
MF1313-01

CMOS 32-BIT SINGLE CHIP MICROCOMPUTER E0C33 Family

APPLICATION NOTES

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written
permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice.
Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material
or due to its application or use in any product or circuit and, further, there is no representation that this material
is applicable to products requiring high level reliability, such as medical products. Moreover, no license to any
intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that
anything made in accordance with this material will be free from any patent or copyright infringement of a third
party. This material or portions thereof may contain technology or the subject relating to strategic products under
the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from
the Ministry of International Trade and Industry or other approval from another government agency.

© SEIKO EPSON CORPORATION 2000 All rights reserved.

CONTENTS

E0C33 FAMILY APPLICATION NOTES EPSON i

CONTENTS

1 ABOUT THE E0C33000 CPU CORE __________________________________ 1
1.1 Outline ... 1

1.2 Memory Map .. 2

1.3 Trap Table .. 2

1.4 CPU Registers ... 3

1.5 Instruction Set Features ... 3

1.6 Instruction Execution Speed .. 6

1.7 Multiplier/Accumulator Functions .. 7

1.8 Instruction Set List ... 8

2 WRITING PROGRAMS FOR THE E0C33_________________________________ 9
2.1 Vector Table and Boot Routine .. 9

2.2 Interrupt Handling Routines .. 14

2.3 C and Assembler Mixed Programming .. 17

2.4 Tools and Files for Assembly .. 19

2.5 C and Code Optimization ... 29

2.6 Mapping by Linker ... 37

3 PROGRAMMING THE E0C33 PERIPHERAL FUNCTIONS _____________________ 41
3.1 Setting Up BCU .. 41

3.2 Setting Up the 8-bit Timer .. 46

3.3 Setting Up 16-bit Timer .. 49

3.4 Setting Up Serial Interface ... 54

3.5 Setting Up A/D Converter ... 58

3.6 About IDMA Settings .. 63

3.7 Setting Up HSDMA... 65

3.8 Clock Settings ... 69

3.9 SLEEP ... 73

3.10 Other Sample Programs ... 77

4 THE BASIC E0C33 CHIP BOARD CIRCUIT ______________________________ 78
4.1 Power Supply .. 78

4.2 Oscillation Circuit .. 80

4.3 Reset Circuit ... 81

4.4 Connecting ROM .. 83

4.5 Connecting Flash Memory ... 83

4.6 Connecting SRAM .. 84

PREFACE

Written for developers of application systems incorporating the E0C33 Family of microcomputers, this
manual explains how to write a program, design basic circuitry, and produce audio output using the
E0C33 chips, particularly the E0C33208. The sample code provided in this manual is excerpted from
E0C33 Family C Compiler Package Ver. 2 or later.

CONTENTS

ii EPSON E0C33 FAMILY APPLICATION NOTES

4.7 Connecting DRAM.. 85

4.8 Connecting 5 V ROM and 3.3 V Bus .. 86

4.9 Ports .. 87

4.10 Connections for Debugging .. 88

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM ________ 90
5.1 General Sound Output Circuits Based on Microcomputer .. 90

5.1.1 D/A Converter Unit .. 90
5.1.2 Low-pass Filter Unit .. 93
5.1.3 Power Amp and Speaker Unit .. 94

5.2 About Sampling Frequency and Bit Precision vs. Audio Quality 95

5.3 10-bit D/A Conversion by PWM .. 96

5.4 Examples of Audio Output Analog Circuits ... 99

5.5 Example of a Sound Input Analog Circuit .. 103

5.6 15-bit D/A Conversion by PWM .. 107

5.7 Melody Output using a Piezoelectric Buzzer .. 112

5.8 <Reference Data> Characteristic Graphs ... 113

1 ABOUT THE E0C33000 CPU CORE

E0C33 FAMILY APPLICATION NOTES EPSON 1

1 ABOUT THE E0C33000 CPU CORE

The E0C33000 is the CPU core shared by all chips in the E0C33 Family of 32-bit CMOS single-chip
microcomputers. Arranged around this core are various peripheral components, such as ROM, RAM,
DMA, A/D converters, and timers, which together make up the Seiko Epson line of E0C33 Family
processors.

The main features of the E0C33000 are as follows.

• A highly code-efficient instr uction set

• Fast operation and multiplier/accumulator function

• Small CPU core size

• Low curr ent consumption

The E0C33000 supports a wide range of built-in applications, from portable to OA and FA equipment,
and from digital signal processors to various types of controllers.

1.1 Outline

• Type ... Seiko Epson original 32-bit RISC core

• Operating frequency DC to 60 MHz (varies with the type of E0C33XXX)

• Instruction set 16-bit fixed length
105 discrete instructions
Main instructions can be executed in one cycle.

• Multiplier/accumulator function MAC instruction (16 bits × 16 bits + 64 bits → 64 bits)
Executed in 2 cycles per MAC operation

• Register set ... 32-bit general-purpose register × 16
32-bit special register × 5

• Memory space 28-bit (256 MB) space
Instruction, data, and I/O mixed type linear space
Divided into 19 areas, for which the select signal is output by the
core

• Immediate extension Immediate data of instructions are extended to 32 bits by EXT
instruction.

• Interrupt ... Reset, NMI, and external interrupt × 216 sources
Software exception × 4 sources, 2 types of instruction execution
exception
Vectors are fetched from trap table when branching to the jump
address.

• Reset .. Cold reset (all internal circuits reset)
Hot reset (buses not reset)
Trap table can be selected between internal or external ROM at
boot time and can then be relocated.

• Power-down mode HALT instruction (only the core halted)
SLP instruction (all internal circuits halted)

• Other ... Little endian (standard)/ big endian
Harvard architecture

1 ABOUT THE E0C33000 CPU CORE

2 EPSON E0C33 FAMILY APPLICATION NOTES

1.2 Memory Map

Area 18 External memory
Area 17 External memory
Area 16 External memory
Area 15 External memory
Area 14 External memory
Area 13 External memory
Area 12 External memory
Area 11 External memory
Area 10 External memory
Area 9 External memory
Area 8 External memory
Area 7 External memory
Area 6 External I/O
Area 5 External memory
Area 4 External memory
Area 3 On-chip ROM
Area 2 Reserved
Area 1 Internal I/O
Area 0 On-chip RAM

0xFFFFFFF

0x1000000
0x0C00000

0x0100000
0x0080000
0x0060000
0x0040000
0x0000000

Area size
64MB
64MB
32MB
32MB
16MB
16MB
8MB
8MB
4MB
4MB
2MB
2MB
1MB
1MB
1MB
512KB
128KB
128KB
256KB

1.3 Trap Table

Trap table start address
At cold-reset, it is set to 0x0C00000.
The trap table can be relocated using the trap table
base register TTBR (memory-mapped register) after
resetting the CPU.
Vectors will be fetched from the trap table for booting
and interrupts.

Reserved
External maskable interrupt 215

:
External maskable interrupt 0

Software exception 3
:

Software exception 0
Reserved

NMI
Address error

Reserved
Zero division

Reserved
Reset

Address offset
1023
929

64
60

48
32–44
28
24
20
16
4–12
0

Interr upt sequence Reset sequence
1) The PC is saved to the stack. 1) The reset vector is fetched.
2) The PSR is saved to the stack and IE is disabled. 2) Control jumps to the vector address.
3) The vector is fetched from the trap table.
4) Control jumps to the vector address.

1 ABOUT THE E0C33000 CPU CORE

E0C33 FAMILY APPLICATION NOTES EPSON 3

1.4 CPU Registers

R15
R14
R13

:
R4
R3
R2
R1
R0

31 0

General-purpose registers (16)

PC

PSR

SP

ALR

AHR

Program counter

Processor status register

Stack pointer

Arithmetic operation low register

Arithmetic operation high register

31 0

Special registers (5)

PSR
31–12

Reserved IL
11–8

MO
7

DS
6

–
5

IE
4

C
3

V
2

Z
1

N
0

IL:
MO:
DS:
IE:
Z:
N:
C:
V:

(AHR, ALR: Option for Multiplication & Accumulation, Multiplication, and Division)

Interrupt level
MAC overflow flag
Dividend sign flag
Interrupt enable
Zero flag
Negative flag
Carry flag
Overflow flag

(0–15: Enabled interrupt level)
(1: MAC overflow, 0: Not overflown)
(1: Negative, 0: Positive)
(1: Enabled, 0: Disabled)
(1: Zero, 0: Non zero)
(1: Negative, 0: Positive)
(1: Carry/borrow, 0: No carry)
(1: Overflow, 0: Not overflown)

1.5 Instruction Set Features

� Types of instructions
Instructions are functionally classified as one of the following eight types:

 • 8, 16, or 32-bit data transfer instructions
LD.B, LD.UB, LD.H, LD.UH, LD.W
Performs 8, 16, or 32-bit data transfers between the register and memory, or between two registers.

 • 32-bit arithmetic/logic operation instructions
AND, OR, XOR, NOT, ADD, ADC, SUB, SBC, CMP, MLT.H, MLTU.H (16-bit), MLT.W, MLTU.W,
DIV0S, DIV1S, DIV2S, DIV3S
Performs 32-bit arithmetic/logic operation on two register values, or on register and immediate values.

 • 32-bit shift and rotate instructions
SRL, SLL, SRA, SLA, RR, RL
Shifts or rotates 32-bit register data by 0 to 8 bits.

 • Bit-manipulating instructions
BTST, BSET, BCLR, BNOT
Operates on byte data in memory to set or reset bitwise.

 • Stack-manipulating instructions
PUSHN, POPN
Saves or restores the contents of R0 to Rn successively to or from the stack.

 • Branch instructions
JRGT, JRGE, JRLT, JRLE, JRUGT, JRUGE, JRULT, JRULE, JREQ, JRNE, CALL, JP, RET, RETI,
RETD, INT, BRK
Performs various conditional jump, call, or return operations.

 • System control instructions
HALT, SLP, NOP
Used to place the device in power-down mode or inserted to perform no operation.

 • Other instructions
MAC, SCAN0, SCAN1, SWAP, MIRROR, EXT
Performs a MAC, data scan, or replacement operation.

1 ABOUT THE E0C33000 CPU CORE

4 EPSON E0C33 FAMILY APPLICATION NOTES

� Addressing modes

(1) Basic addressing modes
These addressing modes can be implemented in one instruction.

 • 6-bit immediate data addressing
LD.W %R1,sign6 Sign extends 6-bit data before loading it into the R1 register.
ADD %R2,imm6 Adds 6-bit data to the R2 register.
In this mode, the operations are performed upon 6-bit signed/unsigned immediate data and register.

 • Register direct addressing
LD.W %R1,%R2 Transfers data from the R2 to the R1 register.
JP %R3 Jumps to the address held by the R3 register.
In this mode, operations are performed only on register values.

 • Register indirect addressing
LD.B %R2,[%R15] Loads signed 8-bit data from the address specified by R15.
LD.W %R2,[%R15]+ Loads 32-bit data from the address specified by R15 and then increments the

R15 register.
In this mode, a memory address is set in a register and operations are performed on data at that
address.

 • SP indirect addressing with displacement
LD.UB %R15,[%SP+imm6] Loads unsigned 8-bit data from the address indicated by SP + imm6.
LD.W %R15,[%SP+imm6] Loads 32-bit data from the address indicated by SP + (imm6 × 4).
In this mode, an offset address is specified from the stack pointer and operations performed on data
within the stack.

 • Signed 8-bit PC relative addressing
JP sign8 Jumps to a location up to 127 instructions ahead of or 128 instructions behind

the current PC address.
CALL sign8 Calls a subroutine located up to 127 instructions ahead of or 128 instructions

behind the current PC address.
In this mode, the jump address is specified by a relative address from the PC.

(2) Extended addressing modes
The basic addressing modes can be extended with the EXT instruction.

 • Extended immediate data addressing
EXT imm13 + ADD %R1,imm6 → ADD %R1,imm19
EXT imm13 + EXT imm13 + ADD %R1,imm6 → ADD %R1,imm32
The immediate size can be extended to 19 or 32 bits with the EXT instruction.

 • Extended register indirect addressing
EXT imm13 + LD.W %R2,[%R15]+ → LD.W %R2,[%R15+imm13]
EXT imm13 + EXT imm13 + LD.W %R2,[%R15]+ → LD.W %R2,[%R15+imm26]
A 13-bit or 26-bit offset address can be added using the EXT instruction.

 • SP indirect addressing with extended displacement
EXT imm13 + LD.B %R15,[%SP+imm6] → LD.B %R15,[%SP+imm19]
EXT imm13 + EXT imm13 + LD.B %R15,[%SP+imm6] → LD.B %R15,[%SP+imm32]
The offset can be extended to 19 or 32 bits by the EXT instruction.

 • Extended PC relative addressing
EXT imm13 + CALL sign8 → CALL sign21
EXT imm13 + EXT imm13 + CALL sign8 → CALL sign31
The address range to which to branch may be extended to 22 or 32 bits by the EXT instruction.

 • Extended 3 operand mode
EXT imm13 + ADD %R1,%R2 → ADD %R1,%R2,imm13
EXT imm13 + EXT imm13 + ADD %R1,%R2 → ADD %R1,%R2,imm26
The instruction Reg1 ← Reg1 OP Reg2 is changed to a 3-operand instruction Reg1 ← Reg2 OP
imm13/26 by the EXT instruction.

1 ABOUT THE E0C33000 CPU CORE

E0C33 FAMILY APPLICATION NOTES EPSON 5

� High code density for C language
Based on the following two concepts, the E0C33 CPU core creates high code density for C language.
1. As often as possible, frequent operation patterns in C are processed by one instruction.
2. Other operation patterns are suppressed to as few instructions as possible using the EXT instruc-

tion, preventing worsening code density in less frequently used patterns.

(1) Branch patterns

 • Conditional branch
JRNE sign8 (Jump area of +127 to -128 instructions)

Supports more than 90% of conditional branching cases with one instruction (2 bytes).
EXT imm13 + JRNE sign8 → JRNE sign21 (±1M jump area)

Supports other conditional branching with two instructions (4 bytes).

 • Subroutine call
EXT imm13 + CALL sign8 → CALL sign21 (±1M jump area)

Supports almost all subroutine calls with two instructions (4 bytes).
EXT imm13 + EXT imm13 + JRNE sign9 → JRNE sign31 (Can jump to any area)

Supports other subroutine calls with three instructions (6 bytes).

(2) Variable access patterns

 • Auto variable access
LD.W %R2,[%SP+imm6] (Accesses SP + 0 to 255 area for int access)

Supports more than 80% of auto-variable access cases with one instruction (2 bytes).
EXT imm13 + LD.W %R2,[%SP+imm6] → LD.W %R2,[%SP+imm19] (Accesses 512K-byte area)

Supports other auto-variable access cases with two instructions (4 bytes).

 • Pointer variable access
LD.B %R2,[%R3]

One instruction (2 bytes)

 • Static variable access (based on global pointer)
EXT imm13 + LD.H %R2,[%R8] → LD.H %R2,[%R8+imm13] (Accesses 4K-byte area from R8)

Two instructions (4 bytes)
EXT imm13 + EXT imm13 + LD.H %R2,[%R8] → LD.W %R2,[%SP+imm26]

Three instructions (6 bytes)

(3) Arithmetic patterns

 • 2-operand, register to immediate
ADD %R2,imm6 (Adds 0–63 to R2)

One instruction (2 bytes)
EXT imm13 + ADD %R2,imm6 → ADD %R2,imm19 (Adds 0–512K to R2)

Two instructions (4 bytes)
EXT imm13 + EXT imm13 + ADD %R2,imm6 → ADD %R2,imm32

Three instructions (6 bytes)

 • 2-operand, register to register
ADD %R2,%R3 (Adds R3 to R2)

One instruction (2 bytes)

 • 3-operand, register to immediate
EXT imm13 + ADD %R2,[%R3] → ADD %R2,%R3,imm13 (R2 = R3 + imm13)

Two instructions (4 bytes)
EXT imm13 + EXT imm13 + ADD %R2,imm6 → ADD %R2,%R3,imm26 (R2 = R3 + imm26)

Three instructions (6 bytes)

1 ABOUT THE E0C33000 CPU CORE

6 EPSON E0C33 FAMILY APPLICATION NOTES

(4) Other

 • Call, return
CALL sign8 Saves PC automatically
RET Restores PC automatically

One instruction reduced for each

 • Push, pop
PUSHN %Rn Saves R0–Rn to the stack
POPN %Rn Restores R0–Rn from the stack

Number of instructions reduced for each subroutine

 • Data conversion
LD.B %R2,%R3 Converts signed 8-bit data to 32-bit data
LD.UB/LD.H/LD.UH Also supports signed/unsigned 8-bit and 16-bit data

Ideal for data cast in C

 • Bit manipulation
BSET [%R5],2 Sets bit 2 of [%R5] (memory data in bytes) to 1
BCLR/BTST/BNOT Clears, tests, or inverts a bit

Permits read-modify-write operation with one instruction.

1.6 Instruction Execution Speed
The following shows the number of instruction cycles. Note that these apply when the program resides in
internal ROM and data exists in RAM operating in the Harvard architecture. Wait cycles are added for
access to external memory.

 • Register to register operation (arithmetic, logic, system, etc.)
AND, OR, XOR, NOT, ADD, ADC, SUB, SBC, CMP, MLT.H, MLTU.H, DIV0S, DIV1S, DIV2S, DIV3S,
SRL, SLL, SRA, SLA, RR, RL, HALT, SLP, NOP, LD.B, LD.UB, LD.H, LD.UH, LD.W

One cycle per instruction

MLT.W, MLTU.W
Five cycles per instruction

 • Memory to register operation (ld.w, ld.b, ld.ub, ld.h, ld.uh)
%RD, [%RB] (without interlock), [%RB], %RS, %RD, [%SP+imm6], [%SP+imm6], %RS, [%RB]+, %RS

One cycle per instruction

%RD, [%RB]+, %RD, [%RB] (with interlock)
Two cycles per instruction

 • Memory to memory operation
BTST, BSET, BCLR, BNOT

Three cycles per instruction

 • Branch operation
JRGT, JRGE, JRLT, JRLE, JRUGT, JRUGE, JRULT, JRULE, JREQ, JRNE, JP

Ordinary branching: Two cycles per instruction; delayed jump (xxx.d): One cycle per instruction

CALL, JP, RET, RETI, RETD, INT, BRK
Two to 10 cycles per instruction

 • Other operations
MAC 2 × N + 4 cycles
PUSHN, POPN 1 × N cycles
SCAN0, SCAN1, SWAP, MIRROR One cycle per instruction

1 ABOUT THE E0C33000 CPU CORE

E0C33 FAMILY APPLICATION NOTES EPSON 7

1.7 Multiplier/Accumulator Functions
The MAC instruction is capable of executing a 16 bits × 16 bits + 64 bits sum-of-products operation in one
instruction every 2 clock periods, up to 2 G times.

Source 1 memory block

R14 (source 1 address)

R13 (counter)

AHR ALR

Post incremented
16 × 16 = 32 bits

multiplier

64-bit adder

Source 1
16-bit
data

32-bit data 64-bit data

64-bit data

Source 2 memory block

R15 (source 2 address)

Post incremented

Source 2
16-bit
data

Example: MAC %R13
R13: Repetition counter (maximum 4 G)
R14: Source 1 address (post incremented)
R15: Source 2 address (post incremented)

The source 1 and source 2 16-bit data are read from each memory location and multiplied. The 32-bit data
resulting from the multiplication is added to a 64-bit register consisting of AHR:ALR. This is repeated
once every 2 clock periods (given that source 1 and source 2 both exist in the internal RAM).

1 ABOUT THE E0C33000 CPU CORE

8 EPSON E0C33 FAMILY APPLICATION NOTES

1.8 Instruction Set List

� Instruction format and operation
(The number of execution cycles applies here when the internal RAM is accessed for data with instructions residing in internal ROM.)

Classification

Relative branch

Relative delayed
branch

Absolute branch
Special branch
Logic operation

Arithmetic
operation

Compare
operation
Carry operation
Multiplication

Division
Shift

Memory load

Register load

Conversion
Bit operation
System
Mac operation

Stack operation
Scan
Swap
Extention

Instruction

jp, jrgt, jrge, jrlt, jrle, jrugt, jruge, jrult,
jrule, jreq, jrne, call
jp.d, jrgt.d, jrge.d, jrlt.d, jrle.d, jrugt.d,
jruge.d, jrult.d, jrule.d, jreq.d, jrne.d,
call.d
call, jp, call.d, jp.d
ret, ret.d, int imm2, reti, brk, retb
and, or, xor, not

add, sub

cmp

adc, sbc
mlt.h, mlt.uh (16bit)
mlt.w, mlt.uw (32bit)
div0s, div0u, div1, div2s, div3s
srl, sll (logical shift)
sra, sla (arithmetical shift)
rr, rl (rotate)
ld.b (signed 8bit load)
ld.ub (unsigned 8bit load)
ld.h (signed 16bit load)
ld.uh (unsigned 16bit load)
ld.w (32bit load)

ld.w

ld.b, ld.ub, ld.h, ld.uh
btst, bset, bclr, bnot
nop, slp, hlt
mac

pushn, popn
scan0, scan1
swap, miror
ext

Typical instruction
format

jp sing8

jp.d sing8

call %rb

and %rd, %rs
and %rd, sign6
add %rd, %rs
add %rd, imm6
add %sp, imm12
cmp %rd, %rs
cmp %rd, sign6
adc %rd, %rs
mlt.h %rd, %rs

srl %rd, imm4
srl %rd, %rs

ld.w %rd, [%sp+imm6]
ld.w [%sp+imm6], %rs
ld.w %rd, [%rb]
ld.w %rd, [%rb]+
ld.w [%rb], %rs
ld.w [%rb]+, %rs
ld.w %rd, %rs
ld.w %rd, sign6
ld.w %rd, %ss
ld.w %ss, %rs
ld.b %rd, %rs
btst [%rb], imm3

pushn %rs
scan0 %rd, %rs
swap %rd, %rs
ext imm13

Operation

Branch to PC + (sign8 × 2)

Branch to PC + (sign8 × 2)
Execute next instruction upon branching

Branch to address indicated by %rb
Return, interrupt, etc.
%rd = %rd & %rs
%rd = %rd & sign6
%rd = %rd + %rs
%rd = %rd + imm6
%sp = %sp + imm12
%rd - %rs, flag only changes
%rd - sign6
%rd = %rd + %rs + carry flag
%alr = %rd × %rs (32 = 16 × 16)
%ahr:%alr = %rd × %rs (64 = 32 × 32)
Execute division using these in combination
%rd = %rd >> imm4
%rd = %rd >> %rs
Shift by 0 to 8 bits
%rd = [%sp+imm6], stack relative access
[%sp+imm6] = %rs
%rd = [%rb], register address access
%rd = [%rb], %rb = %rb + 4, post inc.
[%rb] = %rs
[%rb] = %rs, %rb = %rb + 4
Copy between registers
Store immediate value
Copy from special register
Copy to special register
Convert types
Test, set, clear, or invert a bit
No operation, stock clock
Repeat %ahr:%alr= [%r14] × [%r15] +
%ahr:%alr %r13 times
Successively push/pop from %r0 to %rs
Scan 1 or 0 from MSB, up to 8 bits
Swap or mirror bits bytewise
Extend immediate data of instruction

Number of cycles

1,2(when branching)
3 for call

1
2 for call

1–3
3–10

1

1

1

1
1
5
1
1

1–2

1

1
3
1

2 × N + 4

1 × N
1
1
1

signX, immX: immediate value, %XX: register

� Immediate extension by EXT instruction

Example:

Instruction only
call sign8

One EXT instruction is added
ext imm13
call sign8 (= call sign21)

Two EXT instructions are added
ext imm13
ext imm13
call sign8 (= call sign31)

Classification

Relative
branch
3-operand
operation
Operation
Stack load

Absolute load

Bit operation

Instruction

jp, jrgt, jrge, jrlt, jrle, jrugt, jruge, jrult,
jrule, jreq, jrne, call, and delayed branch inst.
add, sub, and, or, xor, not, cmp

add, sub, and, or, xor, not, cmp, ld.w
ld.b, ld.ub, ld.h, ld.uh, ld.w

ld.b, ld.ub, ld.h, ld.uh, ld.w

btst, bset, bclr, bnot

Typical format for 1
instruction

jp sing8

add %rd, %rs

add %rd, imm6 /sign6
ld.w %rd, [%sp+imm6]
ld.w [%sp+imm6], %rs
ld.w %rd, [%rb]
ld.w %rd, [%rb]+
ld.w [%rb], %rs
ld.w [%rb]+, %rs
btst [%rb], imm3

Typical operation when 1
EXT instruction is added

jp sign21

add %rd, %rs, imm13
3-operand operation
add %rd, imm19/sign19
[%sp+imm19]
Extend offset value
[%rb+imm13]
Add offset value

[%rb+imm13]
Add offset value

Typical operation when 2
EXT instructions are added
jp sign31

add %rd, %rs, imm26
3-operand operation
add %rd, imm32
[%sp+imm32]
Extend offset value
[%rb+imm28]
Add offset value

[%rb+imm26]
Add offset value

signX, immX: immediate value, %XX: register

2 WRITING PROGRAMS FOR THE E0C33

E0C33 FAMILY APPLICATION NOTES EPSON 9

2 WRITING PROGRAMS FOR THE E0C33
This chapter explains how to write programs for the E0C33. The method described here applies to all
microcomputers in the E0C33 Family.

2.1 Vector Table and Boot Routine
The E0C33 program must have at least a vector table and a boot routine. When cold reset at power-on, the
E0C33 chip normally fetches the reset vector from address 0xC00000 and begins executing a program
from that address. The simplest assembler resembles the one show below.

.abs ; Directive command located beginning with 0xC00000

.org 0xc000000

.code

.word BOOT ; Vector table (consisting of only one boot line)

BOOT:
xld.w %r8,0x800 ; Boot program
ld.w %sp,%r8 ; Sets SP and calls main
xcall main

In addition, the actual application may require a vector table for exceptions and interrupts, and a boot
routine that includes processing required to set up the BCU and initialize peripheral functions. Code
examples, one in assembler and one in C, are provided below.

� Code example in assembler
The following code is included in cc33\sample\drv33a104\.

Vector table [drv33a104\16timer\vector.s]

.code

.word RESET ; Vector table

.word RESERVED

.word RESERVED

.word RESERVED

.word ZERODIV

.word RESERVED

.word ADDRERR

.word NMI

.word RESERVED

.word RESERVED

.word RESERVED

.word RESERVED

.word SOFTINT0

.word SOFTINT1

.word SOFTINT2

.word SOFTINT3

.word INT0

.word INT1

.word INT2

.word INT3

.word INT4

.word INT5
 |

 (INT6–INT49)
 |

.word INT50

.word INT51

.word INT52

.word INT53

.word INT54

.word INT55

RESET: ; Dummy label for undefined vector
ZERODIV:
ADDRERR:

2 WRITING PROGRAMS FOR THE E0C33

10 EPSON E0C33 FAMILY APPLICATION NOTES

NMI:
RESERVED:
SOFTINT0:
SOFTINT1:
SOFTINT2:
SOFTINT3:
INT0:
INT1:
INT2:
INT3:
INT4:
INT5:
 |
(INT6–INT49)
 |
INT50:
INT51:
INT52:
INT53:
INT54:
INT55:

.global INT_LOOP
INT_LOOP: ; Trap routine for undefined vector

nop
jp INT_LOOP
reti

In this file, the vector table for boot to hardware interrupts is defined in the format

.word label

This allows storage of 32-bit jump addresses in the vector table. For safety, addresses that are not
specifically defined are vectored to INT_LOOP at the bottom of the file. Note that the program
assumes the vectors actually used will be redefined by another name. (The processing routine may
also be written by moving the jump address below to another location.)

When an invalid interrupt is generated, the CPU jumps to INT_LOOP. It may be convenient to have a
breakpoint set here when debugging the program. The address error exception (ADDRERR), 7th from
the top in the vector table, occurs especially frequently in undebugged code. Although the address
error exception in the preceding sample code is not separated from other exceptions or interrupts, we
recommend that address invalid exceptions be vectored to another routine. Note that an address error
exception occurs when an attempt is made to access an odd address during 16-bit memory read/
writes, or when accessing a nonword-aligned address (not a multiple of 4) during 32-bit memory
read/writes. In the E0C33, these memory accesses are prohibited.

Redefinition of interrupt vectors [drv33a104\16timer\vector.h]

;; Vector define
#define RESET BOOT
#define INT12 int_16timer_u00
#define INT15 int_16timer_c01
#define INT18 int_16timer_u11
#define INT23 int_16timer_c21
#define INT27 int_16timer_c31

Redefine the exception/interrupt vector labels actually used in vector.s by another name, letting the
CPU jump to the appropriate routine. In the preceding example, the reset vector and 16-bit timer
interrupt vectors are redefined using the label names of the actual processing routines.

