 䴀攀琀栀漀搀
	㌀⸀㔀 倀爀攀挀愀甀琀椀漀渀猀 昀漀爀 䐀攀戀甀最最椀渀最
	㌀⸀㔀⸀㄀ 刀攀猀琀爀椀挀琀椀漀渀 漀渀 䐀攀戀甀最最椀渀最 䌀漀洀洀愀渀搀
	㌀⸀㔀⸀㈀ 伀琀栀攀爀 倀爀攀挀愀甀琀椀漀渀猀

	䄀瀀瀀攀渀搀椀砀 䐀䴀吀㌀㌀䴀伀一 䈀漀愀爀搀
	䄀⸀㄀ 伀甀琀氀椀渀攀 漀昀 䐀䴀吀㌀㌀䴀伀一 䈀漀愀爀搀
	䄀⸀㈀ 一愀洀攀猀 愀渀搀 䘀甀渀挀琀椀漀渀猀 漀昀 䔀愀挀栀 倀愀爀琀
	䄀⸀㌀ 䌀漀渀渀攀挀琀椀渀最 琀栀攀 匀礀猀琀攀洀
	䄀⸀㐀 䐀䴀吀㌀㌀䴀伀一 䈀氀漀挀欀 䐀椀愀最爀愀洀
	䄀⸀㔀 倀爀漀最爀愀洀 䐀攀戀甀最最椀渀最 眀椀琀栀 愀 䐀䴀吀 䈀漀愀爀搀 愀渀搀 䴀伀一㌀㌀
	䄀⸀㘀 䤀渀搀椀猀瀀攀渀猀愀戀氀攀 匀椀最渀愀氀 倀椀渀猀 漀昀 䐀䴀吀㌀㌀䴀伀一