2 WRITING PROGRAMS FOR THE E0C33

E0C33 FAMILY APPLICATION NOTES EPSON 11

Boot routine [drv33a104\common\boot.s]

/**/
/* */
/* Copyright (C) SEIKO EPSON CORP. 1997 - 1998 */
/* */
/* File name: vector.h */
/* This is interrupt vector header file. */
/* */
/**/

#include "..\bcu\drv_bcu.h"

;; Stack top
#define SP_TOP 0x07ff ; sp is in end of 2KB internal RAM

;; Global pointer
#define GP_ADDR 0x0000 ; global pointer is 0x0

.code
;;;
;; BOOT
;; Type: void
;; Ret val: none
;; Argument: void
;; Function: Boot program.
;;;

.global BOOT
BOOT:

xld.w %r8,SP_TOP ; Set stack pointer
ld.w %sp,%r8
xld.w %r8,GP_ADDR ; Set global pointer
xcall _init_bcu ; Initialize BCU on boot time in bcu.s
xcall _init_sys ; Call _init_sys() in sys.c to use simulated I/O
xcall main ; Go to main
xcall _exit ; In last, go to _exit in sys.c to use simulated I/O

;;;
;; _init_bcu
;; Type: void
;; Ret val: none
;; Argument: void
;; Function: Initialize BCU on boot time.
;;;

.global _init_bcu
_init_bcu:
;; Set area 9-10 setting
;; Area 9-10 setting ... Device size 16 bits, output disable delay 1.5,
;; wait control 2, burst ROM is not used in area 9-10,
;; burst ROM burst read cycle wait control 0

xld.w %r5,BCU_A10_ADDR
xld.w %r4,BCU_BW_0|BCU_DRAH_NOT|BCU_DRAL_NOT|BCU_SZL_16|BCU_DFL_15|BCU_WTL_2
ld.h [%r5],%r4
ret

This boot routine (BOOT) initializes the stack pointer, the R8 (used in ext33 for global pointer-based
optimization), and the BCU before calling the main routine.

Since the CPU uses the stack if any exception or interrupt occurs, make sure the stack pointer is set
before other processing. Always confirm that the BCU is set before accessing memory or device.

2 WRITING PROGRAMS FOR THE E0C33

12 EPSON E0C33 FAMILY APPLICATION NOTES

� Code example written in C
The following illustrative code is found in cc33\sample\drv33208\.

Vector table, boot routine [drv33208\16timer\vector.c]

/**
 * *
 * Copyright (C) SEIKO EPSON CORP. 1999 *
 * *
 * File name: vector.c *
 * This is vector and interrupt program with C. *
 * *
 **/

/* Prototype */
void boot(void);
void dummy(void);
extern void _init_bcu(void);
extern void _init_int(void);
extern void _init_sys(void);
extern void _exit(void);
extern void int_16timer_c0(void);
extern void int_16timer_u1(void);
extern void int_16timer_c2(void);
extern void int_16timer_u3(void);

/* vector table */
const unsigned long vector[] = {

(unsigned long)boot, // 0 0
0, // 4 1
0, // 8 2
0, // 12 3
(unsigned long)dummy, // 16 4
0, // 20 5
(unsigned long)dummy, // 24 6
(unsigned long)dummy, // 28 7
0, // 32 8
0, // 36 9
0, // 40 10
0, // 44 11
(unsigned long)dummy, // 48 12
(unsigned long)dummy, // 52 13

|
(56 14 – 120 30)

|
(unsigned long)int_16timer_c0, // 124 31
(unsigned long)dummy, // 128 32
(unsigned long)dummy, // 132 33
(unsigned long)int_16timer_u1, // 136 34
(unsigned long)dummy, // 140 35
(unsigned long)dummy, // 144 36
(unsigned long)dummy, // 148 37
(unsigned long)dummy, // 152 38
(unsigned long)int_16timer_c2, // 156 39
(unsigned long)dummy, // 160 40
(unsigned long)dummy, // 164 41
(unsigned long)int_16timer_u3, // 168 42
(unsigned long)dummy, // 172 43

|
(176 44 – 268 67)

|
(unsigned long)dummy, // 272 68
(unsigned long)dummy, // 276 69
(unsigned long)dummy, // 280 70
(unsigned long)dummy // 284 71

};

2 WRITING PROGRAMS FOR THE E0C33

E0C33 FAMILY APPLICATION NOTES EPSON 13

/***
 * boot
 * Type : void
 * Ret val : none
 * Argument : void
 * Function : Boot program.
 ***/
void boot(void)
{

asm("xld.w %r8,0x2000"); // Set SP in end of 8KB internal RAM
asm("ld.w %sp,%r8");
asm("ld.w %r8,0b10000"); // Set PSR to interrupt enable
asm("ld.w %psr,%r8");
asm("ld.w %r8,0x0"); // Set GPR is 0x0
_init_bcu(); // Initialize BCU on boot time
_init_int(); // Initialize interrupt controller
_init_sys(); // Initialize for sys.c
main(); // Call main
_exit(); // In last, go to exit in sys.c to use simulated I/O

}

/***
 * dummy
 * Type : void
 * Ret val : none
 * Argument : void
 * Function : Dummy interrupt program.
 ***/
void dummy(void)
{
INT_LOOP:

goto INT_LOOP;
asm("reti");

}

This file contains a vector table and a boot routine.

The vector table is defined as a const-type 32-bit array to allow storage of 32-bit jump addresses in
ROM. The comment for each vector (//x y) is a decimal value indicating the offset address (x) from
the top of the table and the vector number (y). In this example, the start addresses of externally-
referenced interrupt processing functions are written directly. Unused interrupts are vectored to
dummy routines.

The boot routine is functionally equivalent to the preceding example written in assembler. The SP and
PSR are initialized using the asm() instruction.

The reti instruction for the dummy exception/interrupt handler routine is written using the asm()
instruction.

2 WRITING PROGRAMS FOR THE E0C33

14 EPSON E0C33 FAMILY APPLICATION NOTES

2.2 Interrupt Handling Routines
This section describes interrupt handling routines, in particular methods for saving and restoring the
registers. Other routines are written like other ordinary processing routines.

� Routine written in assembler

Example for handling 16-bit timer interrupts [Excerpt from cc33\sample\drv33a104\16timer\demo_16tint.s]

;;;
;; int_16timer_u00
;; Type : void
;; Ret val : none
;; Argument : void
;; Function : 16-bit timer 00 underflow interrupt function.
;; Read 16-bit timer 3 counter data and stop 16-bit timer 00.
;;;

.global int_16timer_u00
int_16timer_u00:

pushn %r15
xld.w %r12,T16P_TC30_ADDR ; %r12 <- 16-bit timer 3 counter data reg. addr
xcall read_16timer_cnt ; %r10 <- 16-bit timer 3 counter data
xld.w [timer00],%r10

xld.w %r12,T16P_PRUN00_ADDR
xcall stop_16timer ; %r12 <- 16-bit timer 00 run/stop register addr

ld.w %r4,0x01 ; 16-bit timer 00 interrupt flag on
xld.w [t16int00_flg],%r4

xld.w %r5,INT_F16T0_F16T1_ADDR ; %r5 <- Interrupt factor register address
xld.w %r4,INT_F16TU00 ; Reset 16-bit timer 00 underflow int.factor flag
ld.b [%r5],%r4
popn %r15
reti

The start label of this routine (int_16timer_u00) is defined as a 16-bit timer interrupt vector (16-bit
timer 00 underflow interrupt). When this interrupt occurs, the CPU saves the PC and PSR to the stack
before executing this routine. Start by saving all general-purpose registers to the stack using pushn
%r15. Then write the required processing code. Finally, restore the contents of the stack to the general-
purpose registers using popn %r15, and return to the location where the interrupt occurred using reti.
To return from the interrupt handling routine, you must use the reti instruction, which restores the
PSR and PC to their states immediately before the interrupt occurrence.

Since multiply/divide operations or MAC operation are unnecessary in this example, the AHR and
ALR registers will never be modified within the routine. But if you use the AHR and ALR registers,
always save the contents of these registers to the stack, along with those of general-purpose registers,
as shown below.

pushn %r15
ld.w %r0,%ahr
ld.w %r1,%alr
pushn %r1
 |
popn %r1
ld.w %ahr,%r0
ld.w %alr,%r1
popn %r15
reti

Conversely, if register use is limited, there is no need to save all general-purpose registers. For ex-
ample, if you are using only R0 to R3, specify R3 in the pushn and popn instructions. Limiting the
registers to be saved helps reduce time and the stack area required for the save.

pushn %r3
 |
popn %r3
reti

2 WRITING PROGRAMS FOR THE E0C33

E0C33 FAMILY APPLICATION NOTES EPSON 15

� Routine written in C

Example for handling 16-bit timer interrupts [Excerpt from cc33\sample\drv33208\16timer\demo_16tint.c]

/***
 * int_16timer_c0
 * Type : void
 * Ret val : none
 * Argument : void
 * Function : 16bit timer0 comparison match A interrupt function.
 ***/
void int_16timer_c0(void)
{

extern volatile int timer0;// Timer counter variable for 16bit timer0

INT_BEGIN;
timer0 = read_16timer_cnt(T16P_TC3_ADDR);
*(volatile unsigned char *)INT_F16T0_F16T1_ADDR = INT_F16TC0;

// Reset 16bit timer0 comparison match A interrupt factor flag
stop_16timer(T16P_PRUN0_ADDR);
INT_END;

}

The respective processing for saving and restoring the registers is defined in INT-BEGIN and
INT_END, as follows:
(Excerpt from drv33208\include\common.h)
/* Macro */
#define INT_BEGIN asm("pushn %r15")
#define INT_END asm("popn %r15\n reti")

Here, all general-purpose registers are saved and restored as in the example written in assembler.

Save all general-purpose registers with C, since you do not know which registers will be used. You
may also need to save the AHR and ALR registers. In C, multiplication operations are used to calcu-
late addresses for array processing, not just for multiply/divide operations.

Variables in C are sometimes saved to the stack using the pushn instruction. In this case, the preced-
ing example may operate erratically, since the stack pointer loses consistency. This is because the
preceding example contains popn and ret after reti, which means popn will not be executed. For this
processing, use the sed.exe file provided as a utility. The following example illustrates this, using
cc33\sample\int_c as an example.
(int.mak)

|
int.ms : $(SRC_DIR)int.c

$(GCC33) $(GCC33_FLAG) $(SRC_DIR)int.c
$(SED) -f int.sed int.ps > int.ps2 ← Filtering by sed
$(EXT33) $(EXT33_FLAG) int.ps2

int.o : int.ms
$(AS33) $(AS33_FLAG) int.ms

|

Here, int.c is filtered by sed after being compiled.
(Filter definition in int.sed)
s/ pushn.*/;/
s/ popn.*/;/
s/; \.frame.*/;/
s/; \.mask.*/;/
s/; \.fmask.*/ pushn %r15\

ld.w %r0,%ahr\
ld.w %r1,%alr\
ld.w %r2,%sp\
pushn %r2/

s/ret/popn %r2\
ld.w %ahr,%r0\
ld.w %alr,%r1\
ld.w %sp,%r2\
popn %r15\
reti/

2 WRITING PROGRAMS FOR THE E0C33

16 EPSON E0C33 FAMILY APPLICATION NOTES

For example, the SED processing result of the div0() function in int.c is like the one shown below.
void div0()

{
int_num = 4;

}
↓

 00060 void div0()
 00080068 020F pushn %r15 00061 {
 0008006A A430 ld.w %r0,%ahr
 0008006C A421 ld.w %r1,%alr
 0008006E A412 ld.w %r2,%sp
 00080070 0202 pushn %r2
 00080072 6C4A ld.w %r10,0x4 00062 int_num = 4;
 00080074 C000 ext 0x0
 00080076 C000 ext 0x0
 00080078 3C8A ld.w [%r8],%r10
 0008007A 0242 popn %r2 00063 }
 0008007C A003 ld.w %ahr,%r0
 0008007E A012 ld.w %alr,%r1
 00080080 A021 ld.w %sp,%r2
 00080082 024F popn %r15
 00080084 04C0 reti

In this way, the code required to save and restore the general-purpose registers R0–R15 and other
registers AHR, ALR, and SP is added before and after function processing, with the reti instruction
used for return.

Note: Files processed by sed may not have any function written in them other than exception/interrupt
handling.

2 WRITING PROGRAMS FOR THE E0C33

E0C33 FAMILY APPLICATION NOTES EPSON 17

2.3 C and Assembler Mixed Programming
Control can pass between C and assembler routines as desired, providing that rules for arguments, return
values, and register content protection are observed.

� Creating an assembler routine called from C

cc33\utility\lib_src\ansilib33\string\src\strcpy.s

;***
; strcpy
; string copy from src to dest until 0 terminate
;
; arguments : %r12:dest addr, %r13:src addr (0 terminate string)
; return : %r10:dest addr
;***

.global strcpy
strcpy:

ld.w %r10, %r12 ; return dest add

strcpy_loop:
ld.ub %r4, [%r13]+ ; copy src 1 byte to dest
ld.b [%r12]+, %r4
cmp %r4, 0 ; continue until 0 terminate
jrne strcpy_loop
ret

This routine is called from a C routine as follows.
(Excerpt from cc33\sample\ansilib\sansilib.c)

|
#include <string.h>

|
void main()
 {

|
char *pchMem; /* for malloc, strcpy */

|
strcpy(pchMem, "This is strcpy test");

 }

The first and the second arguments are respectively placed in the R12 and the R13 registers when
passed, and the return value is stored in the R10 register.

As in this example, arguments and return values must be exchanged using registers, as follows:
• The first to fourth arguments are placed in the R12 to the R14 registers when passed.
• In special cases, the preceding arguments and the fifth and subsequent arguments are placed in the

stack when passed. (Refer to the compiled code.)
• The return value is stored in the R10 register when returned.

The limitations on register usage within the assembler routine called from a C routine are as follows:
• The R0 to R3 registers must be restored directly without modifying their contents when called.

When using these registers, use the pushn/popn instructions to save and restore their contents.
• The contents of the R4 to R15 registers do not need to be saved. However, avoid using registers R9

and R8 whenever possible, since R9 is used to expand the extend instructions of ext33, while R8 is
used for global pointer-based optimization by ext33. Be especially careful if you do use these
registers.

• The contents of the AHR, ALR, and PSR registers do not need to be saved.

For example, cc33\utility\lib_src\emulib33\fp\src\adddf3.s processes double-precision, floating-
point additions. Since this routine uses all registers, the contents of the R0 to R3 registers are saved
and restored before returning.
__adddf3:

pushn %r3 ; save register values
 |
popn %r3 ; restore register values
ret

2 WRITING PROGRAMS FOR THE E0C33

18 EPSON E0C33 FAMILY APPLICATION NOTES

� Creating an assembler routine that calls a C function
C functions are compiled by the preceding rules. When creating an assembler routine that calls a C
function, pay attention to the following:

Rules for delivering arguments and return values
• The first to fourth arguments are placed in the R12 to R14 registers when passed.
• The R10 register is used to receive the return value.

Register status at return
• The R0 to R3 registers hold the contents possessed when called.
• The R4 to R15 registers and other registers AHR, ALR, or PSR may have been modified.

2 WRITING PROGRAMS FOR THE E0C33

E0C33 FAMILY APPLICATION NOTES EPSON 19

2.4 Tools and Files for Assembly
The user-created assembly source files are assembled using the following three software tools:

Tools Input files Output files

1. Preprocessor pp33 file.s file.ps
2. Instruction extender ext33 file.ps file.ms
3. Assembler as33 file.ms file.o

∗ The assembly sources (.ps) obtained by compiling C sources cannot be fed into the preprocessor pp33.
They must be entered to ext33.

� Types of assembly source files
Shown below are an example and the differences between each assembly source file (.s, .ps, and .ms).

Assembly source (.s) created by user

; boot.s
; boot program

#define SP_INI 0x0800 ; sp is in end of 2KB internal RAM (1)
#define GP_INI 0x0000 ; global pointer %r8 is 0x0 (1)

.code (3)

.word BOOT ; BOOT VECTOR (3)
BOOT:

xld.w %r8,SP_INI (2)
ld.w %sp,%r8 ; set SP
ld.w %r8,GP_INI ; set global pointer
xcall main ; goto main (2)
xjp BOOT ; infinity loop (2)

(1) Quasi directives processed by pp33
(2) Extended instructions processed by ext33
(3) Directive commands processed by as33

Processing this file by pp33 results in the following:

Preprocessor output file (.ps)

.file "boot.s" (3)
; boot.s
; boot program

;#define SP_INI 0x0800 ; sp is in end of 2KB internal RAM (1)
;#define GP_INI 0x0000 ; global pointer %r8 is 0x0 (1)

.code

.word BOOT ; BOOT VECTOR
BOOT:

.loc 10 (3)
xld.w %r8,0x0800 (2)
.loc 11 (3)
ld.w %sp,%r8 ; set SP
.loc 12 (3)
ld.w %r8,0x0000 ; set global pointer (2)
.loc 13 (3)
xcall main ; goto main
.loc 14 (3)
xjp BOOT ; infinity loop
.endfile (3)

Shown below are sections of the .s file processed by pp33.
(1) The directive commands of pp33 beginning with # are processed, with the statements themselves

changed to comments.
(2) When the symbol defined by #define in (1) appears, it is replaced with the value or string defined

for that symbol.
(3) When pp33 is executed after specifying the -g option, the information necessary for source-level

debugging is inserted.

Processing this file by ext33 results in the following:

2 WRITING PROGRAMS FOR THE E0C33

20 EPSON E0C33 FAMILY APPLICATION NOTES

Instruction extender output file (.ms)

.file "boot.s"
; boot.s
; boot program

;#define SP_INI 0x0800 ; sp is in end of 2KB internal RAM
;#define GP_INI 0x0000 ; global pointer %r8 is 0x0

.code

.word BOOT ; BOOT VECTOR
BOOT:

.loc 10
ext 0x20 ; xld.w %r8,0x0800 (1)
ld.w %r8,0x0
.loc 11
ld.w %sp,%r8 ; set SP
.loc 12
ld.w %r8,0x0000 ; set global pointer
.loc 13
ext main@rh ; xcall main ; goto main (2)
ext main@rm
call main@rl
.loc 14
jp BOOT ; xjp BOOT ; infinity loop (3)
.endfile

Shown below are sections of the .ps file processed by ext33.
The extended instructions of ext33 beginning with x in (1) to (3) are expanded into the basic as33
instructions according to operand values. At this time, the number of instructions expanded is limited
to the smallest possible.
(1) is expanded into two instructions required for the immediate data of 0x800.
(2) is a label in another file and its address unknown; it is expanded into three instructions that can
always be called.
(3) is a label within the same file, so that its relative address is calculated; as a result, it is expanded
into one instruction.

� Preprocessor instructions
The instructions beginning with "#" are quasi preprocessor directives, which provide additional
functions, such as macro instructions, conditional assembly instructions, or symbol definitions of
values and strings, which help create readable assembler code. These instructions are processed by
pp33 and expanded into basic instructions that can be assembled by as33. The operators used to
specify numeric values with an expression are also processed by pp33.

Preprocessor quasi directives [cc33\sample\asm\pp.s]

; pp.s 1998.1.5
; sample source for pp33

#include "pp.def" ; include file
#define SP_IRAM ; definition for #ifdef
#ifdef SP_IRAM ; condition assemble

#define SP_INIT_ADDR 0x400 ; set number to defnum symbol
#else

#define SP_INIT_ADDR 0x880000
#endif
#define BLK_ADDR 0x0+0x10 ; You can use arithmetic operators.

; operators : +,-,*,/,%%,>>,<<,&,!,^,~,
; ^H,^M,^L,^AH,^AL,(,)

#define gpr %r8 ;
#define GP_INIT_ADDR 0x0 ;

2 WRITING PROGRAMS FOR THE E0C33

E0C33 FAMILY APPLICATION NOTES EPSON 21

#macro FILL_AREA $1 $2 $3 ; macro argument is $1, $2, --- $32
xld.w %r1,$1 ; $1 is start address
xld.w %r2,$2 ; $2 is fill pattern (8bit)
xld.w %r3,$3 ; $3 is fill size (byte address)

$$1: ; $$1 -- $$64 is local jump label
cmp %r3,0
jreq $$2
ld.b [%r1]+,%r2
sub %r3,1
jp $$1

$$2:
#endm

.word BOOT
BOOT:

ext SP_INIT_ADDR^H
ext SP_INIT_ADDR^M
ld.w %r0,SP_INIT_ADDR^L
ld.w %sp,%r0
ld.w gpr,GP_INIT_ADDR
FILL_AREA BLK_ADDR 0b01010101 10 ; fill 0x10-0x1f with 0x55
FILL_AREA BLK_ADDR+0x10 0 10 ; fill 0x20-0x2f with 0x00
jp BOOT

� Assembler directive commands
The assembler directive commands beginning with "." are primarily used to define data written into
sections and ROM. The assembler directive commands are not processed until fed into as33.

Assembler directive commands [cc33\sample\asm\as_directive.ms]

.abs ; absolute file
; as_directive.ms 1997.2.15
; sample source for as33 directives

.set RAM1 0x0 ; set absolute data

.code ; start code section

.global BOOT ; BOOT become global symbol

.org 0x80000 ; set absolute address

.word BOOT ; 32bit data
BOOT: ; label in code section

ld.w %r8,0
xld.w %r1,[DATA1]
xld.w [RAM1],%r1
xld.ub %r2,[DATA1+8]
xld.b [COMM1],%r2
jp BOOT
.half 0x0000 ; same with nop

.data ; start data section

.align 2 ; align to 4 byte boundary
DATA1: ; label in data section

.word 0x12345678 ; 32bit data

.half 0x1234,0x5678 ; 16bit data

.byte 0x90 ; 8bit data

.ascii "abc" ; string data

.space 4 ; 4bytes 0

.org 0x0

.comm COMM1 4 ; 4 byte global bss data area

.lcomm LCOMM1 4 ; 4 byte local bss data area

2 WRITING PROGRAMS FOR THE E0C33

22 EPSON E0C33 FAMILY APPLICATION NOTES

� Primary assembler instructions
When programming with the assembler, the programmer must understand how to write the following
instructions.
• Instructions supported by as33 and owned by the CPU core itself (basic instructions)
• Macro instructions expanded by ext33 (extended instructions)

Pooling all instructions of these two types produces a large number of available instructions, particu-
larly an extensive list of instructions for ext33.
Until you are familiar with programming the E0C33, we recommend using the two types of extended
instructions shown below and the primary basic instructions of the CPU core, and then gradually
increasing the number of extended instructions according to the purposes.

Two types of extended instructions
xld.w %r8,0x12345678 ; Stores immediate value in register

xcall sub ; Call to label

Commonly used basic instructions

Arithmetic operation
add %r1,%r2 ; Same as for sub and sbc

add %r3,3

adc %r5,%r3

cmp %r7,%r9

cmp %r15,-1

mlt.h %r9,%r8 ; unsigned mltu.h and mltu.w also available

mlt.w %r1,%r2 ; div is supported in subroutine form

Logical operation
and %r2,%r1 ; Same as for or and xor

and %r1,0b0111

not %r2,%r1

not %r1,-1

Shift
srl %r10,5 ; Same as for sll, sra, sla, rr, and rl

srl %r9,%r5

Register copy
ld.b %r2,%r3 ; Same as for ld.ub, ld.h, ld,uh, and ld,w

ld.w %r8,%alr ; Same as for sp, ahr, alr, and psr

ld.w %sp,%r9

Memory access
ld.b %r9,[%r9] ; Same as for ld.ub, ld.h, ld,uh, and ld,w

ld.b %r15,[%r0]+

ld.b [%r3],%r2 ; Same as for ld.h, and ld.w

ld.b [%r4]+,%r0

btst [%r9],0x1 ; Same as for bset, bclr, and bnot

Branch
jrgt SYM ; Same as for jrXX, jp, jrXX.d, and jp.d

Return
ret

ret.d

2 WRITING PROGRAMS FOR THE E0C33

E0C33 FAMILY APPLICATION NOTES EPSON 23

Interrupt
reti

int 3

Extended instruction
ext 0x123

Other
pushn %r15

popn %r0

mac %r12

nop

halt

slp

� Basic instructions
Basic instructions refer to the E0C33000 instruction set, which are assembled into machine codes by
as33. Write the core CPU mnemonics directly as is. For operands that specify addresses with immedi-
ate data, you may write a predefined label by itself, or in combination with displacement or symbol
mask.
Example: jr LABEL ; Specify label

ext LABEL+4@h ; Specify label + displacement + symbol mask

ext LABEL+4@m

ld.w %r9,LABEL+4@l

ld.w %r1,[%r9]

The following lists the basic instructions. The instructions in bold can be written only in basic instruc-
tions, while the others can be written in the extended ext33 instructions.

Basic instruction list [cc33\sample\asm\as_inst.ms]

; as_inst.ms 1997.2.23
; sample source for as33 instructions

; arithmetic operations
add %r1,%r2
add %r3,3
add %sp,0x123
adc %r5,%r3
sub %r1,%r2
sub %r3,3
sub %sp,0x123
sbc %r5,%r3
cmp %r7,%r9
cmp %r15,-1
mlt.h %r9,%r8
mltu.h %r7,%r4
mlt.w %r1,%r2
mltu.w %r5,%r1
div0s %r1
div0u %r2
div2s %r3
div3s

; logical operations
and %r2,%r1
and %r1,0b0111
or %r2,%r1
or %r1,11
xor %r2,%r1
xor %r1,0x11
not %r2,%r1
not %r1,-1

; shift & rotation operations
srl %r10,5
srl %r9,%r5
sll %r10,5
sll %r9,%r5
sra %r10,5
sra %r9,%r5
sla %r10,5
sla %r9,%r5
rr %r10,5
rr %r9,%r5
rl %r10,5
rl %r9,%r5

; etc
pushn %r15
popn %r0
mac %r13
nop
halt
slp
scan0 %r1,%r2
scan1 %r3,%r4
swap %r5,%r6
mirror %r7,%r7

; bit operations
btst [%r9],0x1
bset [%r0],7
bclr [%r15],0b1
bnot [%r10],5

2 WRITING PROGRAMS FOR THE E0C33

24 EPSON E0C33 FAMILY APPLICATION NOTES

; ext operations
ext 0x123
ext SYM@ah
ext SYM+0x56@ah
ext SYM@al
ext SYM+0x56@al
ext SYM@h
ext SYM+0x56@h
ext SYM@m
ext SYM+0x56@m
ext SYM@rh
ext SYM@rm

; load operations
ld.b %r2,%r3
ld.b %r9,[%r9]
ld.b %r15,[%r0]+
ld.b %r6,[%sp+8]
ld.b [%r3],%r2
ld.b [%r4]+,%r0
ld.b [%sp+0x10],%r11
ld.ub %r2,%r3
ld.ub %r9,[%r9]
ld.ub %r15,[%r0]+
ld.ub %r6,[%sp+8]
ld.h %r2,%r3
ld.h %r9,[%r9]
ld.h %r15,[%r0]+
ld.h %r6,[%sp+8]
ld.h [%r3],%r2
ld.h [%r4]+,%r0
ld.h [%sp+0x10],%r11
ld.uh %r2,%r3
ld.uh %r9,[%r9]
ld.uh %r15,[%r0]+
ld.uh %r6,[%sp+8]
ld.w %r2,%r3
ld.w %r8,%alr
ld.w %sp,%r9
ld.w %r9,[%r9]
ld.w %r15,[%r0]+
ld.w %r6,[%sp+8]
ld.w [%r3],%r2
ld.w [%r4]+,%r0
ld.w [%sp+0x10],%r11
ld.w %r9,SYM@l

; branch operations
jrgt -1
jrgt SYM
jrgt SYM@rl
jrgt.d 2
jrgt.d SYM
jrgt.d SYM@rl
jrge -1
jrge SYM
jrge SYM@rl
jrge.d 2
jrge.d SYM
jrge.d SYM@rl
jrlt -1
jrlt SYM
jrlt SYM@rl
jrlt.d 2
jrlt.d SYM

jrlt.d SYM@rl
jrle -1
jrle SYM
jrle SYM@rl
jrle.d 2
jrle.d SYM
jrle.d SYM@rl
jrugt -1
jrugt SYM
jrugt SYM@rl
jrugt.d 2
jrugt.d SYM
jrugt.d SYM@rl
jruge -1
jruge SYM
jruge SYM@rl
jruge.d 2
jruge.d SYM
jruge.d SYM@rl
jrult -1
jrult SYM
jrult SYM@rl
jrult.d 2
jrult.d SYM
jrult.d SYM@rl
jrule -1
jrule SYM
jrule SYM@rl
jrule.d 2
jrule.d SYM
jrule.d SYM@rl
jreq -1
jreq SYM
jreq SYM@rl
jreq.d 2
jreq.d SYM
jreq.d SYM@rl
jrne -1
jrne SYM
jrne SYM@rl
jrne.d 2
jrne.d SYM
jrne.d SYM@rl
call -1
call SYM
call SYM@rl
call %r5
call.d 2
call.d SYM
call.d SYM@rl
call.d %r8
jp -1
jp SYM
jp SYM@rl
jp %r5
jp.d 2
jp.d SYM
jp.d SYM@rl
jp.d %r8
ret
ret.d
reti
retd
int 3
brk

2 WRITING PROGRAMS FOR THE E0C33

E0C33 FAMILY APPLICATION NOTES EPSON 25

� Extended instructions
The extended instructions beginning with "x" are provided to facilitate the use of the instruction
extension function supported by the ext instruction. These extended instructions are expanded into
basic instructions with or without the ext instruction according to the operand value.

Extended instructions [cc33\sample\asm\ext.ms]

; ext.ms 1997.4.30
; sample source for ext33 extended instructions
; not for execution, just for ext33 extension only

.word BOOT
BOOT:

; summary of major patterns

; xld.w
xld.w %r8,0 ; immediate load
xld.w %r1,DATA1 ; symbol immediate load
xld.w %r2,DATA1+4 ; symbol+offset

xadd %r1,%r2,0x12345678 ; 3 operand for xadd, xsub

xand %r14,%r15,0xff000000 ; 3 operand for xand, xoor, xxor
xnot %r8,0b1111100000

xsrl %r3,8 ; immediate shift
xrr %r7,%r8 ; register shift

; for xsrl, xsll, xsra, xsla, xrr, xrl

xld.w %r1,[0x1234568] ; immediate address
xld.ub %r5,[DATA1] ; symbol address
xbtst [COMM1+0x400],2 ; symbol address + offset
xld.uh %r10,[%sp+0x222] ; sp relative
xld.b [%sp],%r7 ; sp relative
xld.uh %r1,[%r15+0x1234568] ; resister + immediate address
xld.h %r5,[%r11+DATA1] ; register + symbol address
xbset [%r9+COMM1+0x400],2 ; register + symbol address + offset

; for xld.w, xld.uh, xld.h, xld.ub, xld.b,
; xbset, xbclr, xbtst, xbnot

xjp -2 ; immediate relative
xjrgt.d BOOT ; symbol relative

; for xjp, xjreq, xjrne, xjrgt, xjrge, xjrlt,
; xjrle, xjrugt, xjruge, xjrult, xjrule, xcall
; And with ".d"

; more detail samples

; xld.w load immediate to register operation

xld.w %r8,0 ; decimal
xld.w %r0,0x12345678 ; hex
xld.w %r0,0b10101 ; binary
xld.w %r1,DATA1 ; symbol
xld.w %r2,DATA1+4 ; symbol+offset(hex,dec,bin)
xld.w %r2,DATA1+0x5
xld.w %r2,DATA1+0b110

; xadd, xsub add and sub, arithmetic operations

xadd %r1,%r2,0x12345678 ; 3 operand No.1
xsub %r2,%r1,0x12345 ; 3 operand No.2
xadd %r0,%r1,1 ; 3 operand No.3
xsub %r2,%r2,5 ; 3 operand No.4
xadd %r1,%r2,%sp ; for C compiler
xsub %sp,%sp,%r1 ; for C compiler

; xand, xoor, xxor, xnot
; and, or, xor, and not, logical operations

xand %r14,%r15,0xff000000 ; 3 operand No.1
xoor %r12,%r11,0xfedc ; 3 operand No.2
xxor %r9,%r9,-1 ; 3 operand No.3
xnot %r8,0b1111100000

2 WRITING PROGRAMS FOR THE E0C33

26 EPSON E0C33 FAMILY APPLICATION NOTES

; xsrl, xsll, xsra, xsla, xrr, xrl shift operations

xsrl %r3,8 ; immediate shift No.1
xsll %r4,15 ; immediate shift No.2
xsra %r5,17 ; immediate shift No.3
xsla %r6,31 ; immediate shift No.4
xrr %r7,%r8 ; register shift

; xld.w, xld.uh, xld.h, xld.ub, xld.b, xbset, xbclr, xbtst, xbnot
; load, bit operation from/to absolute address

xld.w %r1,[0x1234568] ; immediate address No.1
xld.uh %r2,[0xABC] ; immediate address No.2
xld.h [10], %r3 ; immediate address No.3
xld.ub %r4,[0] ; immediate address No.4
xld.b %r5,[DATA1] ; symbol address No.1
xbnot [COMM1],1 ; symbol address No.2
xbtst [COMM1+0x400],2 ; symbol address + offset No.1
xbset [COMM1+0x10],3 ; symbol address + offset No.2
xbclr [COMM1+1],4 ; symbol address + offset No.3

; xld.w, xld.uh, xld.h, xld.ub, xld.b, xbset, xbclr, xbtst, xbnot
; load, bit operation from/to SP relative address

xld.w %r15,[%sp+0x4444444] ; sp relative No.1
xld.uh %r10,[%sp+0x222] ; sp relative No.2
xld.b [%sp],%r7 ; sp relative No.3
xbset [%sp+0x14],5 ; sp relative No.4

; xld.w, xld.uh, xld.h, xld.ub, xld.b, xbset, xbclr, xbtst, xbnot
; load, bit operation from/to register relative address

xld.w %r1,[%r15+0x1234568] ; + immediate address No.1
xld.uh %r2,[%r14+0xABC] ; + immediate address No.2
xld.h [%r13+10], %r3 ; + immediate address No.3
xld.ub %r4,[%r12] ; + immediate address No.4
xld.b %r5,[%r11+DATA1] ; + symbol address No.1
xbnot [%r10+COMM1],1 ; + symbol address No.2
xbtst [%r9+COMM1+0x400],2 ; + symbol address + offset No.1
xbset [%r8+COMM1+0x10],3 ; + symbol address + offset No.2
xbclr [%r7+COMM1+1],4 ; + symbol address + offset No.3

; xld.w load word operation from sp register for C support

xld.w [%sp],%sp
xld.w [%sp+0x2468],%sp
xld.w [0x12340],%sp
xld.w [COMM1],%sp
xld.w [COMM1+4],%sp
xld.w [%r5],%sp
xld.w [%r6+0b1100],%sp
xld.w [%r7+DATA1],%sp
xld.w [%r7+DATA1+200],%sp

; xjp, xjreq, xjrne, xjrgt, xjrge, xjrlt, xjrle, xjrugt, xjruge, xjrult
; xjrule, xcall and with .d relative branchs

NEAR:
xjp.d -2 ; immediate relative No.1
xjreq 800 ; immediate relative No.2
xjrne 0x1000000 ; immediate relative No.3
xjrgt.d BOOT ; symbol relative No.1
xjrge COMM1 ; symbol relative No.2
xjruge NEAR ; symbol relative No.3

.data
DATA1:

.word 0x12345678

.comm COMM1 4

2 WRITING PROGRAMS FOR THE E0C33

E0C33 FAMILY APPLICATION NOTES EPSON 27

� make file
Execution of make is indispensable in obtaining the final object file by efficient execution of the
necessary tools after correcting source files. Shown below are examples of make files: one with
suffixes defined, and one with suffixes undefined. In most cases, you can use either make file, since
they are easily created with wb33. But in cases involving manual correction for additional processed
files, the make file with suffixes defined may prove preferable.

make file using suffix definition

make file made by wb33

macro definitions for tools & dir

TOOL_DIR = C:\cc33
GCC33 = $(TOOL_DIR)\gcc33
PP33 = $(TOOL_DIR)\pp33
EXT33 = $(TOOL_DIR)\ext33
AS33 = $(TOOL_DIR)\as33
LK33 = $(TOOL_DIR)\lk33
LIB33 = $(TOOL_DIR)\lib33
MAKE = $(TOOL_DIR)\make
SRC_DIR =

macro definitions for tool flags

GCC33_FLAG = -B$(TOOL_DIR)\ -S -g -O
PP33_FLAG = -g
EXT33_FLAG =
AS33_FLAG = -g
LK33_FLAG = -g -s -m -c
EXT33_CMX_FLAG = -lk suf -c

suffix & rule definitions

.SUFFIXES : .c .s .ps .ms .o .srf

.c.ms :
$(GCC33) $(GCC33_FLAG) (SRC_DIR)*.c
$(EXT33) $(EXT33_FLAG) $*.ps

.s.ms :
$(PP33) $(PP33_FLAG) (SRC_DIR)*.s
$(EXT33) $(EXT33_FLAG) $*.ps

.ms.o :
$(AS33) $(AS33_FLAG) $*.ms

dependency list start

suf.srf : suf.cm \
 boot.o \
 main.o \

$(LK33) $(LK33_FLAG) suf.cm

boot.s
boot.ms : $(SRC_DIR)boot.s
boot.o : boot.ms

main.c
main.ms : $(SRC_DIR)main.c
main.o : main.ms

dependency list end

make file not using suffix definition

make file made by wb33

macro definitions for tools & dir

TOOL_DIR = C:\cc33
GCC33 = $(TOOL_DIR)\gcc33
PP33 = $(TOOL_DIR)\pp33
EXT33 = $(TOOL_DIR)\ext33
AS33 = $(TOOL_DIR)\as33
LK33 = $(TOOL_DIR)\lk33
LIB33 = $(TOOL_DIR)\lib33
MAKE = $(TOOL_DIR)\make
SRC_DIR =

macro definitions for tool flags

GCC33_FLAG = -B$(TOOL_DIR)\ -S -g -O
PP33_FLAG = -g
EXT33_FLAG =
AS33_FLAG = -g
LK33_FLAG = -g -s -m -c
EXT33_CMX_FLAG = -lk nosuf -c

suffix & rule definitions

.SUFFIXES : .c .s .ps .ms .o .srf

.c.ms :
$(GCC33) $(GCC33_FLAG) (SRC_DIR)*.c
$(EXT33) $(EXT33_FLAG) $*.ps

.s.ms :
$(PP33) $(PP33_FLAG) (SRC_DIR)*.s
$(EXT33) $(EXT33_FLAG) $*.ps

.ms.o :
$(AS33) $(AS33_FLAG) $*.ms

dependency list start

nosuf.srf : nosuf.cm \
 boot.o \
 main.o \

$(LK33) $(LK33_FLAG) nosuf.cm

boot.s
boot.ms : $(SRC_DIR)boot.s

$(PP33) $(PP33_FLAG) $(SRC_DIR)boot.s
$(EXT33) $(EXT33_FLAG) boot.ps

boot.o : boot.ms
$(AS33) $(AS33_FLAG) boot.ms

main.c
main.ms : $(SRC_DIR)main.c

$(GCC33) $(GCC33_FLAG)
$(SRC_DIR)main.c

$(EXT33) $(EXT33_FLAG) main.ps
main.o : main.ms

$(AS33) $(AS33_FLAG) main.ms

dependency list end

2 WRITING PROGRAMS FOR THE E0C33

28 EPSON E0C33 FAMILY APPLICATION NOTES

optimaization by 2 pass make

opt:
$(MAKE) -f suf.mak
$(TOOL_DIR)\cwait 2
$(EXT33) $(EXT33_CMX_FLAG) suf.cmx
$(MAKE) -f suf.mak

clean files except source

clean:
del *.srf
del *.o
del *.ms
del *.ps
del *.map
del *.sym

optimaization by 2 pass make

opt:
$(MAKE) -f nosuf.mak
$(TOOL_DIR)\cwait 2
$(EXT33) $(EXT33_CMX_FLAG) nosuf.cmx
$(MAKE) -f nosuf.mak

clean files except source

clean:
del *.srf
del *.o
del *.ms
del *.ps
del *.map
del *.sym

2 WRITING PROGRAMS FOR THE E0C33

E0C33 FAMILY APPLICATION NOTES EPSON 29

2.5 C and Code Optimization
This section explains how to optimize the instruction code generated by the C compiler, using main.c in
cc33\sample\ccode as an example. Note that ccode is found in the CC33 Ver 3.0 or later package.
The original source is shown below.

Assembly source boot routine [ccode\boot.s]

; boot.s 1997.2.13
; boot program

#define SP_INI 0x0800 ; sp is in end of 2KB internal RAM
#define GP_INI 0x0000 ; global pointer %r8 is 0x0

.code

.word BOOT ; BOOT VECTOR
BOOT:

xld.w %r8,SP_INI
ld.w %sp,%r8 ; set SP
ld.w %r8,GP_INI ; set global pointer
xcall main ; goto main
xjp BOOT ; infinity loop

C source main program [ccode\main.c]

/* main.c 1999.7.28 */
/* sample program for optimize*/

struct ST gst;
int a;
struct ST {

int s1;
int s2;

};

main()
 {

int b;
struct ST st;
int ar[10];

a = 1;
b = 2;

st.s1 = 3;
ar[3] = 4;

sub1(a, &b);
sub2();

gst.s2 = 5;
sub3(&st, ar);

 }

sub1(a,b)
 int a;
 int *b;
 {

*b = a;
 }

sub2()
 {

volatile char *vp;

vp = (volatile char *)0x40000;
*vp = 2;

*(volatile char *)(0x48000) |= 0x1;
 }

sub3(st, ar)
 struct ST *st;
 int ar[];
 {

st->s2 = 4;
ar[5]=5;

 }

2 WRITING PROGRAMS FOR THE E0C33

30 EPSON E0C33 FAMILY APPLICATION NOTES

When this program is compiled in the default state, the following code results.

Code derived by compiling [ccode\default.dis]

 **** Disassemble code and source code ****
 Addr Code Unassemble Line Source
 00080000 0004 ***
 00080002 0008 ***
 --- boot.s ---
 00001 ; boot.s 1997.2.13
 00002 ; boot program
 00003
 00004 #define SP_INI 0x0800; sp is in ..
 00005 #define GP_INI 0x0000; global ..
 00006
 00007 .code
 00008 .word BOOT ; BOOT VECTOR
 00009 BOOT:
 00080004 C020 ext 0x20 00010 xld.w %r8,SP_INI
 00080006 6C08 ld.w %r8,0x0
 00080008 A081 ld.w %sp,%r8 00011 ld.w %sp,%r8 ; set SP
 0008000A 6C08 ld.w %r8,0x0 00012 ld.w %r8,GP_INI ; set ..
 0008000C C000 ext 0x0 00013 xcall main ; goto main
 0008000E C000 ext 0x0
 00080010 1C02 call 0x2
 00080012 1EF9 jp 0xf9 00014 xjp BOOT ; infinity ..
 --- main.c ---
 00001 /* main.c 1999.7.28 */
 00002 /* sample program for optimize*/
 00003
 00004 struct ST gst;
 00005 int a;
 00006 struct ST {
 00007 int s1;
 00008 int s2;
 00009 };
 00010
 00011 main()
 00080014 840D sub %sp,0xd 00012 {
 00013 int b;
 00014 struct ST st;
 00015 int ar[10];
 00016
 00080016 6C1C ld.w %r12,0x1 00017 a = 1;
 00080018 C000 ext 0x0
 0008001A C000 ext 0x0
 0008001C 6C89 ld.w %r9,0x8
 0008001E 3C9C ld.w [%r9],%r12
 00080020 6C2A ld.w %r10,0x2 00018 b = 2;
 00080022 5CAA ld.w [%sp+0xa],%r10
 00019
 00080024 6C3A ld.w %r10,0x3 00020 st.s1 = 3;
 00080026 5CBA ld.w [%sp+0xb],%r10
 00080028 6C4A ld.w %r10,0x4 00021 ar[3] = 4;
 0008002A 5C3A ld.w [%sp+0x3],%r10
 00022
 0008002C A41D ld.w %r13,%sp 00023 sub1(a, &b);
 0008002E 628D add %r13,0x28
 00080030 1C0D call 0xd
 00080032 1C0E call 0xe 00024 sub2();
 00025
 00080034 6C5A ld.w %r10,0x5 00026 gst.s2 = 5;
 00080036 C000 ext 0x0
 00080038 C000 ext 0x0
 0008003A 6C49 ld.w %r9,0x4
 0008003C 3C9A ld.w [%r9],%r10
 0008003E A41C ld.w %r12,%sp 00027 sub3(&st, ar);
 00080040 62CC add %r12,0x2c
 00080042 A41D ld.w %r13,%sp
 00080044 1C0F call 0xf
 00080046 800D add %sp,0xd 00028 }
 00080048 0640 ret

2 WRITING PROGRAMS FOR THE E0C33

E0C33 FAMILY APPLICATION NOTES EPSON 31

 00029
 00030 sub1(a,b)
 00031 int a;
 00032 int *b;
 00033 {
 0008004A 3CDC ld.w [%r13],%r12 00034 *b = a;
 0008004C 0640 ret 00035 }
 00036
 00037 sub2()
 00038 {
 00039 volatile char *vp;
 00040
 0008004E C000 ext 0x0 00041 vp = (volatile char *)0x40000;
 00080050 D000 ext 0x1000
 00080052 6C0B ld.w %r11,0x0
 00080054 6C2A ld.w %r10,0x2 00042 *vp = 2;
 00080056 34BA ld.b [%r11],%r10
 00043
 00080058 C000 ext 0x0 00044 *(volatile char *)(0x48000) |= 0x1;
 0008005A D200 ext 0x1200
 0008005C 6C0B ld.w %r11,0x0
 0008005E B0B0 bset [%r11],0x0
 00080060 0640 ret 00045 }
 00046
 00047 sub3(st, ar)
 00048 struct ST *st;
 00049 int ar[];
 00050 {
 00080062 6C4A ld.w %r10,0x4 00051 st->s2 = 4;
 00080064 C004 ext 0x4
 00080066 3CCA ld.w [%r12],%r10
 00080068 6C5A ld.w %r10,0x5 00052 ar[5]=5;
 0008006A C014 ext 0x14
 0008006C 3CDA ld.w [%r13],%r10
 0008006E 0640 ret 00053 }

� About external variables and auto variables
The following section explains how external variables and auto variables are accessed.

 00005 int a; ← Defines external variable
 00006 struct ST {
 00007 int s1;
 00008 int s2;
 00009 };
 00010
 00011 main()
 00080014 840D sub %sp,0xd 00012 {
 00013 int b; ← Defines auto variable
 00014 struct ST st;
 00015 int ar[10];
 00016
 00080016 6C1C ld.w %r12,0x1 00017 a = 1;
 00080018 C000 ext 0x0
 0008001A C000 ext 0x0
 0008001C 6C89 ld.w %r9,0x8 ← External variable has its address first placed in R9,
 0008001E 3C9C ld.w [%r9],%r12 ← then accessed based on R9
 00080020 6C2A ld.w %r10,0x2 00018 b = 2;
 00080022 5CAA ld.w [%sp+0xa],%r10 ← auto variable is accessed as offset relative to the stack

'a' is an external variable (those with absolute addresses, which here include constants in ROM and
static declared variables, in addition to variables in RAM), while 'b' is an auto variable (variables
placed in the stack).

Normally, an external variable is accessed following the procedure
1) Place 32-bit value (variable's address) in R9
2) Access memory based on R9

Thus, four instructions are required.

2 WRITING PROGRAMS FOR THE E0C33

32 EPSON E0C33 FAMILY APPLICATION NOTES

Because auto variables are accessed following the procedure
1) Access the location indicated by SP + offset

an auto variable in the stack area of 63 bytes or less when offset is byte accessed, 126 bytes or less
when half-word accessed, or 252 bytes or less when word accessed, may be accessed with one instruc-
tion, or beyond that, with two instructions. Relatively small number of auto variables are placed in
registers automatically, resulting in even more efficient processing. Since they are already placed in
registers, this is the case of "access with zero instructions".

For the following reasons, we recommend assigning variables used temporarily in a routine to auto
variables whenever possible.
• The number of instructions required for access is small, as described above, and the processing

speed is fast.
• Because auto variables are placed temporarily in the stack, RAM does not need to be occupied at all

times, conserving RAM use.
• Absence of register assignments and unnecessary accesses make it easier to reap the benefits of

optimization by the C compiler.

Excessive use of auto variables has the following disadvantage:
• The practice increases stack size, making it difficult to predict the upper limit.

The stack size can be checked with a debugger, as follows.
1) Allocate a slightly larger stack area.
2) Fill the stack with (as an example) 5555.
3) Execute the application.
4) Finally, display the stack area and check the maximum range of stack used (the range where 5555s

are changed).

� About volatile variables
To reduce code size and increase processing speed, recent C compilers have been designed whenever
possible to minimize loads/stores to memory and to recycle values placed in the registers. Con-
versely, a description of memory access in C does not guarantee that memory is accessed at that point.
This presents problems for statements that access I/O registers. To resolve this problem, ANSI defines
a type of variable known as "volatile." Use this type of variable to access I/O registers.

 00037 sub2()
 00038 {
 00039 volatile char *vp;
 00040
 0008004E C000 ext 0x0 00041 vp = (volatile char *)0x40000;
 00080050 D000 ext 0x1000
 00080052 6C0B ld.w %r11,0x0
 00080054 6C2A ld.w %r10,0x2 00042 *vp = 2;
 00080056 34BA ld.b [%r11],%r10 ← Access
 00043
 00080058 C000 ext 0x0 00044 *(volatile char *)(0x48000) |= 0x1;
 0008005A D200 ext 0x1200
 0008005C 6C0B ld.w %r11,0x0
 0008005E B0B0 bset [%r11],0x0 ← bset access
 00080060 0640 ret 00045 }

The variable "vp" is declared as a volatile type, and the address 0x40000 is set with 2 written to it. This
ensures a write to memory.

Additionally, 0x1 is OR written to address 0x48000. Here, the immediate value 0x48000 is cast for
handling as an address pointer. Using the volatile byte type to set or clear a bit generates the instruc-
tions bset and bclr, enabling processing with one instruction where three instructions may otherwise
be required.

2 WRITING PROGRAMS FOR THE E0C33

E0C33 FAMILY APPLICATION NOTES EPSON 33

� About pointer variables
Access to a location pointed to by a pointer variable is processed with one instruction.

 00030 sub1(a,b)
 00031 int a;
 00032 int *b;
 00033 {
 0008004A 3CDC ld.w [%r13],%r12 00034 *b = a; ← Access by one instruction
 0008004C 0640 ret 00035 }

� About structure variables and arrays
Basically external or auto variables, structure variables and arrays are accessed in the same way as the
external and auto variables previously discussed.

 00011 main()
 00080014 840D sub %sp,0xd 00012 {
 00013 int b;
 00014 struct ST st;
 00015 int ar[10];
 00016

 |
 00019
 00080024 6C3A ld.w %r10,0x3 00020 st.s1 = 3;
 00080026 5CBA ld.w [%sp+0xb],%r10 ← Accesses auto variable
 00080028 6C4A ld.w %r10,0x4 00021 ar[3] = 4;
 0008002A 5C3A ld.w [%sp+0x3],%r10 ← Accesses auto variable
 00022
 0008002C A41D ld.w %r13,%sp 00023 sub1(a, &b);
 0008002E 628D add %r13,0x28
 00080030 1C0D call 0xd
 00080032 1C0E call 0xe 00024 sub2();
 00025
 00080034 6C5A ld.w %r10,0x5 00026 gst.s2 = 5;
 00080036 C000 ext 0x0 ← Accesses external variable
 00080038 C000 ext 0x0
 0008003A 6C49 ld.w %r9,0x4
 0008003C 3C9A ld.w [%r9],%r10
 0008003E A41C ld.w %r12,%sp 00027 sub3(&st, ar);
 00080040 62CC add %r12,0x2c
 00080042 A41D ld.w %r13,%sp
 00080044 1C0F call 0xf
 00080046 800D add %sp,0xd 00028 }
 00080048 0640 ret

Before performing an access, the C compiler converts each element of a structure or array into an
offset relative to the SP when the element is an auto variable, or into an absolute address when the
element is an external variable. Structures and arrays are thus handled in exactly the same way as
ordinary auto and external variables.

� About pointer type structures and arrays

 00047 sub3(st, ar)
 00048 struct ST *st;
 00049 int ar[];
 00050 {
 00080062 6C4A ld.w %r10,0x4 00051 st->s2 = 4;
 00080064 C004 ext 0x4 ← Access as offset
 00080066 3CCA ld.w [%r12],%r10 ← Two instructions
 00080068 6C5A ld.w %r10,0x5 00052 ar[5]=5;
 0008006A C014 ext 0x14 ← Access as offset
 0008006C 3CDA ld.w [%r13],%r10 ← Two instructions
 0008006E 0640 ret 00053 }

When the pointer for an external variable structure or array is used as shown above, each element of
the structure or array may be accessed with two instructions. (This is true for up to 4KB of access area,
with a maximum offset of 13 bits. Larger areas require three instructions.) This technique effectively
provides access to large external variable areas.

2 WRITING PROGRAMS FOR THE E0C33

34 EPSON E0C33 FAMILY APPLICATION NOTES

� Call optimization

 --- boot.s ---
 00001 ; boot.s 1997.2.13
 00002 ; boot program
 00003
 00004 #define SP_INI 0x0800; sp ..
 00005 #define GP_INI 0x0000; global ..
 00006
 00007 .code
 00008 .word BOOT ; BOOT VECTOR
 00009 BOOT:
 00080004 C020 ext 0x20 00010 xld.w %r8,SP_INI
 00080006 6C08 ld.w %r8,0x0
 00080008 A081 ld.w %sp,%r8 00011 ld.w %sp,%r8 ; set SP
 0008000A 6C08 ld.w %r8,0x0 00012 ld.w %r8,GP_INI ; set
 0008000C C000 ext 0x0 00013 xcall main ; .. ← call
 0008000E C000 ext 0x0 ←
 00080010 1C02 call 0x2 ← 3 instructions
 00080012 1EF9 jp 0xf9 00014 xjp BOOT ; infinity ..

Used to call a routine in another file, call is normally expanded as a precautionary measure into three
instructions. This ensures that the program always branches to a routine, no matter where in the
E0C33 address space it may be located. Two instructions (ext + call) may also be used to make the
program branch to a location 2M bytes forward or backward from that point. For example, when the
entire program is stored in 2MB of flash memory, all call instances can be turned into two instructions
without problems. In such cases, use the ext33 -near flag.

In ccode\tes.mak
#EXT33_FLAG = ← Comment out this default using #
EXT33_FLAG = -near ← Use this one

After making this change, execute make clean once, then reexecute make. All call instances are turned
into two instructions.

(From ccode\near.dis)
 0008000C C000 ext 0x0 00013 xcall main ; goto main
 0008000E 1C03 call 0x3

In addition to call, other branch instructions that cause the program jump to a label within the file are
also optimized into one or two instructions by ext33. Instructions that jump to a label outside the file
(as shown above) are normally expanded into three instructions, or into two instructions when
accompanied by the -near flag. (However, the 2-pass make described further below generates more
intelligent processing.)

� Global pointer optimization of external variables
For access to external variables, ext33 provides several methods of optimization.
In ccode\test.mak, specify
EXT33_FLAG = -gp 0x0

and global pointer optimization is implemented.

Before use of this optimize function, the global pointer address must be set in R8 at boot time. Here,
because the variable area starts from 0, the value set is 0.
(From ccode\gp.dis)
 0008000A 6C08 ld.w %r8,0x0 00012 ld.w %r8,GP_INI ; set global pointer

The external variable 'a' is accessed as offset relative to the base indicated by R8 (global pointer).
 00080016 6C1C ld.w %r12,0x1 00017 a = 1;
 00080018 C000 ext 0x0 ← Base in R8
 0008001A C008 ext 0x8 ←
 0008001C 3C8C ld.w [%r8],%r12 ← Accessed using three instructions

Note that the offset from the base address in R8 is a maximum of 26 bits and that all external variable
accesses must occur on the positive side of the base address. For this reason, we recommend using R8
as 0. (However, the 2-pass make described further below generates more intelligent processing.)

2 WRITING PROGRAMS FOR THE E0C33

E0C33 FAMILY APPLICATION NOTES EPSON 35

� Two-pass optimization of call and external variables
(From ccode\test.mak)
optimaization by 2 pass make

opt:
$(MAKE) -f test.mak
$(TOOL_DIR)\cwait 2
$(EXT33) $(EXT33_CMX_FLAG) test.cmx
$(MAKE) -f test.mak

As shown above, run make once, then reexecute the sections below ext33 based on this information.
This process is referred to as a 2-pass make. In this case, the ext33 flag in the second pass is set by
default as follows:
EXT33_CMX_FLAG = -lk test -c

This is the specification required for ext33 to optimize code generation, using the map and symbol
information created by lk33 in the first pass.

One target to be optimized in this way is branch instructions, such as call.
(From ccode\2pass.dis)
 0008000C C000 ext 0x0 00013 xcall main ; goto main
 0008000E 1C03 call 0x3

The call to an external file is turned into two instructions. Although similar to the -near flag, this
optimization causes ext33 to calculate the distance from call to the label to determine whether it
should consist of two or three instructions. For large distances, call is expanded into three instruc-
tions.

The second target of optimization is an access to external variables.
(From ccode\default.dis)
 00080016 6C1C ld.w %r12,0x1 00017 a = 1;
 00080018 C000 ext 0x0
 0008001A C000 ext 0x0
 0008001C 6C89 ld.w %r9,0x8
 0008001E 3C9C ld.w [%r9],%r12

Four instructions are normally required.

(From ccode\2pass.dis)
 00080016 6C1C ld.w %r12,0x1 00017 a = 1;
 00080018 6C89 ld.w %r9,0x8
 0008001A 3C9C ld.w [%r9],%r12

In this example, access is turned into two instructions. Since ext33 can obtain address information for
variable 'a' in the second pass, the address is stored in R9 using the fewest number of instructions.
Here, two instructions are used to perform an access, but this is a special case occurring only at the
beginning of internal RAM. Access generally requires three instructions and is limited to an address
range of up to 0x3ffff.

The 2-pass make can be used in combination with global pointer optimization.
(From ccode\gp.dis)
 00080016 6C1C ld.w %r12,0x1 00017 a = 1;
 00080018 C000 ext 0x0
 0008001A C008 ext 0x8
 0008001C 3C8C ld.w [%r8],%r12

With global pointer optimization alone, access is performed with three instructions. When combined
with a 2-pass make (flag settings: EXT33_CMX_FLAG = -lk test -gp 0x0 -c),
(From ccode\gp2pass.dis)
 00080016 6C1C ld.w %r12,0x1 00017 a = 1;
 00080018 C008 ext 0x8
 0008001A 3C8C ld.w [%r8],%r12

the number of instructions is reduced to two. However, this two-instruction case occurs only for a 4KB
range from R8, beyond which access expands to three instructions. For a 2-pass make, access in the
negative direction from R8 is expanded into the ordinary format not using R8.

2 WRITING PROGRAMS FOR THE E0C33

36 EPSON E0C33 FAMILY APPLICATION NOTES

� Conclusion
The following lists recommendations for C code and code optimization in order of importance.

1) Use auto variables (variables in the stack) unless external variables (those with absolute addresses)
are unavoidable.

2) Write external variables as structures or arrays, and access them as offset from the beginning
pointer. This is generally effective for address ranges up to 4KB.

3) Do not use the R8 register in user applications. Global pointer optimization is effective for all
external variables only if the address area consists of a 26-bit space.

4) Execute a 2-pass make. This is effective for variables in the internal RAM area and optimizes the
call instruction.

Whenever possible, use -O for the GCC33 optimize switch. Specifying -O2 or -O3 only results in
special optimizing processing, without improving results.

2 WRITING PROGRAMS FOR THE E0C33

E0C33 FAMILY APPLICATION NOTES EPSON 37

2.6 Mapping by Linker

� Absolute files
There are two types of source files: absolute files, for which absolute addresses are specified at the
source level, and relocatable files for which the source itself is relocatable and addresses are specified
by a linker. C source files are available only as relocatable files. The assembler recognizes both
relocatable and absolute files.
Example of an absolute file:

.abs ; Directive command starting with 0xc00000

.org 0xc000000

.code

.word BOOT ; Vector table (consisting of a single boot line)

BOOT:
xld.w %r8,0x800 ; Boot program
ld.w %sp,%r8 ; Sets SP and calls main
xcall main

The file is declared to be an absolute file by the .abs directive command, and its address is determined
by the .org directive command. This programming technique is useful for performing a simple test
with one file. Due to various limitations, this technique is not recommended for full-scale develop-
ment using multiple files.

� CODE, DATA, and BSS sections
Contents written in C and assembly sources are ultimately categorized into three sections.

CODE section This section stores program code and ROM data.
DATA section This section stores R/W'able data with initial values.
BASS section This section stores R/W'able data without initial values.

Example:
int a; ← Placed in the BSS section
int b=1; ← Placed in the DATA section
const int c=2; ← Placed in the CODE section

main() ← Program is placed in the CODE section
 {

a=b=c;
 }

Compiling the above results in the following.

gcc2_compiled.:
__gnu_compiled_c:

.global b

.data

.align 2
b:

.word 1 ← b is data in the DATA section

.global c

.code

.align 2
c:

.word 2 ← c is data in the CODE section

.code

.align 1

.global main
main:
; .frame %sp,4,$31
; .mask 0x80000000,-4
; .fmask 0x00000000,0

xld.w %r10,[c] ← All instructions are placed in the CODE section
xld.w [b],%r10
xld.w [a],%r10
ret

.comm a 4 ← a is placed in the BSS section

2 WRITING PROGRAMS FOR THE E0C33

38 EPSON E0C33 FAMILY APPLICATION NOTES

Note that the classification of and directive commands for CODE, DATA, and BSS incorporate UNIX
concepts. (In UNIX, CODE is referred to as a TEXT section.)
Support for DATA sections (R/W'able variables with initial values) varies by specific vendor-supplied
development tool. Since some development tools do not support DATA sections, avoid using this
section when creating a new source. For better portability, define data as BSS section variables and
initialize them in the program as necessary.
When using C sources already developed on a PC, the DATA sections in the source may be left intact.
When handling DATA sections as R/W'able data in a built-in system, you need to write the data into
ROM and expand into RAM when booting. Some real-world examples are provided further below.

� Ordinary maps
In general, create all files as relocatable files. Specify addresses in a linker command file.
Example: cc33\sample\ansilib.cm
;Map set
-code 0x0c00000 ; set relative code section start address
-bss 0x0800000 ; set relative bss section start address

-code 0x0080000 {boot.o} ; set code sections to absolute address
 |

In this example, the location of the code in boot.o begins at address 0x80000. The code in all other files
is located at contiguous addresses in the order of the files specified, starting with 0xc00000. All
variables are located starting with address 0x800000 in the order in which they are linked. Absolute
addresses are specified only for one block starting with address 0x80000, where one file of boot.o is
located. You can place multiple files in this block, or specify multiple blocks.
(Reference)
;Map set
-code 0x0080000 ; set relative code section start address
-data 0x0081000 ; set relative data section start address
-bss 0x0000000 ; set relative bss section start address

-code 0x0080100 {test2.o test3.o} ; set code sections to absolute address
-data 0x0081100 {test2.o test3.o} ; set data sections to absolute address
-bss 0x0000200 {test2.o test3.o} ; set bss sections to absolute address

� Method for using the DATA section
The DATA section is a R/W'able variable area with initial values. (For more information on each
section, see "� CODE, DATA, and BSS sections" above.) To use the DATA section, the following three
conditions must be met.
1) The initial values of variables are written into ROM.
2) The data in ROM is expanded into RAM.
3) Program operation is based on the expanded into RAM.

For 2), the data must be transferred with the boot program. For 1) and 3), linking must be performed
by the virtual section function of a linker. This procedure is illustrated using cc33\sample\usection.

Method for specifying a linker command file
Example: Excerpt from usection\usection.cm
-objsym ← Start by entering this specification

 Create a label (section symbol) for transfer by the boot program.
-section BOOT = 0x80000
-section CODE = 0x80100
-section DCOPY ← Label indicating RAM area for data expansion

-code BOOT {boot.o} ; set boot.o to absolute address
-code CODE ; code section start address
-bss 0x0000000 ; bss section start address

-udata DCOPY ← UDATA sections are successively mapped after BSS.

2 WRITING PROGRAMS FOR THE E0C33

E0C33 FAMILY APPLICATION NOTES EPSON 39

UDATA is a temporary section for symbol resolution, with its actual body located after the code
section and stored in ROM. Linking produces the following map.
(Excerpt from usection\usection.map)
Data Section mapping
Address Vaddress Size File ID Attr
00080128 00000004 00000000 boot.o 1 REL ← The actual body is at 0x80128
00080128 00000004 00000004 main.o 1 REL ← Mapped to virtual address 0x4

Write the above specification in the linker command file. For more information on the linker com-
mand -udata, see the linker section, "Virtual and Union (U) Section" in the E0C33 Family C Compiler
Package Manual.

Transfer when booting
As described below, transfer data to RAM using section symbols before executing the program.
Example: Excerpt from usection\boot.s

.code

.word BOOT ; BOOT VECTOR
BOOT:

xld.w %r8,SP_INI
ld.w %sp,%r8 ; set SP
ld.w %r8,GP_INI ; set global pointer

; copy all data section to DCOPY area

xld.w %r12, __START_DEFAULT.DATA ; data start addr
xld.w %r13, __START_DCOPY ; RAM area addr
xld.w %r14, __SIZEOF_DEFAULT.DATA ; copy size (byte)
xcall HCOPY_LOOP

|
|

HCOPY_LOOP:
ld.uh %r4,[%r12]+ ; read half from src addr
ld.h [%r13]+,%r4 ; write half to dest addr
sub %r14,2 ; decrement 2 byte
jrgt HCOPY_LOOP
ret

The -objsym specification in the linker command file creates symbols corresponding to the source
address for transfer, size, and destination address. Use these symbols as you copy.

� Caching the program to internal RAM
When the program resides in external ROM or flash memory, program access requires one to two wait
states. To eliminate wait states and speed up processing, copy the program to internal RAM. This
technique is illustrated below, using cc33\sample\usection as an example.

Method for specifying the linker command file
Example: Excerpt from usection\usection.cm
;Map set

-objsym ← Start by entering this specification.
 Create a label (section symbol) for transfer by the boot program.

-section BOOT = 0x80000
-section CODE = 0x80100
-section DCOPY
-section CCACHE ← Label indicating RAM cache area

-code BOOT {boot.o} ; set boot.o to absolute address
-code CODE ; code section start address
-bss 0x0000000 ; bss section start address

-udata DCOPY
-ucode CCACHE {main.o} ← CCACHE is located after DCOPY in the BSS section.

main.o is placed in CCACHE. Specifying multiple files here results in sharing of the CCACHE area.
(The same RAM area may be used as a time-multiplexed program cache.)

2 WRITING PROGRAMS FOR THE E0C33

40 EPSON E0C33 FAMILY APPLICATION NOTES

Linking produces the following map.
(From usection\usection.map)
Code Section mapping
Address Vaddress Size File ID Attr
00080000 -------- 00000048 boot.o 0 REL
00080100 00000008 00000028 main.o 0 REL

Data Section mapping
Address Vaddress Size File ID Attr
00080128 00000004 00000000 boot.o 1 REL
00080128 00000004 00000004 main.o 1 REL

Bss Section mapping
Address Vaddress Size File ID Attr
00000000 -------- 00000000 boot.o 2 REL
00000000 -------- 00000004 main.o 2 REL

Although the actual body of main.o is located at 0x80100, it is linked for execution at 0x8. Write the
following specification in the linker command file. For more on linker command -udata, see the linker
section, "Virtual and Union (U) Section" in the E0C33 Family C Compiler Package Manual.

Transfer when booting
Transfer data to RAM using the following section symbols before executing the program. In cases
involving sharing by multiple files, transfer the object in the same way just before execution.
Example: usection\boot.s
; boot.s 1997.3.29
; boot program for usection function

#define SP_INI 0x0800 ; sp is in end of 2KB internal RAM
#define GP_INI 0x0000 ; global pointer %r8 is 0x0

; boot up program set SP and %r8(global pointer)

.code

.word BOOT ; BOOT VECTOR
BOOT:

xld.w %r8,SP_INI
ld.w %sp,%r8 ; set SP
ld.w %r8,GP_INI ; set global pointer

; copy all data section to DCOPY area

xld.w %r12, __START_DEFAULT.DATA ; data start addr
xld.w %r13, __START_DCOPY ; RAM area addr
xld.w %r14, __SIZEOF_DEFAULT.DATA ; copy size (byte)
xcall HCOPY_LOOP

; copy main.o code to CCACHE area

xld.w %r12, __START_main_code ; code start addr
xld.w %r13, __START_CCACHE ; RAM area addr
xld.w %r14, __SIZEOF_main_code ; copy size (byte)
xcall HCOPY_LOOP ← Transfer using section symbol

; start main

xcall main ; goto main ← Execute main.o (after jumping to internal RAM)
xjp BOOT ; infinity loop

; copy %r12 addr to %r13 addr with %r14 size

HCOPY_LOOP:
ld.uh %r4,[%r12]+ ; read half from src addr
ld.h [%r13]+,%r4 ; write half to dest addr
sub %r14,2 ; decrement 2 byte
jrgt HCOPY_LOOP
ret

3 PROGRAMMING THE E0C33 PERIPHERAL FUNCTIONS

E0C33 FAMILY APPLICATION NOTES EPSON 41

3 PROGRAMMING THE E0C33 PERIPHERAL FUNCTIONS
This chapter describes some basic methods for programming the peripheral functions of the E0C33 chip.

Note: Unless otherwise noted, the peripheral functions and following example code apply to the
E0C33208. Functionality or control register addresses may differ, depending on the specific
microcomputer.

3.1 Setting Up BCU
The following code demonstrates how to set up SRAM (same as for ROM and flash) and DRAM. This is a
BCU setup example in cases where the E0C33208, both core and bus, operates at 25 MHz and has SRAM
and DRAM connected to areas 10 and 13, respectively.

BCU setup example

void setbcu()
 {

volatile short *ps0;
volatile char *pc0;

// set bcu

ps0 = (short *)0x48126; // area 9-10 1 wait
*ps0 = 0x01;

ps0 = (short *)0x48122; // area 13 dram (1)
*ps0 = 0x82; // area 14 2 wait

pc0 = (char *)0x4014d; // pre-scaler fpr 8bit TM0 (2)
*pc0 = 0x09; // 1/4
pc0 = (char *)0x40161; // 8bit TM0 reload
*pc0 = 0x7e; // 20us in 25MHz
pc0 = (char *)0x40160; // 8bit TM0
*pc0 = 0x3; // start

ps0 = (short *)0x4812e; (3)
*ps0 = 0x06e0; // fast page, col=9bit, refresh enable, CBR,
ps0 = (short *)0x48130;
*ps0 = 0x208; // ras1/cas2, precharge1, cefunc=01

 }

� Settings for SRAM, ROM, and flash
Settings for SRAM, ROM, and flash can be made for each area below using BCU registers at addresses
0x48120 to 0x4812B.
Setup areas

18–17, 16–15, 14–13, 12–11, 10–9, 8–7, 6, 5–4
Setup contents
a) Device size: 8 or 16 bits

(Area 6 switches between 8 and 16 bits, depending on address.)
b) Number of wait cycles: 0 to 7 cycles

(During writes, wait cycles of 1 or more are assumed, even if you set 0 here.)
c) Output disable delay time: 0.5 to 3.5 cycles

(These wait cycles are inserted when accessing locations across area boundaries.)

In this example, areas 9–10 are set for device size = 16 bits, wait cycle = 1, and output disable delay
time = 0.5 cycles.
ps0 = (short *)0x48126; // area 9-10 1 wait
*ps0 = 0x01;

While this presents no problems when two x8 type SRAMs are used for the 16-bit width, the external
interface method (0x4812E•D3) must be set to #BSL in 1 when using x16 type SRAM. Two types
cannot coexist. This is detailed in "Connecting x16 type SRAM" in Chapter 4, "The Basic E0C33 Chip
Board Circuit".

3 PROGRAMMING THE E0C33 PERIPHERAL FUNCTIONS

42 EPSON E0C33 FAMILY APPLICATION NOTES

� DRAM settings
Areas 14, 13, 8, and 7 can be set for DRAM.

(1) Selecting DRAM
Set the DRAM select bit to 1 for the area using DRAM. In this example, area 13 is set as 16-bit wide
DRAM. Area 14 can be used as 2-wait cycle, 16-bit wide SRAM, etc.

ps0 = (short *)0x48122; // area 13 dram
*ps0 = 0x82; // area 14 2 wait

(2) DRAM refresh settings using 8-bit timer 0
In this example, the clock input prescaler for 8-bit timer 0 is set to 1/4 mode. As a result, 8-bit
timer 0 is clocked with 25 MHz divided by 4. Additionally, 0x7e is set as the timer reload value.
Because the timer input clock is thus divided by 125 (0x7e + 1), the refresh cycle is 20 µs, equal to
the original operating clock (25 MHz) divided by 500.

pc0 = (char *)0x4014d; // pre-scaler fpr 8bit TM0
*pc0 = 0x09; // 1/4
pc0 = (char *)0x40161; // 8bit TM0 reload
*pc0 = 0x7e; // 20us in 25MHz
pc0 = (char *)0x40160; // 8bit TM0
*pc0 = 0x3; // start

(3) DRAM parameter settings
Finally, perform detailed DRAM setup. Note that the following settings are reflected in all con-
nected DRAMs, even when DRAMs are connected to multiple areas.
At address 0x4812E, you can select
1. EDO/fast page mode
2. Column size 8 (8–11 bits)
3. Refresh enable/disable
4. Self/CBR refresh
5. Refresh RPC delay (1, 2)
6. Refresh RAS pulse width (2–5)

Additionally, at address 0x48130, select
7. Successive RAS mode
8. Number of RAS precharges
9. Number of CAS cycles
10. Number of RAS cycles

In this example, settings are made for fast page mode, CBR refresh, RAS = 1 cycle, CAS = 2 cycles,
and precharge = 1 cycle.

ps0 = (short *)0x4812e;
*ps0 = 0x06e0; // fast page, col=9bit, refresh enable, CBR,
ps0 = (short *)0x48130;
*ps0 = 0x208; // ras1/cas2, precharge1, cefunc=01

In addition, after powering on, DRAM may require some finite time or dummy cycles before
becoming usable. Code needs to account for these requirements, in addition to the preceding
example.

3 PROGRAMMING THE E0C33 PERIPHERAL FUNCTIONS

E0C33 FAMILY APPLICATION NOTES EPSON 43

� BCLK, CEFUNC
The control bits for setting up BCU for special purposes are available at addresses 0x4812E and
0x48130. Two frequently-used control bits are described below.

BCLK (0x4812E•DF): BCLK output enable
Controls the clock output from the BCLK pin. By default, this is set at output (0). But since this output
consumes several mA of current, set BCLK high (1), if not required.

To output, select from among PLL output clock, OSC3 clock, BCU clock, or CPU clock for the BCLK
output clock, using BCLKSEL[1:0] (0x4813A•D[1:0]).

BCLKSEL1
1
1
0
0

BCLKSEL0
1
0
1
0

Output clock
PLL_CLK (PLL output clock)
OSC3_CLK (OSC3 oscillation clock)
BCU_CLK (BCU operating clock)
CPU_CLK (CPU operating clock)

High-speed (OSC3)
oscillation circuit

CLKCHGCLKDT[1:0]
BCLKSEL[1:0]

PLLS[1:0] pins #X2SPD pin
To CPU

OSC3_CLK

OSC3_CLK (PLL: off)

PLL_CLK (PLL: x2 mode)

PLL_CLK (PLL: x4 mode)

A

CPU_CLK (CLKDT = 1/1)

CPU_CLK (CLKDT = 1/2)

CPU_CLK (CLKDT = 1/4)

CPU_CLK (CLKDT = 1/8)

CPU_CLK

BCU_CLK(#X2SPD=H, x1 speed mode)

BCU_CLK(#X2SPD=L, x2 speed mode)

(When OSC3 is selected for the CPU system clock)

∗1

∗1 Internal RAM access or internal peripheral circuit access with A1X1MD = 1
∗2 External access or internal peripheral circuit access with A1X1MD = 0
 (Internal peripheral circuit access in x2 speed mode can be set to two or four
 CPU clock cycles using A1X1MD (0x4813A, D3).)

∗1

∗1

∗1

∗2 ∗1 ∗2

∗2 ∗1 ∗2

PLL_CLK

A
CPU_CLK BCU_CLK

Bus clock

PLL

 Low-speed (OSC1)
oscillation circuit

CLG
BCU

1/1 or 1/2
1/1~1/8

BCLK pin

Clock system (E0C33208)

3 PROGRAMMING THE E0C33 PERIPHERAL FUNCTIONS

44 EPSON E0C33 FAMILY APPLICATION NOTES

CEFUNC[1:0] (0x48130•D[A:9]): #CE pin function selection
Because the E0C33208 has only 7 #CE pins, it is unable use the entire address space at the same time.
Instead, it allows selection of the memory area to be used by setting CEFUNC.

Pin
#CE4
#CE5
#CE6
#CE7/#RAS0
#CE8/#RAS1
#CE9
#CE10EX

CEFUNC = "00"
#CE4
#CE5
#CE6
#CE7/#RAS0
#CE8/#RAS1
#CE9
#CE10EX

CEFUNC = "01"
#CE11
#CE15
#CE6
#CE13/#RAS2
#CE14/#RAS3
#CE17
#CE10EX

CEFUNC = "1x"
#CE11+#CE12
#CE15+#CE16
#CE7+#CE8
#CE13/#RAS2
#CE14/#RAS3
#CE17+#CE18
#CE9+#CE10EX

(Default: CEFUNC = "00")

Internal RAM

Internal I/O

(Mirror of internal I/O)

(Mirror of internal I/O)

(Reserved)
For CPU core or debug mode

(Reserved)
For middleware use

0x0BFFFFF

0x0800000
0x07FFFFF

0x0600000
0x05FFFFF

0x0400000
0x03FFFFF
0x0380000
0x037FFFF
0x0300000
0x02FFFFF

0x0200000
0x01FFFFF

0x0100000
0x00FFFFF

0x0080000
0x007FFFF

0x0060000
0x005FFFF
0x0050000
0x004FFFF
0x0040000
0x003FFFF
0x0030000
0x002FFFF

0x0000000

Area
Area 9
 SRAM type
 Burst ROM type
 8 or 16 bits
Area 8
 SRAM type
 DRAM type
 8 or 16 bits
Area 7
 SRAM type
 DRAM type
 8 or 16 bits
Area 6
 SRAM type

Area 5
 SRAM type
 8 or 16 bits

Area 4
 SRAM type
 8 or 16 bits

Area 3
 16 bits
 Fixed at 1 cycle

Area 2
 16 bits
 Fixed at 3 cycles

Area 1
 8, 16 bits
 2 or 4 cycles

Area 0
 32 bits
 Fixed at 1 cycle

Address

External memory (1MB)

External memory (1MB)

External memory (2MB)

External memory (2MB)

External memory (4MB)

External memory (4MB)

External I/O (8-bit device)

External I/O (16-bit device)

0xFFFFFFF
0xD000000
0xCFFFFFF
0xC000000
0xBFFFFFF
0x9000000
0x8FFFFFF
0x8000000
0x7FFFFFF
0x7000000
0x6FFFFFF
0x6000000
0x5FFFFFF
0x5000000
0x4FFFFFF
0x4000000
0x3FFFFFF

0x3000000
0x2FFFFFF

0x2000000
0x1FFFFFF

0x1800000
0x17FFFFF

0x1000000
0x0FFFFFF

0x0C00000

Area
Area 18
 SRAM type
 8 or 16 bits

Area 17
 SRAM type
 8 or 16 bits

Area 16
 SRAM type
 8 or 16 bits

Area 15
 SRAM type
 8 or 16 bits

Area 14
 SRAM type
 DRAM type
 8 or 16 bits
Area 13
 SRAM type
 DRAM type
 8 or 16 bits
Area 12
 SRAM type
 8 or 16 bits

Area 11
 SRAM type
 8 or 16 bits

Area 10
 SRAM type
 Burst ROM type
 8 or 16 bits

Address

External memory (8MB)

External memory (8MB)

External memory (16MB)

External memory (16MB)

External memory (16MB)

External memory (16MB)

External memory (16MB)

External memory (16MB)

E0C33 address space

3 PROGRAMMING THE E0C33 PERIPHERAL FUNCTIONS

E0C33 FAMILY APPLICATION NOTES EPSON 45

0x0FFFFFF

0x0C00000
0x0BFFFFF

0x0800000
0x07FFFFF

0x0600000
0x05FFFFF

0x0400000
0x03FFFFF
0x0380000
0x037FFFF
0x0300000
0x02FFFFF

0x0200000
0x01FFFFF

0x0100000

Area
Area 10 (#CE10)
 SRAM type
 Burst ROM type
 8 or 16 bits
Area 9 (#CE9)
 SRAM type
 Burst ROM type
 8 or 16 bits
Area 8 (#CE8/#RAS1)
 SRAM type
 DRAM type
 8 or 16 bits
Area 7 (#CE7/#RAS0)
 SRAM type
 DRAM type
 8 or 16 bits
Area 6 (#CE6)
 SRAM type

Area 5 (#CE5)
 SRAM type
 8 or 16 bits

Area 4 (#CE4)
 SRAM type
 8 or 16 bits

Area
Area 17 (#CE17)
 SRAM type
 8 or 16 bits

Area 15 (#CE15)
 SRAM type
 8 or 16 bits

Area 14 (#CE14/#RAS3)
 SRAM type
 DRAM type
 8 or 16 bits
Area 13 (#CE13/#RAS2)
 SRAM type
 DRAM type
 8 or 16 bits
Area 11 (#CE11)
 SRAM type
 8 or 16 bits

Area 10 (#CE10)
 SRAM type
 Burst ROM type
 8 or 16 bits
Area 6 (#CE6)
 SRAM type

Address

External memory 1 (1MB)

External memory 2 (1MB)

External memory 3 (2MB)

External memory 4 (2MB)

External memory 5 (4MB)

External memory 6 (4MB)

External I/O (8-bit device)

External I/O (16-bit device)

0xBFFFFFF
0x9000000
0x8FFFFFF
0x8000000
0x5FFFFFF
0x5000000
0x4FFFFFF
0x4000000
0x3FFFFFF

0x3000000
0x2FFFFFF

0x2000000
0x17FFFFF

0x1000000
0x0FFFFFF

0x0C00000
0x03FFFFF
0x0380000
0x037FFFF
0x0300000

Address

External memory 3 (16MB)

External memory 4 (16MB)

External memory 5 (16MB)

External memory 6 (16MB)

(Mirror of External memory 6)

(Mirror of External memory 5)

External I/O (8-bit device)

External I/O (16-bit device)

External memory 1 (4MB)

External memory 2 (8MB)

CEFUNC = "00" CEFUNC = "01"

Area
Area 17+18 (#CE17+18)
 SRAM type
 8 or 16 bits

Areas 15–16 (#CE15+16)
 SRAM type
 8 or 16 bits

Area 14 (#CE14/#RAS3)
 SRAM type
 DRAM type
 8 or 16 bits
Area 13 (#CE13/#RAS2)
 SRAM type
 DRAM type
 8 or 16 bits
Areas 11–12 (#CE11+12)
 SRAM type
 8 or 16 bits

Areas 9–10 (#CE9+10EX)
 SRAM type
 Burst ROM type
 8 or 16 bits
Areas 7–8 (#CE7+8)
 SRAM type
 8 or 16 bits

0xFFFFFFF
0xD000000
0xCFFFFFF
0xC000000
0xBFFFFFF
0x9000000
0x8FFFFFF
0x8000000
0x7FFFFFF
0x7000000
0x6FFFFFF
0x6000000
0x5FFFFFF
0x5000000
0x4FFFFFF
0x4000000
0x3FFFFFF

0x3000000
0x2FFFFFF

0x2000000
0x1FFFFFF

0x1000000
0x0FFFFFF

0x0800000
0x07FFFFF

0x0400000

Address

External memory 4 (16MB)

External memory 5 (16MB)

External memory 2 (8MB)

External memory 3 (16MB)

External memory 1 (4MB)

CEFUNC = "10" or "11"

External memory 7 (16MB)

External memory 7' (16MB)

(Mirror of External memory 7')

(Mirror of External memory 7)

External memory 6 (16MB)

External memory 6' (16MB)

(Mirror of External memory 6')

(Mirror of External memory 6)

Selection of external memory area

3 PROGRAMMING THE E0C33 PERIPHERAL FUNCTIONS

46 EPSON E0C33 FAMILY APPLICATION NOTES

3.2 Setting Up the 8-bit Timer
In general, four settings are required for peripheral functions.

1. Prescaler setting
The operating clock for each peripheral function is always frequency-divided by the prescaler before
being fed into the peripheral function.

2. Setting of the peripheral function itself
Each peripheral function has registers to determine operating mode and to start or stop it.

3. Interrupt controller setting (when using interrupts)
Interrupt requests generated by each peripheral function are always fed into the interrupt controller
before being sent to the CPU core.

4. External pin setting (when using external pins)
By default, external pins are set for general-purpose I/O ports or input ports. Before external pins can
be used for peripheral functions, their functionality must be selected by setting up registers.

The following section describes a simple interrupt control program based on an 8-bit timer, using the
sample from sample\icdtrc\ of cc33 ver.2.

� ICD33 trace auxiliary interrupt program
This sample is an code example for reinforcing the ICD33 trace function. The ICD33 trace function
displays the PC value by analyzing program flow from the PC value (as a starting point such as time
at which the program begins running) and the debugger's disassembly information. However, the PC
value starting point is not always known, especially in trace overwrite mode. Thus, this program
periodically generates an interrupt using the 8-bit timer to confirm the PC value (since the absolute
value of PC is output when executing reti), allowing continuation of PC analysis by ICD33 using that
PC value as a starting point.

Vector section

.code

.word BOOT ; boot,rest VECTOR

.word RESERVED ; reserved 4

.word RESERVED ; reserved 8

.word RESERVED ; reserved 12

.word EXP_DIV0 ; divided by 0 exception

.word RESERVED ; reserved 20

.word EXP_UNADDR ; address un-aligned exception

.word NMI ; nmi

.word RESERVED ; reserved 32

.word RESERVED ; reserved 36

.word RESERVED ; reserved 40

.word RESERVED ; reserved 44

.word SOFT_INT ; software interrupt 0

.word SOFT_INT ; software interrupt 1

.word SOFT_INT ; software interrupt 2

.word SOFT_INT ; software interrupt 3

.word HARD_INT ; hardware interrupt 0

.word HARD_INT ; hardware interrupt 1
|

.word HARD_INT ; hardware interrupt 35

.word TIME_INT ; hardware interrupt 36 (1)
;set 8 bit timer ch0 interrupt vector

.word HARD_INT ; hardware interrupt 37

.word HARD_INT ; hardware interrupt 38

(1) Vector table setting
Register the interrupt routine in the vector table.

.word HARD_INT ; hardware interrupt 35

.word TIME_INT ; hardware interrupt 36
;set 8 bit timer ch0 interrupt vector

.word HARD_INT ; hardware interrupt 37

3 PROGRAMMING THE E0C33 PERIPHERAL FUNCTIONS

E0C33 FAMILY APPLICATION NOTES EPSON 47

Initialization and interrupt service routine

.global INIT_8TIMER

INIT_8TIMER:
pushn %r1

;psr set
ld.w %r0,0x10 (1)
ld.w %psr,%r0 ;IE enable

;8bit timer 0 set
xld.w %r0,0x40146 (2)
xld.w %r1,0x00
ld.b [%r0],%r1 ;8timer0 clock division enable

xld.w %r0,0x40269 (4)
xld.w %r1,0x03
ld.b [%r0],%r1 ;8timer0 interrupt priority level 3

xld.w %r0,0x4014d (2)
xld.w %r1,0x0f
ld.b [%r0],%r1 ;8timer0 clock division ratio is 1/256

xld.w %r0,0x40275 (4)
xld.w %r1,0x01
ld.b [%r0],%r1 ;8timer0 interrupt enable

xld.w %r0,0x40285 (4)
xld.w %r1,0x01
ld.b [%r0],%r1 ;8timer0 interrupt flag reset

xld.w %r0,0x40160 (3)
xld.w %r1,0x0
ld.b [%r0]+,%r1 ;clock out off,stop
xld.w %r1,0x75 ;interrupt every 30000 clocks
ld.b [%r0]+,%r1 ;set reload data

xld.w %r0,0x40160 (5)
xld.w %r1,0x1
ld.b [%r0],%r1 ;clock out off,preset,start

popn %r1
ret

.global TIME_INT

TIME_INT: (6)
pushn %r1
xld.w %r1,0x40285
xld.w %r0,0x01
ld.b [%r1],%r0 ;8timer0 interrupt flag reset
popn %r1
reti

For the sake of explanation, the sequence in which the above routine is processed differs from the
order in which explanations are provided below.

(1) Enabling interrupts
Enable the IE flag (to enable interrupts). (This processing should be performed after (5).)

ld.w %r0,0x10
ld.w %psr,%r0 ; IE enable

(2) Setting the prescaler
Set the prescaler's divided clock for the 8-bit timer operating clock.

xld.w %r0,0x40146
xld.w %r1,0x00
ld.b [%r0],%r1 ;8timer0 clock division enable

Set the prescaler's division ratio to 1/256.
xld.w %r0,0x4014d
xld.w %r1,0x0f
ld.b [%r0],%r1 ;8timer0 clock division ratio is 1/256

3 PROGRAMMING THE E0C33 PERIPHERAL FUNCTIONS

48 EPSON E0C33 FAMILY APPLICATION NOTES

(3) Setting the 8-bit timer
The reload data 0x75 is used to generate an interrupt every 30,208 clock periods of the prescaler's
input clock (by default, OSC3 or PLL output).
(0x75 +1) × 256 = 30,208 clock periods

With the CPU core operating at 20 MHz, an interrupt is generated every 1.5 ms.
xld.w %r0,0x40160
xld.w %r1,0x0
ld.b [%r0]+,%r1 ;clock out off,stop
xld.w %r1,0x75 ;interrupt every 30000 clocks
ld.b [%r0]+,%r1 ;set reload data

(4) Setting the interrupt controller
Set the priority level of the 8-bit timer interrupt to 3.

xld.w %r0,0x40269
xld.w %r1,0x03
ld.b [%r0],%r1 ;8timer0 interrupt priority level 3

Reset the interrupt factor flag.
xld.w %r0,0x40285
xld.w %r1,0x01
ld.b [%r0],%r1 ;8timer0 interrupt flag reset

Enable the 8-bit timer interrupt.
xld.w %r0,0x40275
xld.w %r1,0x01
ld.b [%r0],%r1 ;8timer0 interrupt enable

(5) Start the 8-bit timer.
xld.w %r0,0x40160
xld.w %r1,0x1
ld.b [%r0],%r1 ;clock out off,preset,start

(6) Processing when interrupt is generated
Shown below is the simplest interrupt routine, which saves R1 only and clears the interrupt factor
flag.
TIME_INT:

pushn %r1
xld.w %r1,0x40285
xld.w %r0,0x01
ld.b [%r1],%r0 ;8timer0 interrupt flag reset
popn %r1
reti

The interrupt factor flag is not automatically cleared by an interrupt. It must be cleared with an
interrupt routine to avoid generating the same interrupt again.

3 PROGRAMMING THE E0C33 PERIPHERAL FUNCTIONS

E0C33 FAMILY APPLICATION NOTES EPSON 49

3.3 Setting Up 16-bit Timer
Here, we will explain how to control 16-bit timer interrupts and PWM output, using the source code for
melody33 middleware as an example. Note that the E0C33A104's 16-bit timer significantly differs in
functionality from that of the E0C33208.

� Interrupt settings
The following describes the compare B interrupt of 16-bit timer 4.

Vector section

#define INT30 mdyInt // mdy interrupt routine (1)

.code

.word RESET

.word RESERVED

.word RESERVED

.word RESERVED

.word ZERODIV

.word RESERVED

.word ADDRERR

.word NMI

.word RESERVED

.word RESERVED

.word RESERVED

.word RESERVED

.word SOFTINT0

.word SOFTINT1

.word SOFTINT2

.word SOFTINT3

.word INT0

.word INT1

.word INT2
|

.word INT28

.word INT29

.word INT30 (1)

.word INT31

.word INT32

.word INT33

(1) Setting the interrupt vector
Register the interrupt routine mdyInt as the vector for INT30 (compare B interrupt of 16-bit timer 4).

Interrupt disable and PSR save/restore routine

.lcomm MDY_PSR 0x4

.global mdyIntOff
mdyIntOff: (1)

xld.w %r4,MDY_PSR
ld.w %r5,%psr // save %psr and IE disable
ld.w [%r4],%r5
ld.w %r4,0
ld.w %psr,%r4
ret
.global mdyIntOn

mdyIntOn: (2)
xld.w %r4,MDY_PSR
ld.w %r5,[%r4]
ld.w %psr,%r5 // restore %psr
ret

(1) Disabling interrupts
Save the PSR contents and set the IE bit to 0 to disable interrupts.

(2) Enabling interrupts
Restore the contents of PSR saved in (1).

These settings are called from C.

3 PROGRAMMING THE E0C33 PERIPHERAL FUNCTIONS

50 EPSON E0C33 FAMILY APPLICATION NOTES

16-bit timer setup section

//***
// void mdyTmOpen(unsigned short freq)
// start timer 4, underflow interrupt with freq count
// prescaler is 1/1024
//***

void mdyTmOpen(unsigned short freq)
 {

unsigned char ucTmp;

// interrupt disable
mdyIntOff(); (1)

// set TM4 prescaler to 1/1024, 0b00001110

*(volatile unsigned char *)(0x4014b) = 0xe; (2)

// set TM4 reload and compare data

*(volatile unsigned short *)(0x481a2) = freq; //set compare b (3)
*(volatile unsigned short *)(0x481a4) = 0x0; //dummy data for up counter

// set TM4 control register
// fine mode off,compare buf off,reverse off,internal clock,clock out off,preset,stop
// 0x401a6 0010,

*(volatile unsigned char *)(0x481a6) = 0x0;

// set TM4 match compare b come to cpu interrupt

*(volatile unsigned char *)(0x40291) &= 0xBf; //set timer 4 enable (4)

// set TM4,interrupt priority level 3

ucTmp = *(volatile unsigned char *)(0x40268);
ucTmp = ucTmp & 0xf0;
ucTmp = ucTmp | 0x3;
*(volatile unsigned char *)(0x40268) = ucTmp;

// clear TM4 interrupt factor flags (write 1, and reset)

*(volatile unsigned char *)(0x40284) &= 0x0C;

// set TM4 underflow interrupt enable

*(volatile unsigned char *)(0x40274) |= 0x04; //set timer 4 enable

// start TM4 counter

*(volatile unsigned char *)(0x481a6) |= 0x01; (5)

// interrupt enable
mdyIntOn(); (6)

 }

(1) Disabling interrupts
Disable interrupts as a precautionary measure.
// interrupt disable

mdyIntOff();

(2) Setting the prescaler
A divide-by-1024 clock from the prescaler is fed into timer 4 as its input clock.
// set TM4 prescaler to 1/1024, 0b00001110

*(volatile unsigned char *)(0x4014b) = 0xe;

3 PROGRAMMING THE E0C33 PERIPHERAL FUNCTIONS

E0C33 FAMILY APPLICATION NOTES EPSON 51

(3) Timer 4 cycle (compare B), compare A, and other settings
The compare B interrupt cycle of timer 4 is set to (freq + 1) × 1024 clock periods by the following
settings:
// set TM4 reload and compare data

*(volatile unsigned short *)(0x481a2) = freq; //set compare b
*(volatile unsigned short *)(0x481a4) = 0x0; //dummy data for up counter

Set other parameters for timer 4.
// set TM4 control register
// fine mode off,compare buf off,reverse off,internal clock,clock out off, ...
// 0x401a6 0010,

*(volatile unsigned char *)(0x481a6) = 0x0;

(4) Setting the interrupt controller
Set the interrupt controller so that the compare B interrupt of timer 4 is forwarded to the CPU as
an immediate interrupt, not as an IDMA start request.
// set TM4 match compare b come to cpu interrupt

*(volatile unsigned char *)(0x40291) &= 0xBf; //set timer 4 enable

Set the interrupt priority to 3.
// set TM4,interrupt priority level 3

ucTmp = *(volatile unsigned char *)(0x40268);
ucTmp = ucTmp & 0xf0;
ucTmp = ucTmp | 0x3;
*(volatile unsigned char *)(0x40268) = ucTmp;

As a precaution, clear the interrupt factor flag.
// clear TM4 interrupt factor flags (write 1, and reset)

*(volatile unsigned char *)(0x40284) &= 0x0C;

Enable the compare B interrupt.
// set TM4 underflow interrupt enable

*(volatile unsigned char *)(0x40274) |= 0x04; //set timer 4 enable

(5) Timer start
Let timer 4 begin counting.
// start TM4 counter

*(volatile unsigned char *)(0x481a6) |= 0x01;

(6) Enabling interrupts
Reenable interrupts.
// interrupt enable

mdyIntOn();

Note that a separate interrupt routine (mdyInt) needs to be written. Make sure that the interrupt
factor flag is always cleared in the interrupt routine.
Example for clearing:
// clear TM4 interrupt factor flags (write H and reset)

*(volatile unsigned char *)(0x40284) &= 0x0C;

This prevents the re-occurrence of the same interrupt when interrupts are enabled.

3 PROGRAMMING THE E0C33 PERIPHERAL FUNCTIONS

52 EPSON E0C33 FAMILY APPLICATION NOTES

� PWM settings
The following section describes how to process PWM. The source code for melody33 middleware is
used as an example.

PWM initial settings

//***
// void mdyTm0Set (unsigned short count, unsigned short compare)
//***

static void mdyTm0Set (unsigned short count, unsigned short compare, int reverse)
 {
// interrupt disable

mdyIntOff(); (1)

// set P22 port to TM0

*(volatile char *)(0x402d8) |= 0x04; (2)

// set TM0 prescaler to 1/16, 0b0001011

*(volatile unsigned char *)(0x40147) = 0x0b; (3)

// set TM0 reload and compare data

*(volatile unsigned short *)(0x48182) = count; //compare B (4)
*(volatile unsigned short *)(0x48180) = compare; //compare A

// set TM0 control register
// fine mode off, compare buf, reverse, internal clock, clock out on, preset, stop
// internal clock, clock out on, preset, stop
// 0x4018e 0b00010100 or 0b00110100

if (reverse==1){
*(volatile unsigned char *)(0x48186) = 0x34;

}
else{

*(volatile unsigned char *)(0x48186) = 0x24;
}

// reset TM0 counter

*(volatile unsigned char *)(0x48186) |= 0x02; (5)

// interrupt enable
mdyIntOn(); (6)

 }

(1) Disabling interrupts
Disable interrupts as a precautionary measure.
// interrupt disable

mdyIntOff();

(2) Selecting port functions
Because the ports used for PWM (16-bit timer) output are set for general-purpose input/output
ports by default, change their function to PWM output.
// set P22 port to TM0

*(volatile char *)(0x402d8) |= 0x04;

(3) Setting the prescaler
A divide-by-16 clock from the prescaler is fed into timer 0 as its input clock.
// set TM0 prescaler to 1/16, 0b0001011

*(volatile unsigned char *)(0x40147) = 0x0b;

(4) Setting timer 0
Start by setting up compare A and compare B registers. Compare B + 1 counts comprise one cycle.
In normal mode, output starts from 0; in inverse mode, output starts from 1. Compare A + 1 counts
select output between 0 and 1.

3 PROGRAMMING THE E0C33 PERIPHERAL FUNCTIONS

E0C33 FAMILY APPLICATION NOTES EPSON 53

For example, when in normal mode compare B = 5 and compare A = 0, the output is 0 in the first
clock period and 1 in the remaining other four clock periods. This is repeated.
// set TM0 reload and compare data

*(volatile unsigned short *)(0x48182) = count; //compare B
*(volatile unsigned short *)(0x48180) = compare; //compare A

Set other parameters for timer 0.
// set TM0 control register
// fine mode off, compare buf, reverse, internal clock, clock out on, preset, stop
// internal clock, clock out on, preset, stop
// 0x4018e 0b00010100 or 0b00110100

if (reverse==1){
*(volatile unsigned char *)(0x48186) = 0x34;

}
else{

*(volatile unsigned char *)(0x48186) = 0x24;
}

(5) Reset the counter for timer 0
Reset the counter for timer 0 to 0.
// reset TM0 counter

*(volatile unsigned char *)(0x48186) |= 0x02;

(6) Enabling interrupts
Finish by reenabling interrupts.
// interrupt enable

mdyIntOn();

PWM start section

//***
// void mdyTm0Start ()
//***

static void mdyTm0Start ()
 {
// start TM0 counter

*(volatile unsigned char *)(0x48186) |= 0x03;
 }

This function starts PWM.

PWM change section

//***
// void mdyTm0Change (unsigned short count, unsigned short compare)
//***

static void mdyTm0Change (unsigned short count, unsigned short compare)
 {
// set TM0 reload and compare data

*(volatile unsigned short *)(0x48182) = count; // compare B
*(volatile unsigned short *)(0x48180) = compare; // compare A

 }

This function changes the cycles and duty of PWM waveform. In setting (4) of the mdyTm0set()
function, the compare buffer (0x48186•D5 = 1) is enabled to allow compare A/B data to be written to
the buffer asynchronously with the counter. The data once stored in the buffer is set in the compare
A/B registers when the counter returns a 0 upon matching compare B. If the entire compare buffer is
not being used, a single occurrence of compare A matching may be undetected unless synchronized
since compare A/B data take effect when written.

3 PROGRAMMING THE E0C33 PERIPHERAL FUNCTIONS

54 EPSON E0C33 FAMILY APPLICATION NOTES

3.4 Setting Up Serial Interface
This section describes how to control asynchronous communications via a serial interface, using the
source code for MON33 middleware as an example.

� Asynchronous communications using an external clock
The following example is an assembly source excerpted from mon33\src\m3s_sci.s. In this example,
communications are controlled by polling rather than by using interrupts.

Initialize routine

#ifdef SIO0
#define STDR 0x000401e0 ;transmit data register(ch0)
#define SRDR 0x000401e1 ;receive data register(ch0)
#define SSR 0x000401e2 ;serial status register(ch0)
#define SCR 0x000401e3 ;serial control register(ch0)
#define SIR 0x000401e4 ;IrDA control register(ch0)
#define PIO_SET 0x07 ;port function register

#else
#define STDR 0x000401e5 ;transmit data register(ch1)
#define SRDR 0x000401e6 ;receive data register(ch1)
#define SSR 0x000401e7 ;serial status register(ch1)
#define SCR 0x000401e8 ;serial control register(ch1)
#define SIR 0x000401e9 ;IrDA control register(ch1)
#define PIO_SET 0x70 ;port function register

#endif

#define SIR_SET 0x0 ;SIR set(1/16 mode)
#define SCR_SET 0x7 ;SCR set(#SCLK input 1.843MHz 115200bps)
#define SCR_EN 0xc0 ;SCR enable
#define PIO 0x000402d0 ;IO port (P port) register

.code
;**
;
; void m_io_init()
; serial port initial function
;
;**

.global m_io_init
m_io_init:

ld.w %r0,SIR_SET ;1/16 mode (1)
xld.b [SIR],%r0 ;SIR set
ld.w %r0,SCR_SET (2)
xld.b [SCR],%r0 ;SCR set(#SCLK input 1.843MHz)
xld.w %r0,PIO_SET (3)
xld.b [PIO],%r0 ;IO port set
xld.w %r0,SCR_EN|SCR_SET (4)
xld.b [SCR],%r0 ;SCR set
ret

(1) Selecting the division ratio
Set the division ratio of the sampling clock to 1/16.

ld.w %r0,SIR_SET ;1/16 mode
xld.b [SIR],%r0 ;SIR set

(2) Setting transfer mode
Set transfer mode to asynchronous 8-bit mode, with one stop bit, no parity, and external clock for
SCLK. For MON33 communications, a 1.843 MHz external clock is fed from DMT33MON (115,200 bps).

ld.w %r0,SCR_SET
xld.b [SCR],%r0 ;SCR set(#SCLK input 1.843MHz)

(3) Selecting input/output pin functions
Set the pins shared with I/O ports for serial interface mode.

xld.w %r0,PIO_SET
xld.b [PIO],%r0 ;IO port set

(4) Enabling transmit/receive
Enable transmit/receive operations.

xld.w %r0,SCR_EN|SCR_SET
xld.b [SCR],%r0 ;SCR set

3 PROGRAMMING THE E0C33 PERIPHERAL FUNCTIONS

E0C33 FAMILY APPLICATION NOTES EPSON 55

Transmit routine

;**
;
; void m_snd_1byte(sdata)
; 1 byte send function
; IN : uchar sdata (R12) send data
;
;**

.global m_snd_1byte
m_snd_1byte:

pushn %r3 ;save r3-r0
snd000:

xbtst [SSR],0x1 ;TDBE1(bit1) == 0(full) ? (1)
jreq snd000 ;if full, jp snd000
xld.b [STDR],%r12 ;write data (2)
popn %r3 ;restore r3-r0
ret

(1) Checking the transmit buffer
Check the serial interface status register bits to determine if the transmit buffer is empty; wait until
it is emptied.
snd000:

xbtst [SSR],0x1 ;TDBE1(bit1) == 0(full) ?
jreq snd000 ;if full, jp snd000

(2) Sending one byte of data
When the transmit buffer is empty, send one byte of data from R12.

xld.b [STDR],%r12 ;write data

Receive routine

;**
;
; uchar m_rcv_1byte()
; 1 byte receive function
; OUT : 0 receive OK
; 1 receive ERROR (framing err)
; 2 (parity err)
; 3 (over run err)
;
;**

.global m_rcv_1byte
m_rcv_1byte:

pushn %r3 ;save r3-r0
rcv000:

xbtst [SSR],0x0 ;RDBF1(bit0) == 0(empty) ? (1)
jreq rcv000 ;if empty, jp rcv000

ld.w %r10,0x0 (2)
xbtst [SSR],0x4 ;FER1(bit4) == 0 ?
jreq rcv010
xbclr [SSR],0x4 ;FER1(bit4) 0 clear
ld.w %r10,0x1 ;return 1

rcv010:
xbtst [SSR],0x3 ;PER1(bit3) == 0 ?
jreq rcv020
xbclr [SSR],0x3 ;PER1(bit3) 0 clear
ld.w %r10,0x2 ;return 2

rcv020:
xbtst [SSR],0x2 ;OER1(bit2) == 0 ?
jreq rcv030
xbclr [SSR],0x2 ;OER1(bit2) 0 clear
ld.w %r10,0x3 ;return 3

rcv030:
xld.b %r0,[SRDR] ;read data (3)
xld.b [m_rcv_data],%r0 ;read data set
popn %r3 ;restore r3-r0
ret

3 PROGRAMMING THE E0C33 PERIPHERAL FUNCTIONS

56 EPSON E0C33 FAMILY APPLICATION NOTES

(1) Wait for receive
Wait until receive data is placed in the buffer.
rcv000:

xbtst [SSR],0x0 ;RDBF1(bit0) == 0(empty) ?
jreq rcv000 ;if empty, jp rcv000

(2) Check for receive errors
Check for framing, parity, and overrun errors.

ld.w %r10,0x0
xbtst [SSR],0x4 ;FER1(bit4) == 0 ?
jreq rcv010
xbclr [SSR],0x4 ;FER1(bit4) 0 clear
ld.w %r10,0x1 ;return 1

rcv010:
xbtst [SSR],0x3 ;PER1(bit3) == 0 ?
jreq rcv020
xbclr [SSR],0x3 ;PER1(bit3) 0 clear
ld.w %r10,0x2 ;return 2

rcv020:
xbtst [SSR],0x2 ;OER1(bit2) == 0 ?
jreq rcv030
xbclr [SSR],0x2 ;OER1(bit2) 0 clear
ld.w %r10,0x3 ;return 3

(3) Reading out receive data
If no errors are found, read out one byte of receive data from the buffer and save it to RAM.
rcv030:

xld.b %r0,[SRDR] ;read data
xld.b [m_rcv_data],%r0 ;read data set

� Asynchronous communications using an internal clock
The following example is an assembly source file excerpted from mon33\dmt33001\m3s_sci.s. The
transmit and receive sections are the same as with an external clock; only the initialize routine differs.
Although this is a source for the E0C33A104, it may be used in the same way as for the E0C33208,
except that no pull-up processing is required.

Initialize routine

#define P8TS3 0x0004014e ;8bit timer3 clock rate register
#define PT3 0x0004016c ;8bit timer3 control register
#define RLD3 0x0004016d ;8bit timer3 reload data register
#define STDR1 0x000401e5 ;transmit data register
#define SRDR1 0x000401e6 ;receive data register
#define SSR1 0x000401e7 ;serial status register
#define SCR1 0x000401e8 ;serial control register
#define SIR1 0x000401e9 ;IrDA control register
#define PIO 0x000402d0 ;IO port (P port) register
#define IOU 0x000402d3 ;IO port (P port) pull up register

.code
;**
;
; void m_io_init()
; serial port initial function
;
;**

.global m_io_init
m_io_init:

ld.w %r0,0x00 (1)
xld.b [SIR1],%r0 ;SIR1 set
ld.w %r0,0x03 (2)
xld.b [SCR1],%r0 ;SCR1 set
xld.w %r0,0x30 (3)
xld.b [PIO],%r0 ;IO port set
xld.w %r0,0xff (4)
xld.b [IOU],%r0 ;pull up set
xld.w %r0,0x80 (5)
xld.b [P8TS3],%r0 ;P8TS3 set

3 PROGRAMMING THE E0C33 PERIPHERAL FUNCTIONS

E0C33 FAMILY APPLICATION NOTES EPSON 57

xld.w %r0,0x7 ;38400bps (6)
xld.b [RLD3],%r0 ;RLD3 set
ld.w %r0,0x07 (7)
xld.b [PT3],%r0 ;PT3 set
xld.w %r0,0xc3 (8)
xld.b [SCR1],%r0 ;SCR1 set
ret

(1) Selecting the division ratio
Set the division ratio of the sampling clock to 1/16.

ld.w %r0,0x00
xld.b [SIR1],%r0 ;SIR1 set

(2) Setting transfer mode
Set transfer mode to asynchronous 8-bit mode, with one stop bit, no parity, and internal clock (8-
bit timer 3).

ld.w %r0,0x03
xld.b [SCR1],%r0 ;SCR1 set

(3) Selecting input/output pin functions
Set the pins shared with I/O ports for serial interface mode.

xld.w %r0,0x30
xld.b [PIO],%r0 ;IO port set

(4) Setting pull-ups (E0C33A104)
Enable pull-ups for the serial interface input pins. This processing is used for the E0C33A104 but is
not required for the E0C33208. For real-world applications, we recommend connecting pull-up
resistors external to the chip regardless of microcomputer type.

xld.w %r0,0xff
xld.b [IOU],%r0 ;pull up set

(5) Setting the prescaler
Set the prescaler's division ratio for 8-bit timer 3 to 1/2 of internal clock. For the E0C33208, you
can also select 1/1 (0x40146•D3 = 1).

xld.w %r0,0x80
xld.b [P8TS3],%r0 ;P8TS3 set

(6) Setting the 8-bit timer
Preset value 7 (7 + 1 = divide-by-8) in the 8-bit timer. Results for the MDT33001 (operating clock =
20 MHz) are as follows.
20 MHz → divided by 2 by prescaler → divided by 8 by timer → divided by 2 by serial interface →
divided by 16 for sampling use = 20,000,000 / 2 / 8 / 2 / 16 = 39,062 bps

This creates a +1.7% error with respect to 38,400 bps. An error of this magnitude will not affect the
other side any significantly, no operational problems should result under normal conditions.

xld.w %r0,0x7 ;38400bps
xld.b [RLD3],%r0 ;RLD3 set

(7) Starting the 8-bit timer
Start the 8-bit timer.

ld.w %r0,0x07
xld.b [PT3],%r0 ;PT3 set

(8) Enabling transmit/receive
Enable transmit/receive operations.

xld.w %r0,0xc3
xld.b [SCR1],%r0 ;SCR1 set

3 PROGRAMMING THE E0C33 PERIPHERAL FUNCTIONS

58 EPSON E0C33 FAMILY APPLICATION NOTES

3.5 Setting Up A/D Converter
This section describes a software-triggered A/D conversion routine, using a sample excerpted from
\cc33\sample\drv33208\demo_ad2\.

Vector table [vector.c]

extern void int_ad(void); (1)

/* vector table */
const unsigned long vector[] = {

(unsigned long)boot, // 0 0
 |

(unsigned long)dummy, // 248 62
(unsigned long)dummy, // 252 63
(unsigned long)int_ad, // 256 64 (1)
(unsigned long)dummy, // 260 65
(unsigned long)dummy, // 264 66
(unsigned long)dummy, // 268 67
(unsigned long)dummy, // 272 68
(unsigned long)dummy, // 276 69
(unsigned long)dummy, // 280 70
(unsigned long)dummy // 284 71

};

(1) Setting the vector table
This sample generates an interrupt on completion of A/D conversion and acquires the A/D
converted data in an interrupt routine. Register the start address of this interrupt routine in the
vector table (at vector table start address + 0x100).

Initializing A/D converter [drv_ad2.c]

#include "..\include\ad.h"
#include "..\include\common.h"
#include "..\include\int.h"
#include "..\include\io.h"
#include "..\include\presc.h"

/* Prototype */
void init_ad(void);
unsigned short read_ad_data(void);
void int_ad(void);
extern void save_psr(void);
extern void restore_psr(void);

/***
 * init_ad
 * Type : void
 * Ret val : none
 * Argument : void
 * Function : Initialize A/D converter.
 ***/
void init_ad(void)
{

/* Save PSR and disable all interrupt */
save_psr();

/* Set A/D converter port setting */
*(volatile unsigned char *)IN_CFK6_ADDR = IN_CFK60_AD0; // A/D ch.0 port (1)

/* SPT = A/D converter sampling time
 OSC3 = OSC3 clock (40MHz)
 PDR = Prescaler clock division (1/32)
 ST = A/D converter sampling time (9clock)
 TADC = A/D converter sampling and convert time (10us)
 SPT = ST / (OSC3 x PDR)
 = 9 / (40 x 1000000 x 1/32)
 = 7.2us
 Must be SPT > TADC / 2 */

3 PROGRAMMING THE E0C33 PERIPHERAL FUNCTIONS

E0C33 FAMILY APPLICATION NOTES EPSON 59

/* Set A/D converter prescaler setting (CLK/32) */
*(volatile unsigned char *)PRESC_PSAD_ADDR (2)

= PRESC_PTONL_ON | PRESC_CLKDIVL_SEL4;
// Set A/D converter prescaler (CLK/32)

/* Set A/D converter status register */
*(volatile unsigned char *)AD_CH_ADDR = AD_MS_NOR | AD_TS_SOFT; (3)

// A/D converter software trigger and normal mode
*(volatile unsigned char *)AD_CS_ADDR = AD_CS_0 | AD_CE_0; (3)

// A/D converter start channel AD0 and A/D end channel AD0
*(volatile unsigned char *)AD_OWE_ADDR (3)

= AD_ADE_ENA | AD_ADST_STOP | AD_OWE_NOERR;
// A/D converter enable, A/D converter stop,
// A/D converter over write error clear

*(volatile unsigned char *)AD_ST_ADDR = AD_ST_9; (2)
// A/D converter sampling 9 clocks

/* Set A/D converter interrupt CPU request on interrupt controller */
*(volatile unsigned char *)INT_RS1_RADE_RP4_ADDR = INT_RIDMA_DIS;

// IDMA request disable and CPU request enable (4)

/* Set A/D converter interrupt priority level 3 on interrupt controller */
*(volatile unsigned char *)INT_PSIO1_PAD_ADDR = INT_PRIH_LVL3; (4)

/* Reset A/D converter interrupt factor flag on interrupt controller */
*(volatile unsigned char *)INT_FADE_FCTM_FP4_ADDR = INT_FADE; (4)

// Reset A/D converter interrupt factor flag

/* Set A/D converter interrupt enable on interrupt controller */
*(volatile unsigned char *)INT_EADE_ECTM_EP4_ADDR = INT_EADE; (4)

// Set A/D converter interrupt enable

/* Restore PSR */
restore_psr();

}

A group of include files listed at the top of this routine is found in cc33\sample\drv33208\include.
Refer to each file for detailed information on the contents of definition.

(1) Setting the analog input pin
Set the A/D converter channel 0 input pin (which is shared with K60 general-purpose input port)
for analog input. (By default, it is used as a K60 general-purpose input pin.)
/* Set A/D converter port setting */
*(volatile unsigned char *)IN_CFK6_ADDR = IN_CFK60_AD0; // A/D ch.0 port

(2) Setting the prescaler and sampling time
/* SPT = A/D converter sampling time
 OSC3 = OSC3 clock (40MHz)
 PDR = Prescaler clock division (1/32)
 ST = A/D converter sampling time (9clock)
 TADC = A/D converter sampling and convert time (10us)

 SPT = ST / (OSC3 x PDR)
 = 9 / (40 x 1000000 x 1/32)
 = 7.2us

 Must be SPT > TADC / 2 */

This comment demonstrates how the A/D converter input clock is calculated. First, set the
prescaler's division ratio at which the A/D converter operating clock is generated from the system
clock. Any multiple of 2 from 1/2 to 1/256 can be selected. Here, anticipating the use of a 40 MHz
system clock, we set the prescaler's division ratio to 1/32.
Next, set the input sampling time to 9 A/D converter clock periods. This is the sample-and-hold
time. This time must be equal to or greater than 1/2 (5 µs or more) of A/D conversion time tADC

(min. 10 µs). In this example, this is 7.2 µs. If 1/16 is selected for the prescaler, it is doubled to 3.6
µs. Although no operational problems will results with a sampling time of 5 µs or less, reduced
sampling times may result in more frequent errors. Following a sample-and-hold, the A/D
converter performs a successive comparison in approximately 10 clock periods and outputs a 10-
bit A/D conversion result.

3 PROGRAMMING THE E0C33 PERIPHERAL FUNCTIONS

60 EPSON E0C33 FAMILY APPLICATION NOTES

Set the prescaler division ratio for the A/D converter to 1/32. Set the sampling time for A/D
conversion to 9 clock periods.
/* Set A/D converter prescaler setting (CLK/32) */
*(volatile unsigned char *)PRESC_PSAD_ADDR = PRESC_PTONL_ON | PRESC_CLKDIVL_SEL4;

// Set A/D converter prescaler (CLK/32)
|

*(volatile unsigned char *)AD_ST_ADDR = AD_ST_9;
// A/D converter sampling 9 clocks

(3) Setting the A/D converter
For conversion mode (continuous or normal), select normal. For trigger (external/K52, 8-bit timer
0, 16-bit timer 0, or software trigger), select software trigger.
/* Set A/D converter status register */
*(volatile unsigned char *)AD_CH_ADDR = AD_MS_NOR | AD_TS_SOFT;

// A/D converter software trigger and normal mode

Set the conversion channel to channel 0.
*(volatile unsigned char *)AD_CS_ADDR = AD_CS_0 | AD_CE_0;

// A/D converter start channel AD0 and A/D end channel AD0

Enable A/D conversion.
*(volatile unsigned char *)AD_OWE_ADDR

 = AD_ADE_ENA | AD_ADST_STOP | AD_OWE_NOERR;
// A/D converter enable, A/D converter stop, A/D .. over write error clear

(4) Setting interrupt
Using the interrupt controller, set the A/D conversion interrupt as an interrupt request to the
CPU.
/* Set A/D converter interrupt CPU request on interrupt controller */
*(volatile unsigned char *)INT_RS1_RADE_RP4_ADDR = INT_RIDMA_DIS;

// IDMA request disable and CPU request enable

Set the interrupt level to 3.
/* Set A/D converter interrupt priority level 3 on interrupt controller */
*(volatile unsigned char *)INT_PSIO1_PAD_ADDR = INT_PRIH_LVL3;

Clear the interrupt factor flag.
/* Reset A/D converter interrupt factor flag on interrupt controller */
*(volatile unsigned char *)INT_FADE_FCTM_FP4_ADDR = INT_FADE;

// Reset A/D converter interrupt factor flag

Enable the interrupt.
/* Set A/D converter interrupt enable on interrupt controller */
*(volatile unsigned char *)INT_EADE_ECTM_EP4_ADDR = INT_EADE;

// Set A/D converter interrupt enable

3 PROGRAMMING THE E0C33 PERIPHERAL FUNCTIONS

E0C33 FAMILY APPLICATION NOTES EPSON 61

Interrupt processing [drv_ad2.c]

/***
 * read_ad_data
 * Type : unsigned short
 * Ret val : A/D converter data
 * Argument : void
 * Function : Read A/D converter data.
 ***/
unsigned short read_ad_data(void)
{

return(*(volatile unsigned short *)AD_ADD_ADDR); // A/D converter data (2)
}

/***
 * int_ad
 * Type : void
 * Ret val : none
 * Argument : void
 * Function : A/D converter interrupt function.
 * Read A/D converter status and A/D convert data.
 ***/
void int_ad(void)
{

extern volatile unsigned short ad_data;// A/D data
extern volatile int ad_int; // A/D converter interrupt flag

INT_BEGIN; (1)
ad_data = read_ad_data(); // Read A/D converter data (2)
ad_int = TRUE; // A/D converter interrupt flag on
*(volatile unsigned char *)INT_FADE_FCTM_FP4_ADDR = INT_FADE;

// Reset A/D converter interrupt factor flag (3)
INT_END; (1)

}

When A/D conversion is complete, an A/D interrupt is generated and int_ad() is called.

(1) Saving/restoring registers
To save and restore registers at the beginning and end of the interrupt handling routine, we use
INT_BEGIN and INT_END, defined in common.h.
#define INT_BEGIN asm("pushn %r15")
#define INT_END asm("popn %r15\n reti")

(2) Reading out the conversion result
Call read_ad_data(), store the A/D conversion result in a variable, and set a flag to indicate that
readout is complete.
ad_data = read_ad_data(); // Read A/D converter data
ad_int = TRUE; // A/D converter interrupt flag on

(3) Resetting the interrupt factor flag
Clear the interrupt factor flag.
*(volatile unsigned char *)INT_FADE_FCTM_FP4_ADDR = INT_FADE;

// Reset A/D converter interrupt factor flag

3 PROGRAMMING THE E0C33 PERIPHERAL FUNCTIONS

62 EPSON E0C33 FAMILY APPLICATION NOTES

Application section [demo_ad2.c]

 |
unsigned short ad_data;
volatile int ad_int; // A/D converter interrupt flag
 |
init_ad(); (1)
 |
for (i = 0; i < DATA_SIZE; i++) {

ad_int = FALSE;
/* A/D converter start by software trigger */
(volatile unsigned long)AD_OWE_ADDR |= 0x02; (2)

// Set A/D converter run bit (ADST[D1] = 1)

for (;;) {
if (ad_int == TRUE) { (3)

write_str(" A/D AD0 data ... ");
write_hex(ad_data);
break;

}
}

}

This control program performs actual A/D conversion.

(1) Initializing
Call the previously mentioned init_ad() and initialize the A/D converter and interrupt settings.

(2) Starting A/D conversion
Start A/D conversion with a software trigger.
/* A/D converter start by software trigger */
(volatile unsigned long)AD_OWE_ADDR |= 0x02;

// Set A/D converter run bit (ADST[D1] = 1)

(3) Getting A/D conversion result
When A/D conversion is complete, the previously mentioned interrupt handling routine int_ad()
is called. When processing is complete, the flag ad_int is set. Check this flag; if set to 1, read out
the conversion result from the variable ad_data for display on the screen.
for (;;) {

if (ad_int == TRUE) {
write_str(" A/D AD0 data ... ");
write_hex(ad_data);
break;

}
}

3 PROGRAMMING THE E0C33 PERIPHERAL FUNCTIONS

E0C33 FAMILY APPLICATION NOTES EPSON 63

3.6 About IDMA Settings
E0C33208 provides a function that, during the boot process, allows the contents of memory to be trans-
ferred by IDMA before vector fetch and program execution (OTP/internal ROM emulation mode, with
EA10MD pins set to "01"). The following section gives an example of using this function to transfer the
contents of external ROM to high-speed SRAM (used for internal ROM emulation), with booting per-
formed from there. The source code can be found in cc33\sample\dmt33005pd.

� Using OTP DMA

IDMA table definition [m3s_otp.s]

;1st word for IDMA ch0
#define LNKEN0 0x80000000 ;IDMA link enable
#define LKCHN0 0x01000000 ;IDMA link field is ch1
#define TC0 0x00000001 ;256KB is 0x20000 times with half word
#define BLKLEN0 0x00000000
;2nd word for IDMA ch0
#define DINTEN0 0x00000000 ;DMA end interrupt is disable
#define DATSIZ0 0x40000000 ;half word
#define SRCINC0 0x30000000 ;address increment
#define SRADR0 0x00c003b8 ;source address is 0xc003b8(0x48126)
;3rd word for IDMA ch0
#define DMOD0 0x40000000 ;successive transfer mode
#define DSINC0 0x30000000 ;address increment
#define DSADR0 0x00048126 ;destination address
;1st word for IDMA ch1
#define LNKEN1 0x00000000 ;IDMA link disable
#define LKCHN1 0x00000000 ;IDMA link field is noting
#define TC1 0x00020000 ;256KB is 0x20000 times with half word
#define BLKLEN1 0x00000000
;2nd word for IDMA ch1
#define DINTEN1 0x00000000 ;DMA end interrupt is disable
#define DATSIZ1 0x40000000 ;half word
#define SRCINC1 0x30000000 ;address increment
#define SRADR1 0x00200000 ;source address is external flash 0x200000
;3rd word for IDMA ch1
#define DMOD1 0x40000000 ;successive transfer mode
#define DSINC1 0x30000000 ;address increment
#define DSADR1 0x00c00000 ;destination address is internal RAM 0x80000
;emulation ROM size setting
#define A10IR 0x4037 ;internal ROM size 256KB 16 bit wait 7 output disable 3.5
.code

.word LNKEN0|LKCHN0|TC0|BLKLEN0

.word DINTEN0|DATSIZ0|SRCINC0|SRADR0

.word DMOD0|DSINC0|DSADR0

.word LNKEN1|LKCHN1|TC1|BLKLEN1

.word DINTEN1|DATSIZ1|SRCINC1|SRADR1

.word DMOD1|DSINC1|DSADR1

.half A10IR

IDMA uses channels 0 and 1. Channel 0 is used to set the size of the internal ROM, while channel 1 is
used to perform the actual transfer of memory contents. Create an IDMA table and set its position
using a linker command file as described below.
(dmt33005pd.cm)

-code 0x0c003a0{ m3s_otp.o }; set absolute code section m3s_otp.o for DMA ch0

When reset, the IDMA table begins with 0xc003a0.

3 PROGRAMMING THE E0C33 PERIPHERAL FUNCTIONS

64 EPSON E0C33 FAMILY APPLICATION NOTES

(1) Setting IDMA channel 0
Immediately after a reset, channel 0 transfers 16 bits of data once. The source address of the
transfer is 0xc003b8, and the data transferred is ".half A10IR = 0x4037". The transfer destination is
the address 0x48126 (area 10–9 setup register) in the BCU. The size of the internal ROM to be
emulated is thereby set to 256 KB, corresponding to maximum RAM for the EPOD33001.
;1st word for IDMA ch0
#define LNKEN0 0x80000000 ;IDMA link enable
#define LKCHN0 0x01000000 ;IDMA link field is ch1
#define TC0 0x00000001 ;256KB is 0x20000 times with half word
#define BLKLEN0 0x00000000
;2nd word for IDMA ch0
#define DINTEN0 0x00000000 ;DMA end interrupt is disable
#define DATSIZ0 0x40000000 ;half word
#define SRCINC0 0x30000000 ;address increment
#define SRADR0 0x00c003b8 ;source address is 0xc003b8(0x48126)
;3rd word for IDMA ch0
#define DMOD0 0x40000000 ;successive transfer mode
#define DSINC0 0x30000000 ;address increment
#define DSADR0 0x00048126 ;destination address

|
#define A10IR 0x4037 ;internal ROM .. 256KB 16 bit wait 7 out. disable 3.5
.code

.word LNKEN0|LKCHN0|TC0|BLKLEN0

.word DINTEN0|DATSIZ0|SRCINC0|SRADR0

.word DMOD0|DSINC0|DSADR0
|

.half A10IR

When transfer across channel 0 is completed, IDMA channel 1 is prompted to start transfer by a
link function.

(2) Setting IDMA channel 1
Channel 1 is set to transfer 16-bit data from 0x200000 (flash memory area in the DMT33005PD) to
0xc00000 (internal ROM area of the EPOD33001) 128K times.
;1st word for IDMA ch1
#define LNKEN1 0x00000000 ;IDMA link disable
#define LKCHN1 0x00000000 ;IDMA link field is noting
#define TC1 0x00020000 ;256KB is 0x20000 times with half word
#define BLKLEN1 0x00000000
;2nd word for IDMA ch1
#define DINTEN1 0x00000000 ;DMA end interrupt is disable
#define DATSIZ1 0x40000000 ;half word
#define SRCINC1 0x30000000 ;address increment
#define SRADR1 0x00200000 ;source address is external flash 0x200000
;3rd word for IDMA ch1
#define DMOD1 0x40000000 ;successive transfer mode
#define DSINC1 0x30000000 ;address increment
#define DSADR1 0x00c00000 ;destination address is internal RAM 0xc00000

 |
.word LNKEN1|LKCHN1|TC1|BLKLEN1
.word DINTEN1|DATSIZ1|SRCINC1|SRADR1
.word DMOD1|DSINC1|DSADR1

For this reset-time IDMA only, the 0xc00000 area is accessed on #CE10EX (external) as the source
and #CE10IN as the destination. Other addresses are accessed the same way as for ordinary
IDMA.

(3) Execution
After IDMA transfer is completed, the CPU boots from 0xc00000 and executes the transferred
program.

3 PROGRAMMING THE E0C33 PERIPHERAL FUNCTIONS

E0C33 FAMILY APPLICATION NOTES EPSON 65

3.7 Setting Up HSDMA
This section explains how to set up HSDMA, using an example program that transfers data to PWM (16-
bit timer) for audio output.

� DMA transfer to 16-bit timer
The example program shown below uses HSDMA channel 3 and 16-bit timer 5 as a trigger to transfer
data from RAM to 16-bit timer 1.

Initial settings

|
;; PWM output timer
#define PRESC16_1 0x40148 ; 16bit Timer 1, Prescaler
#define TMCTRL16_1 0x4818e ; 16bit Timer 1
#define COMPARE_A16_1 0x48188
#define COMPARE_B16_1 0x4818a
#define TIMER16_1_IMASK 0x40272
#define P2_FUNCTION_SELECT 0x402d8 ; Function select output port

;; trigger timer
#define SPK_INTR_LEVEL_0 0x04
#define PRESC16_5 0x4014c ; 16bit Timer 5, Prescaler
#define TMCTRL16_5 0x481ae ; 16bit Timer 5
#define COMPARE_A16_5 0x481a8
#define COMPARE_B16_5 0x481aa
#define TIMER16_5_IMASK 0x40274
#define TIMER16_5_IFLAG 0x40284
#define TIMER16_5_ILEVEL 0x40268 ; Upper 4-bits

;; HSDMA
#define HSDMA_IMASK 0x40271
#define HSDMA_IFLAG 0x40281
#define HSDMA3_IFLAG_CLR 0x08
#define HSDMA_01_ILEVEL 0x40263
#define HSDMA_23_ILEVEL 0x40264
#define HSDMA_23_TRIGGER 0x40299
#define HSDMA3_ENABLE 0x4825c
#define HSDMA3_TFLAG 0x4825e
#define HSDMA3_TRANSFER 0x48250

;;
#define PRESC16_3 0x0004014a ; 16bit Timer 3, Prescaler
#define TMCTRL16_3 0x0004819e ; 16bit Timer 3
#define COMPARE_A16_3 0x00048198
#define COMPARE_B16_3 0x0004819a
#define TIMER16_3_IMASK 0x00040273
#define TIMER16_3_IFLAG 0x00040283
#define TIMER16_3_ILEVEL 0x00040267 ; Upper 4-bits

 |
;;
;;; void SpkOpen_0(BYTE *SpkParams, int ReloadValue)
;;; dose not destroy r12 - r15
;;;
SpkOpen_0:

 ; init HSDMA triger timer
 ld.w %r5,0x00 (1)
 xld.b [TMCTRL16_5],%r5 ; Timer Stop
 xld.b [PRESC16_5],%r5 ; Prescaler Stop

 xld.w %r4,TIMER16_5_IMASK
 bclr [%r4],7 ; disable comparison A intr.
 bclr [%r4],6 ; disable comparison B intr.

 xld.w %r5,0xf0
 xld.b [TIMER16_5_IFLAG],%r5 ; clear comparison A B factor flags

 xld.h [COMPARE_B16_5],%r13 ; set compare B value (ReloadValue)

3 PROGRAMMING THE E0C33 PERIPHERAL FUNCTIONS

66 EPSON E0C33 FAMILY APPLICATION NOTES

 ; init HSDMA
 ld.w %r5,0 (2)
 xld.h [HSDMA3_ENABLE],%r5 ; HSDMA Ch3 disable (stop)

 ld.w %r5,HSDMA3_IFLAG_CLR
 xld.b [HSDMA_IFLAG],%r5 ; clear DMA Ch3 interrupt flag clear
 xbset [HSDMA_IMASK],3 ; enable DMA Ch3 end interrupt

 xld.w %r4,HSDMA_23_ILEVEL
 ld.b %r5,[%r4]
 and %r5,0x0f ; mask lower 4bit
 ld.w %r6,0x4 ; HSDMA Ch3 interrupt level = 4
 sll %r6,0x04 ; level is upper 4bit
 or %r5,%r6
 ld.b [%r4],%r5 ; set interrupt level

 ld.w %r5,8 (3)
 sll %r5,4
 xld.b [HSDMA_23_TRIGGER],%r5 ; HSDMA trigger is 16bit timer
 ; Ch.5 compare B

|

|
;;
;;; int SpkNext(BYTE *SpkParams)
;;; interrupt routine
;;; dose not destroy r9,r10 r12 - r15
;;; In DMA version, change to control register
;;; r9 : (*Length)
;;; r10 : Length
;;; r12 : SpkParams
;;;
SpkNext:
 xcall QueueRead ; QueueRead dose not destroy r12 - r15
 cmp %r10,0x00 ; r9:*Length, r10:Length, r11:*Buffer
 jreq RetSpkNext ; if (Failed) QueueEmpty

|

 ; Write HSDMA register
 xld.w %r4,HSDMA3_TRANSFER ; start of dma transfer register (4)

 ld.w %r6,%r10
 xoor %r6,%r6,0x80000000
 ld.w [%r4]+,%r6 ; Length and address mode dual

 ld.w %r7,%r11 ; source address (buffer pointer)
 xoor %r7,%r7,0x70000000 ; addr increment, harf word transfer
 ld.w [%r4]+,%r7 ; for 10bit PWM

 xld.w %r8,COMPARE_A16_1 ; 16bit timer compareA register
 ld.w [%r4]+,%r8 ; dest address, single

 ; Enable HSDMA
 ld.w %r5,1
 ld.h [%r4],%r5 ; HSDMA enable (start) HSDMA3_ENABLE

RetSpkNext:
 ret

(1) Initializing the HSDMA triggering timer
In this example, 16-bit timer 5 is used as a trigger for HSDMA. Temporarily suspend timer 5
operations and turn off the prescaler clock output for timer 5.
; init HSDMA triger timer

ld.w %r5,0x00
xld.b [TMCTRL16_5],%r5 ; Timer Stop
xld.b [PRESC16_5],%r5 ; Prescaler Stop

3 PROGRAMMING THE E0C33 PERIPHERAL FUNCTIONS

E0C33 FAMILY APPLICATION NOTES EPSON 67

With the interrupt controller, disable the timer 5 interrupt and clear the interrupt factor flag.
xld.w %r4,TIMER16_5_IMASK
bclr [%r4],7 ; disable comparison A intr.
bclr [%r4],6 ; disable comparison B intr.
xld.w %r5,0xf0
xld.b [TIMER16_5_IFLAG],%r5 ; clear comparison A B factor flags

Set the HSDMA cycle data (e.g. 8k times per second) passed via R13 from the calling routine in the
compare B register.

xld.h [COMPARE_B16_5],%r13 ; set compare B value (ReloadValue)

(2) Initializing HSDMA interrupt
Always confirm that HSDMA is disabled before setting HSDMA. If set while operating, the
register may be read or written to incorrectly.
; init HSDMA

ld.w %r5,0
xld.h [HSDMA3_ENABLE],%r5 ; HSDMA Ch3 disable (stop)

With the interrupt controller, clear the the HSDMA channel 3 interrupt factor flag and enable the
interrupt.

ld.w %r5,HSDMA3_IFLAG_CLR
xld.b [HSDMA_IFLAG],%r5 ; clear DMA Ch3 interrupt flag clear
xbset [HSDMA_IMASK],3 ; enable DMA Ch3 end interrupt

Set the interrupt level to 4.
xld.w %r4,HSDMA_23_ILEVEL
ld.b %r5,[%r4]
and %r5,0x0f ; mask lower 4bit
ld.w %r6,0x4 ; HSDMA Ch3 interrupt level = 4
sll %r6,0x04 ; level is upper 4bit
or %r5,%r6
ld.b [%r4],%r5 ; set interrupt level

(3) Setting HSDMA trigger
Set 16-bit timer 5 for the HSDMA channel 3 trigger.

ld.w %r5,8
sll %r5,4
xld.b [HSDMA_23_TRIGGER],%r5 ; HSDMA trigger is 16bit timer
 ; Ch.5 compare B

(4) Setting HSDMA transfer conditions
Set the DMA transfer count (data count) passed via R10 from the calling routine. Set transfer mode
to dual-address transfer.
; Write HSDMA register

xld.w %r4,HSDMA3_TRANSFER ; start of dma transfer register

ld.w %r6,%r10
xoor %r6,%r6,0x80000000
ld.w [%r4]+,%r6 ; Length and address mode dual

Set the transfer source address, increment mode, and 16-bit data size. The transfer source address
is the start address of the buffer (RAM) in which PWM data has been prepared.

ld.w %r7,%r11 ; source address (buffer pointer)
xoor %r7,%r7,0x70000000 ; addr increment, harf word transfer
ld.w [%r4]+,%r7 ; for 10bit PWM

Set the compare A register for PWM 16-bit timer as the transfer destination. Select single transfer
mode, in which one data unit is transferred by one DMA operation.

xld.w %r8,COMPARE_A16_1 ; 16bit timer compareA register
ld.w [%r4]+,%r8 ; dest address, single

Enable HSDMA.
; Enable HSDMA

ld.w %r5,1
ld.h [%r4],%r5 ; HSDMA enable (start) HSDMA3_ENABLE

DMA transfer is now executed as many times as set at the frequency of the compare B cycle set in
16-bit timer 5.

3 PROGRAMMING THE E0C33 PERIPHERAL FUNCTIONS

68 EPSON E0C33 FAMILY APPLICATION NOTES

Interrupt processing at the end of DMA transfer

;;
;;; SpkIntr0
;;; HSDMA transfer end interrupt
;;;
SpkIntr0:
 pushn %r15 (1)
 ld.w %r0,%ahr
 ld.w %r1,%alr
 pushn %r1
 xld.w %r12,SPK_PARAMS_0 ; SpkParams
 xld.w %r13,HSDMA_IFLAG ; IFlagReg (2)
 xld.w %r14,HSDMA3_IFLAG_CLR ; IFlag clear data
 ld.b [%r13],%r14 ; clear DMA Ch3 interrupt flag
 ld.w %r15,[%sp+0x12] ; OldPSR (3)
 xcall QueueNext
 popn %r1 (1)
 ld.w %alr,%r1
 ld.w %ahr,%r0
 popn %r15
 reti

Register the start address (SpkIntr0) of this handling routine as the vector for HSDMA channel 3.
Process the interrupt generated each time a number of HSDMA transfers set is completed.

(1) Saving and restoring registers
At the beginning and end of interrupt processing, save and restore all of R0–R15, AHR and ALR.
pushn %r15
ld.w %r0,%ahr
ld.w %r1,%alr
pushn %r1
 |
popn %r1
ld.w %alr,%r1
ld.w %ahr,%r0
popn %r15
reti

(2) Resetting the interrupt factor flag
Clear the interrupt factor flag.
xld.w %r13,HSDMA_IFLAG ; IFlagReg
xld.w %r14,HSDMA3_IFLAG_CLR ; IFlag clear data
ld.b [%r13],%r14 ; clear DMA Ch3 interrupt flag clear

(3) Processing for the subsequent transfer
Disable HSDMA and restore transfer conditions before starting the next data transfer.
ld.w %r15,[%sp+0x12] ; OldPSR
xcall QueueNext

3 PROGRAMMING THE E0C33 PERIPHERAL FUNCTIONS

E0C33 FAMILY APPLICATION NOTES EPSON 69

3.8 Clock Settings
The E0C33208 includes a clock timer capable of counting up to 64K days in units of 1/128 seconds. Here,
we will explain how to generate an alarm interrupt exactly one minute later using this clock timer. The
example program used here can be found in cc33\sample\drv33208\ct.

� The one-minute alarm interrupt

Vector table [vector.c]

/* vector table */
const unsigned long vector[] = {

(unsigned long)boot, // 0 0
|
|

(unsigned long)dummy, // 252 63
(unsigned long)dummy, // 256 64
(unsigned long)int_ct, // 260 65 (1)
(unsigned long)dummy, // 264 66

|
};

(1) Setting the vector table
Register the interrupt handling routine int_c as the clock timer interrupt vector.

Initial settings [drv_ct.c]

#include "..\include\common.h"
#include "..\include\ct.h"
#include "..\include\int.h"

/* Prototype */
void init_ct(void);
void int_ct(void);
extern void save_psr(void);
extern void restore_psr(void);

/***
 * init_ct
 * Type : void
 * Ret val : none
 * Argument :void
 * Function :Initialize clock timer to use real time clock.
 ***/
void init_ct(void)
{

/* Save PSR and disable all interrupt */
save_psr(); (1)

/* Set clock timer interrupt disable on interrupt controller */
*(volatile unsigned char *)INT_EADE_ECTM_EP4_ADDR = INT_ENABLE_DIS;

// Set clock timer interrupt disable

/* Stop clock timer */
*(volatile unsigned char *)CT_TCRUN_ADDR &= 0xfe; (2)

/* Reset clock timer */
*(volatile unsigned char *)CT_TCRUN_ADDR |= CT_TCRST_RST;

/* Set clock timer data (1999.01.01 21:05) */
*(volatile unsigned char *)CT_TCHD_ADDR = 0x05; (3)

// Minute data (5 minutes)
*(volatile unsigned char *)CT_TCDD_ADDR = 0x15;

// Hour data (21 hours)
*(volatile unsigned char *)CT_TCNDL_ADDR = 0xd7;

// Year-month-day low byte data (3287 days)
*(volatile unsigned char *)CT_TCNDH_ADDR = 0x0c;

// Year-month-day high byte data (3287 days)

/* Set clock timer comparison data */

3 PROGRAMMING THE E0C33 PERIPHERAL FUNCTIONS

70 EPSON E0C33 FAMILY APPLICATION NOTES

*(volatile unsigned char *)CT_TCCH_ADDR = 0x06; (4)
// Minute comparison data (6 minutes)

*(volatile unsigned char *)CT_TCCD_ADDR = 0x0;
// Hour comparison data (0 hour)

*(volatile unsigned char *)CT_TCCN_ADDR = 0x0;
// Day comparison data (0 day)

/* Set clock timer interrupt factor control flag */
*(volatile unsigned char *)CT_TCAF_ADDR (5)

= CT_TCISE_NONE | CT_TCASE_M | CT_TCIF_RST | CT_TCAF_RST;

/* Set clock timer interrupt priority level 3 on interrupt controller */
*(volatile unsigned char *)INT_PCTM_ADDR = INT_PRIL_LVL3; (6)

/* Reset clock timer interrupt factor flag on interrupt controller */
*(volatile unsigned char *)INT_FADE_FCTM_FP4_ADDR = INT_FCTM;

// Reset clock timer interrupt factor flag

/* Set clock timer interrupt enable on interrupt controller */
*(volatile unsigned char *)INT_EADE_ECTM_EP4_ADDR = INT_ECTM;

// Set clock timer interrupt enable

/* Restore PSR */
restore_psr(); (7)

}

(1) Disabling interrupts
Save PSR and mask interrupts with IE.
/* Save PSR and disable all interrupt */
save_psr();

Using the interrupt controller, disable the clock timer interrupt.
/* Set clock timer interrupt disable on interrupt controller */
*(volatile unsigned char *)INT_EADE_ECTM_EP4_ADDR = INT_ENABLE_DIS;

// Set clock timer interrupt disable

(2) Resetting the clock timer
After stopping the clock timer, reset the counter.
/* Stop clock timer */
*(volatile unsigned char *)CT_TCRUN_ADDR &= 0xfe;

/* Reset clock timer */
*(volatile unsigned char *)CT_TCRUN_ADDR |= CT_TCRST_RST;

(3) Setting the date and time
Set the date and time to 21:05, January 1, 1999. The 3287 days set in the day counter are calculated
using January 1, 1990 as the starting point.
/* Set clock timer data (1999.01.01 21:05) */
*(volatile unsigned char *)CT_TCHD_ADDR = 0x05;

// Minute data (5 minutes)
*(volatile unsigned char *)CT_TCDD_ADDR = 0x15;

// Hour data (21 hours)
*(volatile unsigned char *)CT_TCNDL_ADDR = 0xd7;

// Year-month-day low byte data (3287 days)
*(volatile unsigned char *)CT_TCNDH_ADDR = 0x0c;

// Year-month-day high byte data (3287 days)

(4) Setting an alarm
Here, we set 6 minutes as comparison data and set the alarm interrupt to occur in one minute.
/* Set clock timer comparison data */
*(volatile unsigned char *)CT_TCCH_ADDR = 0x06;

// Minute comparison data (6 minutes)
*(volatile unsigned char *)CT_TCCD_ADDR = 0x0;

// Hour comparison data (0 hour)
*(volatile unsigned char *)CT_TCCN_ADDR = 0x0;

// Day comparison data (0 day)

3 PROGRAMMING THE E0C33 PERIPHERAL FUNCTIONS

E0C33 FAMILY APPLICATION NOTES EPSON 71

(5) Settings for alarm interrupt
Enable only the minutes alarm interrupt. Clear the interrupt fuctor generation and alarm fuctor
generation flags.
/* Set clock timer interrupt factor control flag */
*(volatile unsigned char *)CT_TCAF_ADDR

= CT_TCISE_NONE | CT_TCASE_M | CT_TCIF_RST | CT_TCAF_RST;

These steps set the internal functions of the clock timer, not the interrupt controller. This control
register must always be reset before use, since its initial value cannot be guaranteed.

(6) Setting the interrupt controller
Set the interrupt level to 3.
/* Set clock timer interrupt priority level 3 on interrupt controller */
*(volatile unsigned char *)INT_PCTM_ADDR = INT_PRIL_LVL3;

Clear the clock timer interrupt factor flag.
/* Reset clock timer interrupt factor flag on interrupt controller */
*(volatile unsigned char *)INT_FADE_FCTM_FP4_ADDR = INT_FCTM;

// Reset clock timer interrupt factor flag

Enable the clock timer interrupt.
/* Set clock timer interrupt enable on interrupt controller */
*(volatile unsigned char *)INT_EADE_ECTM_EP4_ADDR = INT_ECTM;

// Set clock timer interrupt enable

Note that the clock timer interrupt has no IDMA request flag and can function only as an interrupt
to the CPU.

(7) Return processing
Restore PSR and enable interrupts.
/* Restore PSR */
restore_psr();

Interrupt processing [drv_ct.c]

/***
 * int_ct
 * Type : void
 * Ret val : none
 * Argument :void
 * Function :Clock timer interrupt function.
 ***/
void int_ct(void)
{

extern volatile int ctint_flg;

INT_BEGIN; (1)
ctint_flg = TRUE; // Clock timer interrupt flag on (2)
*(volatile unsigned char *)INT_FADE_FCTM_FP4_ADDR = INT_FCTM; (3)

// Reset clock timer interrupt factor flag
INT_END; (1)

}

(1) Saving and restoring registers
Use INT_BEGIN and INT_END (defined in common.h) to save and restore registers at the begin-
ning and end of the interrupt handling routine.
#define INT_BEGIN asm("pushn %r15")
#define INT_END asm("popn %r15\n reti")

(2) Setting an interrupt-generated confirmation flag
Set a flag notifying the host routine that an interrupt has been generated.
ctint_flg = TRUE; // Clock timer interrupt flag on

(3) Resetting the cause of the interrupt flag
Clear the interrupt factor flag.
*(volatile unsigned char *)INT_FADE_FCTM_FP4_ADDR = INT_FCTM;

// Reset clock timer interrupt factor flag

3 PROGRAMMING THE E0C33 PERIPHERAL FUNCTIONS

72 EPSON E0C33 FAMILY APPLICATION NOTES

Application section [demo_ct.c]

|
/* Initialize clock timer */
write_str("*** Initialize clock timer and start ***\n");
write_str(" Today date and time (1999.01.01 21:05)\n");
write_str(" Set minute alarm interrupt enable (6 minutes)\n");
init_ct(); (1)

/* Run clock timer */
write_str("*** Run clock timer ***\n");
*(volatile unsigned char *)CT_TCRUN_ADDR |= 0x01; (2)

/* Initialize clock timer interrupt flag */
ctint_flg = FALSE;

write_str("*** Wait 1 minute ***\n");
write_str("\n");

while (1) { (3)
if (ctint_flg == TRUE) {

break;
}

}

/* Stop clock timer */
write_str("*** Stop clock timer ***\n");
*(volatile unsigned char *)CT_TCRUN_ADDR &= 0xfe; (4)

|

(1) Initial settings
Call the above-mentioned init_ct() and initialize the clock timer and interrupt settings.

(2) Starting the clock timer
Start the clock timer and clear the interrupt-generated confirmation flag.
*(volatile unsigned char *)CT_TCRUN_ADDR |= 0x01;

/* Initialize clock timer interrupt flag */
ctint_flg = FALSE;

(3) Wait for alarm interrupt
When the alarm time arrives, the above-mentioned interrupt handling routine int_ct() is called.
When processing is complete, the flag ctint_flg is set. Loop the program until this flag is set to 1.
An alarm interrupt occurs one minute after the clock timer starts.
while (1) {

if (ctint_flg == TRUE) {
break;

}
}

(4) Stopping the clock timer
After the interrupt occurs, stop the clock timer.
*(volatile unsigned char *)CT_TCRUN_ADDR &= 0xfe;

3 PROGRAMMING THE E0C33 PERIPHERAL FUNCTIONS

E0C33 FAMILY APPLICATION NOTES EPSON 73

3.9 SLEEP
This section explains the processing preceding SLEEP mode entry, and how to exit SLEEP using the alarm
function. The explanation uses an example file found in cc33\sample\drv33208\osc of cc33 ver.3 or later
(not included in ver.2).

Main routine [demo_osc.c]

void main(void)
{

unsigned char pwr; /* Power control register data */
unsigned char clk; /* Clock control register data */

write_str("*** OSC demonstration ***\n");
write_str("\n");

/* OSC3 high-speed mode */
write_str("*** OSC3 high-speed mode ***\n");
write_str(" System clock select 1/1, Prescaler output ON, CPU clock OSC3,

OSC3 ON, OSC1 ON\n");
write_str(" HALT clock option OFF, OSC3-stabilize waiting function ON\n");
write_str(" OSC1 external output control OFF\n");
pwr = OSC_CLKDT_11 | OSC_PSCON_ON | OSC_CLKCHG_OSC3 | OSC_SOSC3_ON | (1)

OSC_SOSC1_ON;
clk = OSC_HALT2OP_OFF | OSC_8T1ON_ON | OSC_PF1ON_OFF;
set_OSC(pwr, clk);

/* If you use sleep mode, you set OSC3-stabilize waiting function on
and run 8-bit timer 1 */

/* Initialize 8-bit timer */
write_str("*** Initialize 8-bit timer ***\n");
write_str(" 8-bit timer 1 ... CLK/4096\n");
write_str(" 8-bit timer 1 reload data

... 0x62 (10ms on OSC3 clock 40MHz)\n");
init_8timer1(); (2)

/* Initialize clock timer */
write_str("*** Initialize clock timer and start ***\n");
write_str(" Today data and time (1999.01.01 21:05)\n");
write_str(" Set minute alarm interrupt enable (6 minutes)\n");
init_ct(); (3)

/* Run clock timer */
write_str("*** Run clock timer ***\n");
*(volatile unsigned char *)CT_TCRUN_ADDR |= 0x01; (4)

write_str("*** Wait 1 minute ***\n");

write_str("*** Sleep mode ***\n");
write_str("\n");

/*Run 8-bit timer 1 */
run_8timer(T8P_PTRUN1_ADDR); (5)

/* Sleep */
asm("slp"); (6)

/* Stop 8-bit timer 1 */
write_str("*** Return to OSC3 high-speed mode from sleep mode ***\n");

write_str("\n");
write_str("*** OSC demonstration finish ***\n");

}

3 PROGRAMMING THE E0C33 PERIPHERAL FUNCTIONS

74 EPSON E0C33 FAMILY APPLICATION NOTES

(1) Setting the oscillator circuit
Call set_osc() and set the following.
pwr = OSC_CLKDT_11 | OSC_PSCON_ON | OSC_CLKCHG_OSC3 | OSC_SOSC3_ON | OSC_SOSC1_ON;
clk = OSC_HALT2OP_OFF | OSC_8T1ON_ON | OSC_PF1ON_OFF;
set_OSC(pwr, clk);

OSC_CLKDT_11 System clock division ratio = 1/8
OSC_PSCON_ON Prescaler ON
OSC_CLKCHG_OSC3 CPU operating clock = OSC3
OSC_SOSC3_ON High-speed (OSC3) oscillation ON
OSC_SOSC1_ON Low-speed (OSC1) oscillation ON
OSC_HALT2OP_OFF HALT2 mode OFF
OSC_8T1ON_ON High-speed (OSC3) oscillation wait after SLEEP exit function ON
OSC_PF1ON_OFF OSC1 clock external output OFF *

 ∗ OSC1 clock external output is disabled when the internally-wired clock from OSC1 block to FOSC
pin is disabled, reducing current consumption during SLEEP mode to a minimum. If necessary,
the OSC1 clock may be output even during SLEEP mode. In this case, the P14/DCLK/FOSC1 pin
must be set for OSC1 clock output (FOSC1).

(2) Initializing 8-bit timer 1
Because the high-speed (OSC3) oscillation wait function is used after exiting SLEEP, set the wait
time in 8-bit timer 1. This processing is performed in init_8timer1().

(3) Setting the clock timer
Call init_ct() and set the clock timer to generate an alarm interrupt one minute after starting. For
more information on processing by init_ct(), see Section 3.8, "Clock Settings".

(4) Starting the clock timer
Start the clock timer.
*(volatile unsigned char *)CT_TCRUN_ADDR |= 0x01;

(5) Starting 8-bit timer 1
Call run_8timer() and start 8-bit timer 1.
(drv_8timer.c)
void run_8timer(unsigned long reg)
{

*(volatile unsigned char *)reg |= 0x01;
}

(6) SLEEP
Execute the SLP instruction to enter SLEEP mode. The high-speed (OSC3) oscillator circuit stops.
asm("slp");

(7) Exiting SLEEP
Even during SLEEP mode, the clock timer is paced by the low-speed (OSC1) oscillation circuit to
allow the processor to be roused from SLEEP mode when the set alarm interrupt occurs. The high-
speed (OSC3) oscillation circuit begins operating upon exiting SLEEP, but program execution can
restart only after an oscillation stabilization wait interval (10 ms) elapses. This is set in 8-bit timer
1.

With this program running on a DMT33007, current consumption was measured at 65 mA for
normal operations and 35 mA during SLEEP — a savings of about 30 mA.

3 PROGRAMMING THE E0C33 PERIPHERAL FUNCTIONS

E0C33 FAMILY APPLICATION NOTES EPSON 75

Setting the oscillation circuit [drv_osc.c]

void set_osc(unsigned char pwr, unsigned char clk)
{

/* Before power control register write access,
set power control register protect flag write enable */

*(volatile unsigned char *)OSC_CLGP_ADDR = OSC_CLGP_ENA; (1)

/* Set power control register */
*(volatile unsigned char *)OSC_SOSC_ADDR = pwr;

/* Before clock control register write access,
set power control register protect flag write enable */

*(volatile unsigned char *)OSC_CLGP_ADDR = OSC_CLGP_ENA; (2)

/* Set clock control register */
*(volatile unsigned char *)OSC_PF1ON_ADDR = clk;

}

(1) Setting the power control register
Remove write protection for the power control register (0x40180). Write the set value passed from
main() into this register.
/* Before power control register write access,

set power control register protect flag write enable */
*(volatile unsigned char *)OSC_CLGP_ADDR = OSC_CLGP_ENA;

/* Set power control register */
*(volatile unsigned char *)OSC_SOSC_ADDR = pwr;

(2) Setting the clock option register
Remove write protection for the clock option register (0x40190). Write the set value passed from
main() into this register.
/* Before clock control register write access,

set power control register protect flag write enable */
*(volatile unsigned char *)OSC_CLGP_ADDR = OSC_CLGP_ENA;

/* Set clock control register */
*(volatile unsigned char *)OSC_PF1ON_ADDR = clk;

Setting 8-bit timer 1 [drv_8timer.c]

void init_8timer1(void)
{

/* Save PSR and disable all interrupt */
save_psr(); (1)

/* Set 8bit timer1 prescaler */
*(volatile unsigned char *)PRESC_P8TS0_P8TS1_ADDR (2)

|= (PRESC_PTONH_ON | PRESC_CLKDIVH_SEL7);
// Set 8bit timer1 prescaler (CLK/4096)

/* Set 8bit timer1 reload data */
*(volatile unsigned char *)T8P_RLD1_ADDR = 0x62 (3)

// Set reload data (0x62 ... 10ms on OSC3 clock 40MHz)

/* Set 8bit timer1 clock output off, preset and timer stop */
*(volatile unsigned char *)T8P_PTRUN1_ADDR

= T8P_PTOUT_OFF | T8P_PSET_ON | T8P_PTRUN_STOP;

/* Set 8bit timer1 interrupt CPU request on interrupt controller */
*(volatile unsigned char *)INT_R16T5_R8TU_RS0_ADDR = INT_RIDMA_DIS; (4)

// IDMA request disable and CPU request enable

/* Set 8bit timer1 interrupt priority level 3 on interrupt controller */
*(volatile unsigned char *)INT_P8TM_PSIO0_ADDR = INT_PRIL_LVL3;

/* Reset 8bit timer1 interrupt factor flag on interrupt controller */
*(volatile unsigned char *)INT_F8TU_ADDR = INT_F8TU1;

// Reset 8bit timer1 underflow interrupt factor flag

3 PROGRAMMING THE E0C33 PERIPHERAL FUNCTIONS

76 EPSON E0C33 FAMILY APPLICATION NOTES

/* Set 8bit timer1 interrupt disable on interrupt controller */
*(volatile unsigned char *)INT_E8TU_ADDR &=~INT_E8TU1;

// Set 8bit timer1 underflow interrupt disable

/* Restore PSR */
restore_psr(); (5)

}

(1) Disabling interrupts
Save PSR and mask interrupts with IE.
/* Save PSR and disable all interrupt */
save_psr();

(2) Setting the prescaler
Set the prescaler division ratio to 1/4096.
/* Set 8bit timer1 prescaler */
*(volatile unsigned char *)PRESC_P8TS0_P8TS1_ADDR

|= (PRESC_PTONH_ON | PRESC_CLKDIVH_SEL7);
// Set 8bit timer1 prescaler (CLK/4096)

(3) Setting 8-bit timer
Set 0x62 as the reload data. This value generates an OSC3 oscillation stabilization wait time of
about 10 ms when the CPU operates at 40 MHz.
25µs (=1/40 MHz) × 4096 × (0x62 + 1) = approx. 10 ms
/* Set 8bit timer1 reload data */
*(volatile unsigned char *)T8P_RLD1_ADDR = 0x62

// Set reload data (0x62 ... 10ms on OSC3 clock 40MHz)

Preset the above reload data in the counter. Do not start the timer yet.
/* Set 8bit timer1 clock output off, preset and timer stop */
*(volatile unsigned char *)T8P_PTRUN1_ADDR

= T8P_PTOUT_OFF | T8P_PSET_ON | T8P_PTRUN_STOP;

(4) Setting the interrupt controller
Disable IDMA start with an 8-bit timer 1 interrupt.
/* Set 8bit timer1 interrupt CPU request on interrupt controller */
*(volatile unsigned char *)INT_R16T5_R8TU_RS0_ADDR = INT_RIDMA_DIS;

// IDMA request disable and CPU request enable

Set the 8-bit timer interrupt priority level to 3.
/* Set 8bit timer1 interrupt priority level 3 on interrupt controller */
*(volatile unsigned char *)INT_P8TM_PSIO0_ADDR = INT_PRIL_LVL3;

Reset the 8-bit timer 1 interrupt factor flag.
/* Reset 8bit timer1 interrupt factor flag on interrupt controller */
*(volatile unsigned char *)INT_F8TU_ADDR = INT_F8TU1;

// Reset 8bit timer1 underflow interrupt factor flag

Leave the 8-bit timer 1 interrupt disabled.
/* Set 8bit timer1 interrupt disable on interrupt controller */
*(volatile unsigned char *)INT_E8TU_ADDR &=~INT_E8TU1;

// Set 8bit timer1 underflow interrupt disable

(5) Return processing
Restore PSR and enable interrupts.
/* Restore PSR */
restore_psr();

3 PROGRAMMING THE E0C33 PERIPHERAL FUNCTIONS

E0C33 FAMILY APPLICATION NOTES EPSON 77

3.10 Other Sample Programs
In addition to previous examples discussed in this chapter, sample programs involving peripheral
functions can be found in cc33\sample\drv33208 (drv33a104 for the 33A104). Refer to these examples, if
necessary. An electronic version of this manual in Japanese text format can be found in
cc33\sample\apnote (ver.3 or later). Although the print version has been significantly altered by the
inclusion of descriptions, the sample programs referenced in this manual can be copied via a simple Copy
and Paste.

4 THE BASIC E0C33 CHIP BOARD CIRCUIT

78 EPSON E0C33 FAMILY APPLICATION NOTES

4 THE BASIC E0C33 CHIP BOARD CIRCUIT
This chapter explains the basic circuit design of the E0C33208.

4.1 Power Supply
Here, we'll explain the power supply based on a DC-DC converter, using the DMT33005 circuit as an
example.

� DC-DC converter

3–4.5V

DC IN

GND

CLK/SEL
ON
AIN

POKIN
REF

MAX1703

P
G

N
D

P
G

N
D

G
N

D

P5V

0.22µ

0.1µ 10V
68µ

10V
68µ

4.7µH
3A

HRF22

0.22µ

0.1µ 10µ 22µ10

LXP
LXN

POUT
POUT

CUT
AO

POK
FB

LT1117CST-3.3P5V

+

+

10V
68µ

+

P5V

+

P3V

+
VIN VOUT

G
N

D

This power supply circuit steps up the 3 to 4.5 V input voltage with a switching regulator to generate
a 5 V power supply for the external I/O and memory block, as well as for the analog block. This 5 V
power supply is stepped down with a linear regulator to generate a 3.3 V power supply for the CPU
core. Because the E0C33208's CPU core operates at 3.3 V, two such power supplies are required if the
external interface operates with 5 V.

Select capacitors carefully when using a switching-mode power supply as in the DMT33005. A 68 µF
decoupling capacitor is positioned between the battery and coil. Due to the large rush current flowing
here, large ESR (equivalent internal resistance) results in power dissipation and abbreviated battery
life. For example, battery life can vary as much as 1.5 times between the OS capacitor used in the
DMT33005 and an ordinary electrolytic capacitor. The capacitors located after the coil do not signifi-
cantly affect battery life. If noise is a consideration, choose capacitors with low ESRs. The capacitor is
used to maintain as consistent a post-coil voltage as possible, and its change voltage (ripple) increases
proportionately with ESR. For DMT33005, using an electrolytic capacitor produces sufficient noise in
audio output to render audio quality unusable. Use the OS capacitor to reduce relative noise levels to
about 1/10, levels at which noise is generally not a problem.
In digital circuits, differences between capacitors produces only slight differences in noise margins.
But such differences are significant in analog circuits. In analog circuits, for increased safety, avoid
using a switching-mode power supply if possible.

4 THE BASIC E0C33 CHIP BOARD CIRCUIT

E0C33 FAMILY APPLICATION NOTES EPSON 79

� Decoupling capacitors
Use the following four methods for noise abatement between power supply and ground lines.

1) Use a circuit board comprised of four or more layers, and provide full-surface GND and full-
surface VDD layers.

2) Attach a 100 µF electrolytic capacitor per circuit board. For small circuit boards, attach a 10 µF
tantalum capacitor.

3) Attach a 1 µF + 0.1 µF laminated ceramic capacitor to the CPU and to the memory block.

4) Attach a 0.01 µF + 1000 pF chip-form laminated ceramic capacitor to each IC, positioning it as
close to the power supply pins as possible.

1µ 0.1µ

VDDE

1µ 0.1µ

VDD

Mount for every one or several IC blocks

0.01µ 1000p

VDDE

0.01µ 1000p

VDD

Mount for every two power supply lines on each IC

10µ~100µ

VDDE

10µ~100µ

VDD

Mount for each board

The capacitors in 2) to 4) above cover the following frequency ranges:
100 µF: Absorbs AC components in frequencies below several 100 kHz.
1 µF: Absorbs AC components in frequencies from several 100 kHz to several MHz.
0.1 µF: Absorbs AC components in frequencies from several MHz to about 20 MHz.
0.01 µF: Absorbs AC components in frequencies from 10 MHz to about 50 MHz.
1000 pF: Absorbs AC components in frequencies from several 10 MHz to about 100 MHz.

Omission of any of these capacitors results in difficulty absorbing noise in that frequency range. For
example, in the common arrangement of 0.1 µF per IC, noise for frequencies around 10 MHz is
absorbed relatively efficiently, but noise cannot be absorbed in frequencies above 10 MHz. E0C33208
circuit boards operating at frequencies above 40 MHz are subject to noise at frequencies approaching
100 MHz or even higher. This noise can only be absorbed with a capacitor of about 1000 pF. Addition-
ally, since inductance resulting from extended wiring lowers the upper absorption limit of the 1000 pF
capacitor, be sure to mount it at the closest position possible to the pin, second only to the PLL
capacitor described further below. Failure to do so will lower the actual upper limit of the absorption
range below 100 MHz.

When using double-sided circuit boards, reinforce GND as much as possible to ensure equivalent
GND potentials at each location. To prevent voltage fluctuations, use a decoupling capacitor to
reinforce power supply lines on each block.

4 THE BASIC E0C33 CHIP BOARD CIRCUIT

80 EPSON E0C33 FAMILY APPLICATION NOTES

4.2 Oscillation Circuit
The following section discusses oscillation circuits, referring to the DMT33005 and EPOD33001 as ex-
amples.

� 20 MHz resonator
This example applies to the DMT33005 when the high-speed
(OSC3) oscillation circuit is comprised of a crystal resonator, a
resistor, and capacitors.
For more information on resistor and capacitor values, see the
documentation supplied with your crystal resonator.

� 32 kHz resonator
This example applies to the DMT33005 when the 32 kHz, low-
speed (OSC1) oscillation circuit is comprised of a crystal
resonator, a resistor, and capacitors.
For more information on resistor and capacitor values, see the
documentation supplied with your crystal resonator.

� 20 MHz oscillator
This example applies to the EPOD33001 when the oscillator's
output clock is fed to the OSC3 pin. Make sure the voltage
level of the input clock is the same as that of the operating
clock (VDD) of the CPU core (e.g. 3.3 V). The same applies
when an external clock is fed to the OSC1 pin.

� PLL, core clock, and bus clock
Related pins are PLLC and PLLS[1:0].

5p

4.7k
PLLC

PLLS0
PLLS1

100p

E0C33208
VSS

PLLC

VSS

The PLLC must have the shortest wiring pattern of all other pins. To prevent crosstalk from other
signal lines, it should also be enclosed with the largest GND pattern possible. Poor noise characteris-
tics on the PLLC line will result in increased jitter, or adversely affect the clock's duty ratio.

Select a high-speed operating clock for the E0C33208 from the following three options by processing
the PLLS0 and PLLS1 pins.
PLLS1 = 0, PLLS0 = 0: The OSC3 clock is used directly as is.

(Because PLL is unused, current consumption slightly lowers.)
PLLS1 = 1, PLLS0 = 1: A 2-times OSC3 clock is selected. (10–20 MHz clock input for OSC3)
PLLS1 = 0, PLLS0 = 1: A 4-times OSC3 clock is selected.

This clock is fed into the CPU core in the chip. The X2SPD pin is used to determine the bus operating
clock.
X2SPD = 1: The bus operates with the same clock as the core.
X2SPD = 0: The bus operates at half the frequency of the core clock.

Combination example:
OSC3 PLLS1 PLLS0 X2SPD Core clock Bus clock

20 MHz 0 0 1 20 MHz 20 MHz
20 MHz 1 1 0 40 MHz 20 MHz
15 MHz 0 1 0 60 MHz 30 MHz

5p5p

1M

MA-306 (20MHz)
4

1

3

2

OSC3

OSC4

E0C33

5p5p

1.5M

MC-306 (32.768kHz)
4

1

3

2

OSC1

OSC2

E0C33

0.1µ

SG8002DC (20MHz)
E0C33

OUT

N.C.

VCC

GND

OSC3

OSC4

VDD

4 THE BASIC E0C33 CHIP BOARD CIRCUIT

E0C33 FAMILY APPLICATION NOTES EPSON 81

4.3 Reset Circuit
This section describes a simple RC reset circuit as well as a more sophisticated circuit with a reset IC
capable of power supply voltage detection.

� Reset by an RC network
The E0C33208's reset input pin consists of a Schmitt trigger circuit with a pull-up resistor of about 120
kΩ. A simple reset circuit can be configured just by connecting an off-chip capacitor of about 0.22 µF.
The 0.22 µF capacitor may be laminated ceramic or an electrolytic capacitor.

0.22µ

#RESET

E0C33208
VDD

120k
Reset when low;
deactivated when high

This comprises an RC time constant of about 15 to 20 ms from power-on to VDD/2. This circuit has the
simplest structure. But because the reset input is only 120 kΩ pull-up and because reset is recognized
at a rising edge, it is also susceptible to noise. Make sure the capacitor is connected to the reset pin at
the shortest distance possible, within design constraints.

When using the ICD33 for debugging, we recommend attaching a reset switch to your system. When
you encounter difficulty connecting the ICD33 and target, this lets you hold down the reset switch
while turning on the ICD33, then release the reset switch, ensuring that the ICD33 and target are
connected. For development purposes, only a switch needs to be inserted between the capacitor and
VSS.

0.22µSW

#RESET

� Reset circuit using a reset IC
The reset IC used in the DMT33008LV (PST572 made by Mitsumi) is a three-terminal type connecting
VDD and GND. When VDD is below the rated level, it drives VOUT low; when VDD is above the rated
level, it puts VOUT in a high-impedance state.

Adding this IC to the above reset circuit results in the following (excerpt from the DMT33008LV
circuit):

0.22µSW

#RESETReset
IC

VDD

4 THE BASIC E0C33 CHIP BOARD CIRCUIT

82 EPSON E0C33 FAMILY APPLICATION NOTES

� Protecting reset against noise
If the reset circuit described above is routed around apart from the IC, it becomes susceptible to
crosstalk. In such cases, take the following protective measures.
1) Reduce the pull-up resistance.
2) Attach a decoupling capacitor on the pin side.
3) Enclose with a GND pattern to protect against crosstalk.
4) Drive reset high/low with low impedance using logic.

0.1µ
SW

#RESET

4.7µ

5.6k

270

Reset
IC

VDD VDD

In this example of noise protection, the reset line is pulled high with external 5.6 kΩ. The switch also
has 270 Ω connected in series, thereby limiting the current flowing into it. A 0.1 µF decoupling
capacitor is inserted on the reset pin side to reduce high-frequency noise, which can easily ride on the
line due to crosstalk.

#RESET

74HC14

SW
4.7µ

5.6k

270

Reset
IC

VDD VDD

In this example of noise protection, a 74HC14 (Schmitt type inverter) is inserted to drive reset with
logic. This renders the reset circuit significantly resistant to noise.

In addition to reset, all edge-activated ports such as NMI and input interrupts require caution regard-
ing erratic device behavior induced by noise. Make the wiring as short as possible, particularly for
inputs whose high/low levels are regulated using pull-up/pull-down resistors. Implement protective
measures, such as the ones described above. Use of pull-up/pull-down resistors of about 100 kΩ
makes it crucial that the line and pin be connected by the shortest distance. Even for pull-up/pull-
down resistors of 10 kΩ or less, avoid extending wiring unnecessarily. Check with an oscilloscope to
confirm absence from crosstalk.

4 THE BASIC E0C33 CHIP BOARD CIRCUIT

E0C33 FAMILY APPLICATION NOTES EPSON 83

4.4 Connecting ROM
Using the DMT33005 and ICD33 as examples, a ROM connection diagram is shown below.

� Connecting x16 ROM

A[15:0]

IO[15:0]

CE
OE

PGM
VPP

27C1024HCCE0C33208

VDDE (5V)
10k

VCC

VSS2
VSS1

A[16:1]

D[15:0]

#CEx
#RD

VDDE (5V)

0.1µ

The DMT33005 has a 1M-bit EPROM packaged in a 44-pin PLCC. The E0C33208 I/O and this ROM
both operate at 5 V.
When the bus clock speed is 20 MHz, the ROM access time requirements are as follows:
For 2-cycle read with one wait state (bus cycle = 100 ns), ROM access time of 80 ns (or 75 ns for 3.3 V)
or greater
For 3-cycle read with two wait states (bus cycle = 150 ns), ROM access time of 130 ns (or 125 ns for 3.3
V) or greater

4.5 Connecting Flash Memory
Using the DMT33005 as an example, the following is a diagram of a x16-type flash memory connection.

� Connecting x16 flash memory
An 8M-bit flash memory in a 48-pin TSOP package is connected directly to the chip. A x8/x16 dual-
type flash memory labeled "29F800" is used in a x16 configuration.

A[18:0]

D[15:0]

CE
OE
WE

RP

MBM29F800TA-70PFTNE0C33208

BYTE

VCC

GND

A[19:1]

D[15:0]

#CEx
#RD

#WRL/#WR/#WE

#RESET

VDDE

VDDE

0.1µ

10k

0.1µ
Reset circuit

BYTE = 1: 16 bits
BYTE = 0: 8 bits

#RESET#RESET

4 THE BASIC E0C33 CHIP BOARD CIRCUIT

84 EPSON E0C33 FAMILY APPLICATION NOTES

4.6 Connecting SRAM

� Connecting x16 SRAM
In the example shown below, one 4M-bit, x16 SRAM is connected to the chip.

A[17:0]

I/O[16:1]

UB
LB
CS
OE
WE

µPD434016ALEE0C33208

VCC

GND

A[18:1]

D[15:0]

#WRH/#BSH
A0/#BSL

#CEx
#RD

#WRL/#WR/#WE

VDDE

0.1µ

This type of RAM cannot be accessed with a default BCU setting. If BCU is changed to BSL mode, the
RAM becomes operational with the wiring shown above. BSL mode is selected by setting D3 at
0x4812E to 1. Setting D3 = 0 selects regular A0 mode.

Note: In the E0C33208 and E0C332L01, BSL mode cannot be used in combination with ICD33 debug-
ging. Use the MON33 for debugging.

� Connecting two x8 SRAMs
When two SRAM units are required, we recommend using two x8 type units, since they are easily
connected, without requiring external logic. In the example shown below, two 4M-bit, x8 SRAMs are
connected to the DMT33005.

A[18:0]

IO[7:0]

CS
OE
WE

HM628512E0C33208

VCC

GND

A[19:1]

D[15:8]
D[7:0]

#CEx
#RD

#WRH/#BSH
#WRL/#WR/#WE

VDDE

0.1µ

A[18:0]

IO[7:0]

CS
OE
WE

HM628512

VCC

GND

VDDE

0.1µ

The address, #CE, and #RD outputs may be connected directly to the chip, although the 2-device
connection may increase their load capacitance.

At a bus clock speed of 20 MHz, RAM access time requirements are as follows:
For 2 cycles with one wait state (bus cycle = 100 ns), RAM access time of 80 ns (or 75 ns for 3.3 V) or
greater
For 3 cycles with two wait states (bus cycle = 150 ns), RAM access time of 130 ns (or 125 ns for 3.3 V)
or greater

The access time for SRAM mounted on the DMT33005 (operating at 20 MHz) is 55 ns in one wait state.

4 THE BASIC E0C33 CHIP BOARD CIRCUIT

E0C33 FAMILY APPLICATION NOTES EPSON 85

� Connecting one x8 SRAM
This example illustrates the connection of a single 256K-bit, x8 SRAM.

A[14:0]

I/O[7:0]

CS1
OE
WE

SRM28256SL00X7E0C33208

VCC

VSS

A[14:0]

D[7:0]

#CEx
#RD

#WRL/#WR/#WE

VDDE

0.1µ

By default, the BCU is set to 16-bit size. Change its setting to 8-bit and set each area's setup register D6
or DE bit to 1.

4.7 Connecting DRAM
Using the DMT33006LV as an example, the following shows a DRAM connection diagram. Note that a
DRAM pattern is prepared on the DMT33006LV, but that no DRAMs are yet mounted.

� Connecting 4M-bit, x16 DRAM

A[8:0]

DQ[16:1]

W
OE
UCAS
LCAS
RAS

SDMV4265CLUE0C33208

VCC

VSS

A[9:1]

D[7:0]

#WRL/#WR/#WE
#RD

#HCAS
#LCAS

#CEx/#RASx

VDDE

0.01µ 1000p

For more information on BCU settings, see Section 3.1, "Setting Up BCU".

4 THE BASIC E0C33 CHIP BOARD CIRCUIT

86 EPSON E0C33 FAMILY APPLICATION NOTES

4.8 Connecting 5 V ROM and 3.3 V Bus

� Method for connecting a 5 V ROM to a 3.3 V bus
The E0C33208 bus is not 5 V-tolerant. If another 3.3 V memory device is connected, current will also
flow into that memory. Connecting a 5 V device to the 3.3 V I/O E0C33 chip requires a buffer to
absorb the potential difference.

A[15:0]

IO[15:12]
IO[11:8]

IO[7:4]
IO[3:0]

CE
OE

PGM
VPP

2Y[4:1]
1Y[4:1]

1G
2G

2A[4:1]
1A[4:1]

VCC

VSS

27C1024HCC

74VHC244

E0C33208

5V
10k

VCC

VSS2
VSS1

A[16:1]

D[15:12]
D[11:8]

D[7:4]
D[3:0]

#CEx
#RD

5V

0.1µ

VDDE (3.3V)

0.1µ

2Y[4:1]
1Y[4:1]

1G
2G

2A[4:1]
1A[4:1]

VCC

VSS

74VHC244

VDDE (3.3V)

0.1µ

In this example, two pieces of the 74VHC244 convert 5 V ROM output data to 3.3 V during a ROM
read. The buffer operates only when the ROM is selected. This is used in the ICD33 (the CPU, how-
ever, is the E0C33A104).
VHC-type ICs tolerate 5 V input and receive 5 V signals even when operating at a power supply
voltage of 3.3 V. Many low-voltage CMOS ICs exhibit this voltage-tolerant feature.
Although the address, #RD, and #CE signals fed to the ROM are at 3.3 V, they can be entered directly
only if the ROM is TTL-level compatible (high at 2.0 V or above, low at 0.8 V or below).
If the 16244 is used for the buffer IC in place of the 244, one IC may be sufficient. The signal connected
to the G pin on the buffer is an AND'd product of #CE and #RD. Data is output from Y only during
ROM reads. Swapping out the buffer IC for a 245 or 16245 and connecting #CE to the G pin and #RD
to the DIR pin creates a bi-directional buffer, in which case the AND logic shown above is unneces-
sary. A bi-directional buffer also permits use of ROM emulation memory, like the MEM33DIP42.

4 THE BASIC E0C33 CHIP BOARD CIRCUIT

E0C33 FAMILY APPLICATION NOTES EPSON 87

4.9 Ports

� Processing unused I/O (P) ports
By default, the unused I/O ports are set for input. Connect unused ports to VDD or VSS, or switch
them for output immediately after booting. Take care that ports connected to VDD or VSS are never set
for output.

� Eliminating chattering on input (K, P) ports
Except for K60–K67, the K and P ports are Schmitt inputs with a pull-up resistor of about 120 kΩ, as is
the reset pin. To simply eliminate several ms of chattering on 2-level switch inputs, configure a circuit
like the one shown below.

SW

Kxx port

1µ

10k 2k

VDD

In this example, no internal pull-ups are used. Turn-off from 0 to VDD constitutes a rise time of about
10 ms, eliminating several ms of chattering. Turn-on from VDD to 0 constitutes a fall time of about 2
ms. You can also reduce current drain at switch-on time by using a larger R. However, since this
results in vulnerability to noise, route the wiring carefully.

For pins which are not Schmitt inputs, use a 74HC14 or equivalent to eliminate chattering. To deter-
mine if a particular pin is a Schmitt input, see the user's manual supplied with each IC. (For the
E0C33208/204/202 Technical Manual, see Appendix B, "Pin Characteristics".)

4 THE BASIC E0C33 CHIP BOARD CIRCUIT

88 EPSON E0C33 FAMILY APPLICATION NOTES

4.10 Connections for Debugging
Using the DMT33005 as an example, this section explains how to connect the ICD33 and the DMT33MON
for MON33.

� Connecting the ICD33
The E0C33208 has six dedicated pins to which a debugger can be connected, including DCLK, DSIO,
DST2, DST1, DST0, and DPCO.
Add a 33 Ω resistor in series to DSIO. Use a total of 10 lines to connect to the ICD33, including four
additional GND lines.

DCLK

DSIO

DST2

DST1

DST0
DPCO

33Ω

E0C33208ICD33 I/F connector
1
2
3
4
5
6
7
8
9

10

If the above pattern cannot be laid out on the circuit board, use aerial wiring to connect, without
inserting the 33 Ω resistor. The ICD33 will function with this connection.
You can also disable the PC trace function with the ICD33 (by pushing the rightmost DIP switch
down) and connect to the ICD33 with only a total of four lines consisting of DCLK, DSIO, DST2, and
one GND line. Except for PC trace, this allows all debug functions in ICD mode to be used without
problems.
Make sure the above wiring length is 5 cm or less. In particular, the 33 Ω resistor for DSIO must be
located as close to the 33 chip as possible. DSIO is the only input pin and is pulled high with internal
120 kΩ. A low pulse on this input places the device in debug mode. To prevent erratic DSIO behavior,
if you are not debugging, leave the 33 Ω resistor out and minimize the pattern length of DSIO, or
connect it high to 3.3 V (the core's VDD voltage) to prevent including noise.

� Connection with the DMT33MON
MON33 uses the following resources: 10K bytes of ROM, 4K bytes of RAM, and one serial interface
channel.
The diagram shown below depicts a DMT33MON circuit diagram and an interface component on the
target board.

VDD
C1P
VCC
C1M
C5P
GND
C5M

DIN1
DIN2
DIN3

ROUT1
ROUT2
ROUT3
ROUT4
ROUT5

µPD4724

E0C33208

DMT33MONDMT33005
C4P
GND
C4M
VSS

STBYN
VCHA

EN

DOUT1
DOUT2
DOUT3

RIN1
RIN2
RIN3
RIN4
RIN5

OSC

1327-B1
(1.843MHz)

VCC

GND

1
2
3
4
5
6
7
8
9

10
11
12

#RESET
P01
P00

#NMI

K63

P02

1µ

1µ

1µ
1µ

0.1µ

P5V

P5V

5

4

3

2

1

9

8

7

6

P5V

P5V

RS232C
connector

Target I/F
connector

10V
220µ

#RESET_IN
TXD
RXD
#NMI

DEBUG

SCLK

TXD(P05)

RXD(P04)

+

P5V

0.1µ

10k
#RESET_IN

TXD
RXD
#NMI

DEBUG

SCLK

P5VP5V

P5V

0.1µ

Y1
Y2
Y3
Y4
Y5
Y6
VCC

74HC14

DEBUG SW

A1
A2
A3
A4
A5
A6

GND

0.1µ

0.01µ 330

4.7k

P5V
RESET SW

0.01µ 330

4.7k

P5V
NMI SW

0.01µ 330

4.7k

1
2
3
4
5
6
7
8
9
10
11
12

Reset
circuit

The MDT33005 is connected to the E0C33 to allow use of all DMT33MON functions. Of these, three
lines - RESET input, NMI input, and the debug switch for input port connection - are used for the sake
of convenience rather than necessity.

4 THE BASIC E0C33 CHIP BOARD CIRCUIT

E0C33 FAMILY APPLICATION NOTES EPSON 89

Only essential pins need to be connected, as shown below.

User target board

Signal lines must be less than 10 cm in length.

12

10

5
4

1

GND

SCLK

SIN
SOUT

VCC

There are five essential pins: SCLK, SIN, SOUT, GND, and VDD. VDD is 5 V for the DMT33MON, and
3.3 V for the DMT33MONLV.

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

90 EPSON E0C33 FAMILY APPLICATION NOTES

5 SPEAKER OUTPUT AND EXTERNAL ANALOG

CIRCUIT USING FINE PWM
5.1 General Sound Output Circuits Based on Microcomputer
Sound (music) output to speakers using a microcomputer requires the following three general compo-
nents.

1) D/A converter unit
Converts digital sound data into analog form.

2) Low-pass filter unit
Eliminates quantization noise from the D/A converted analog sound, smoothing it into a continuous
analog waveform.

3) Power amp and speaker unit
Amplifies the low-pass filtered analog waveform and drives the speaker.

E0C33 chip

D/A converter unit
 PWM or

D/A converter

ROM/RAM
 Digital sound

data
Low-pass filter Power amp

Speaker

Here, we'll explain a general method for building a relatively low-cost sound output system, using a
single power supply, as well as the structure of each block, sampling frequencies, and output accuracy vs.
quality.

5.1.1 D/A Converter Unit
Digital sound data is generally converted into analog data using the following three methods:
1) Conversion by DAC
2) Conversion by resistor ladder
3) Conversion by PWM

Each method is explained below.

� Conversion by DAC
This method uses the DAC incorporated in a microcomputer to output sound.

E0C33A104, etc.

DAC

The DAC built into a microcomputer generally is a R-2R resistor ladder-type with 8- to 10-bit resolu-
tion. For higher accuracy, prepare a dedicated off-chip DAC. A 12-bit R-2R type DAC is commonly
used for sound output; 14–20-bit delta-sigma type DACs are often used for audio.

When using a DAC, pay attention to its output impedance. If the DAC produces low-impedance
output (if capable of 5–10 mA output) using the op amp in the latter stage of R-2R, it can be received
directly by the low-pass filter unit in the next stage.

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

E0C33 FAMILY APPLICATION NOTES EPSON 91

High-impedance output may require a voltage follower to lower impedance.

DAC
15kΩ

35kΩ
To low-pass filter

0–5V output

LM324, etc.
+

–

Level adjusted
to 0–3.5V

Impedance conversion
by voltage follower

The input voltage is limited by the op amp used. Because an inexpensive CMOS-type op amp (e.g.
LM324) is used in this example, the input voltage is divided by resistors to adjust it into the range 0 to
3.5 V. In this case, since a current flows into GND through 15 kΩ + 35 kΩ resistors, care must be taken
that it does not exceed the rated output current of the DAC.
The following provides a rough guide to the op amp's input voltage range relative to the power
supply voltage.
1) For ordinary bipolar type and FET type (e.g. RC4558 operating with positive/negative dual-power

supplies)
Positive power supply voltage - 1 to 1.5 V to negative power supply voltage + 1 to 1.5 V

2) For CMOS types (e.g. LM324 operating with single power supply)
Positive power supply voltage - 1 to 1.5 V to GND + several mV to several 10 mV (almost GND)

This also applies to output voltages. A rail-to-rail type capable of full swing relative to the power
supply is also available. While output rail-to-rail is relatively inexpensive, input/output rail-to-rail is
too costly for low-cost systems.

DAC output is an analog waveform with quantization noise riding on it, as shown below.

For output with 8 kHz of sampling frequency, for example, write digital data every 1/8000 seconds
into the DAC in software. Because the output does not change states until the next data write, the
output is in noncontiguous staircase form. This is quantization noise, which degrades audio quality
centering around the same frequency as sampling. A low-pass filter in the next stage is required to
eliminate this noise. Audio quality depends heavily on low-pass filter performance characteristics.

While the E0C33A104 chip's internal 8-bit DAC may be used for audio output, 8-bit resolution is
generally considered inadequate for audio quality. The E0C33208 uses a 16-bit timer and the PWM
method described further below to provide high resolution, from 10 bits to a maximum of 15 bits.

� Conversion by resistor ladder
This configures a simplified version of DAC by connecting external resistors to a microcomputer's
I/O ports. This method is used specifically for microcomputers lacking a DAC, but may be used for
all types of microcomputers.

Microcomputer

Resistor values selected from the E24 series
10 kΩ and 20 kΩ have a 1% error; others are 5% accurate.

6-bit analog outputIO5

IO4

IO3

IO2

IO1

IO0

10kΩ

20kΩ

39kΩ

82kΩ

160kΩ

330kΩ

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

92 EPSON E0C33 FAMILY APPLICATION NOTES

The resistors used for higher-order bits must provide better accuracy. Resistors with 1% accuracy are
limited to 6-bit resolution. Even those with 0.5% accuracy are generally limited to 7 bits. But since
relative accuracy is important, we can obtain a resolution of 8 bits (more or less) by using a R-2R
resistor ladder (with resistors integrated into a single component, using the R-2R method, e.g. resistor
arrays from BI Technologies in the U.S.). In most cases, the R-2R method D/A with 12 bits or more
produces the desired resolution by trimming output internally. But because this method creates high
output impedance, a voltage follower is required for low impedance conversion before the output can
be fed to the low-pass filter unit.
The waveform itself is of the same staircase form containing quantization noise as for the DAC
described above.

� Conversion by PWM
Instead of outputting analog voltages, this method represents voltages by changing the duty ratio (the
ratio of 1 to 0 pulse widths) of a digital waveform. PWM outputs differ markedly from DAC output
waveforms. But after smoothing with a low-pass filter, we obtain a staircase analog waveform con-
taining quantization noise, as with DAC output waveforms. Furthermore, since the audio portion of
PWM has the same spectrum as that of DAC output, both are perceived as identical to human ears.

E0C33208, etc.

5V

0V

PWM
(16-bit timer, etc.)

PWM waveform

Voltages are represented by changing the duty ratio in this one cycle.
A high-to-low ratio of 1:1 represents 2.5V, a 4:1 ratio represents 4V, and a 2:3 ratio represents 2V.

In this case, PWM cycles (carrier frequency) must be greater than the D/A conversion cycles (band to
be reproduced). For example, we use a carrier frequency of 80 kHz or higher for sound reproduction.
When passed through a low-pass filter that cuts frequencies above 20 kHz, we obtain the same
staircase analog waveform obtained from the DAC described above.

The PWM waveform has a broad noise spectrum centering around the carrier frequency, say 80 kHz.
This frequency band significantly exceeds the audio frequency, so that even when this PWM wave-
form is output directly to speakers, it has no perceptible effect on sound for human ears. We can safely
convert PWM waveforms into continuous analog waveforms using a low-pass filter before speaker
reproduction. Since the low-pass filter used in the next stage to cut quantization noise can also be
used for this purpose, a low-pass filter is not required for this D/A converter unit. But not all noise
concentrates around 80 kHz, and traces of PWM noise are found even in the audible frequency range.
These noise components can be reduced by using a higher carrier frequency — 160 to 320 kHz — but,
in practice, the 80 kHz carrier presents no problems for 10-bit D/A conversion. In addition, since the
output impedance is regulated to low impedance by I/O pads for PWM use, no impedance conver-
sion by a voltage follower is required.

The accuracy of the PWM method is determined by the resolution of the pulse width. To realize 8-bit
accuracy, one cycle must be 256 × 80 kHz, requiring a 20 MHz reference clock. The audio output
library for the E0C33208 realizes 10-bit accuracy with PWM, providing high audio quality comparable
to that of a 10-bit DAC. Normally, 10-bit accuracy requires 1024 × 80 kHz = 80 MHz clock, but the
E0C33208 obtains the same effects with a 40 MHz clock, thanks to PWM technology.

For years, the PWM method been known as a D/A conversion method that features high differentia-
tion accuracy. But due to its need for a high-frequency reference clock, the method has not always
been practical for the voice band. A variation of this method has been used for voice applications as a
delta-sigma type DAC in which PWM is converted into PDM (Pulse Density Modulation), which is
then subjected to digital signal processing in the time-base direction to improve S/N ratios. This high-
resolution PWM is a Seiko Epson exclusive technology, in which pulse width is controlled in units of
half-clock periods. Combined with a E0C33 chip capable of operating at 40 MHz or better, this
technology has made possible significant advances — now outpacing DAC — for PWM, which was
formerly regarded as impractical for audio output use.

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

E0C33 FAMILY APPLICATION NOTES EPSON 93

5.1.2 Low-pass Filter Unit
The quantization noise generated during D/A conversion degrades audio quality. To the human ear, this
noise appears as roughness in the sound, with shrill high tones. Resolving this problem requires careful
design of the low-pass filter unit to eliminate quantization noise. Costs must also be considered.
For low-cost systems, we recommend second-order to fourth-order low-pass filters. Set the cutoff fre-
quency to about 1/2.5 of the sampling frequency (for fourth-order filters) or 1/3 (for third-order filters),
or 1/3.5 to 1/4 (for second-order filters). Attenuate higher frequencies. At higher cutoff frequencies,
quantization noise centering around the sampling frequency becomes conspicuous, degrading audio
quality. Due to their low attenuation, the safe course is to avoid first-order low-pass filters. Note that
depending on usage conditions (for example, when you want artificially emphasized high tones to be
heard clearly against background noise), quantization noise is sometimes generated intentionally.

� Example of a second-order filter

Input Output
3.9k 3.9k

0.1µ 0.1µ

Low-pass filters, each consisting of R and C, are combined to form a second-order filter. This example
is designed for 8 kHz output, with a cutoff frequency slightly lower than 2 kHz. This enables configu-
ration of an inexpensive filter with two resistors and two capacitors. However, attenuation near the
cutoff frequency is moderate, resulting in slightly degraded audio quality - a tinkling, metallic sound.

� Example of a fourth-order filter

Input
Output

+

–
0.01µ

3.3k
20k

0.01µ

TLC2272
(T1)

20k30k

62k 470p3300p

This configures the third-order active filter with one op amp, followed by an additional first-order
low-pass filter consisting of R and C, together forming the fourth-order filter. Providing good attenua-
tion characteristics, this filter is adequate for acceptable audio quality in low-cost systems. This
example is designed for 8 kHz output, with a cutoff frequency of approximately 3 kHz. Additionally,
30 kΩ and 62 kΩ inserted at the input narrow the input voltage range by a factor of 0.67 to prevent
saturating the op amp input.

� Oversampling
In Seiko Epson's speech and music middleware (e.g. VOX33, TS33, and SOUND33), x2 oversampling
technology is used in audio output to significantly reduce software quantization noise, reducing the
load on the low-pass filter unit. The result is such that even when using filters above the fourth-order,
no differences in audio quality can be detected by ear. Without oversampling, the fourth-order shown
above is inadequate. The commonly used fifth and higher-order Chebyshev filters are structurally
complex and expensive.

Also see Section 5.4, "Examples of Audio Output Analog Circuits".

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

94 EPSON E0C33 FAMILY APPLICATION NOTES

5.1.3 Power Amp and Speaker Unit
We describe two examples here. In one, we use a dedicated differential-type power amp to produce a
large sound volume. In the second, we use transistors to realize moderate sound volume at low cost.

� Example of a power amp

Input
C1 R1

R2

LM4862 (NS)C2

–

+
0.1µ

1µ

15k

0~20k

Capacitor C1 at the input configures the first-order high-pass filter to cut D.C components. The cutoff
frequency determined by C1 and R1 is normally around 50 Hz. With lower cutoff frequencies, the
popping tone heard when sound is first produced becomes conspicuous. The input impedance here
must be several times higher than the output impedance of the low-pass filter unit. If the relative
magnitudes of the impedances are the same or in reverse relationship to this requirement, filter
characteristics may be altered due to mutual interference of low- and high-pass filters.

The differential amp is used to drive the speaker. Audio volume is determined by R2/R1.

� Driving the speaker with a transistor

Input

VDDE

2SD2153 (Rohm)

Speaker (8Ω)

The speaker is driven here by an emitter-follower. For such applications, select a transistor with large
hfe (500 or greater; Darlington is unusable due to its narrow voltage range). For current amplification,
the impedance in the D/A converter and the low-pass filter units must be matched to this.

Also see Section 5.4, "Examples of Audio Output Analog Circuits".

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

E0C33 FAMILY APPLICATION NOTES EPSON 95

5.2 About Sampling Frequency and Bit Precision vs. Audio Quality

� Sampling frequency
Higher sampling frequencies generate more high tones, with better fidelity to natural sound. A
sampling frequency of at least 2 kHz or higher is required. At lower sampling frequencies, sound
becomes unclear, making speech difficult to make out. Audio quality increases as sampling frequen-
cies increase to 4 kHz, 8 kHz, and 16 kHz. Of these frequencies, 8 kHz was adopted for telephone
communications. For this reason, 8 kHz is used in countless products. The sampling frequencies
above 16 kHz are 22 kHz and 32 kHz, frequencies with which sound may be reproduced close to 10
kHz and 15 kHz, respectively. But due to the relative insensitivity of human hearing to the higher
frequencies and the limited performance expected of low-cost systems, no further increase in audio
quality is to be expected. Higher sampling frequencies include the 44.1 kHz CD and 48 kHz DAT
classes.

As sampling frequencies increase, so does data volume. As a rough guide, we recommend the follow-
ing sampling frequencies for low-cost systems:

Human voice: 8 kHz (when data size concerns have priority)
16 kHz (when audio quality has priority)

Music: 22.05 kHz
32 kHz (high-end audio quality)

� Bit precision
S/N ratios change significantly according to the number of bits used in the D/A converter unit.
Roughly speaking, when the number of bits increases by one, the S/N ratio increases by 6 dB. The
approximate relationship between the number of bits and audio quality is given below.

(1) 8 kHz sampling
1 to 3 bits: Sound is hidden behind noise, so that the speech is difficult to make out (the

signals are perceived as human voice signals, but nothing further can be per-
ceived).

4 to 5 bits: Although speech can be understood, noise levels are significant and obtrusive.
6 to 7 bits: Sound quality is clearer, but irritating noise levels persist.
8 to 9 bits: Results are useable for real-world applications, with perceptible noise levels,

which are not disagreeable to the ear.
10 bits or more: No noise can be perceived, even when heard in a quiet environment.
A precision of at least 8 bits is desirable. If resources permit, consider using 10 bits.

(2) 22 kHz or higher sampling
As sampling frequencies increase, quantization noise becomes more conspicuous to the ear.
8 to 9 bits: Even in somewhat noisy rooms, noise remains perceptible.
10 to 11 bits: Under normal conditions, noise cannot be detected.
12 bits or more: No noise can be detected, even when heard in a quiet environment.
A precision of at least 10 bits is desirable. If resources permit, consider using 12 bits.

(3) 16 kHz sampling
Audio quality is almost midway between 8 kHz and 22 kHz. A precision of at least 9 bits is
desirable. If resources permit, consider using 11 bits.

The E0C33A104 by itself is capable only of 8-bit output, using its internal 8-bit DAC. The E0C33208
can produce 8 to 32 kHz, 10 to 15-bit output thanks to its PWM, providing ample capabilities for most
applications.

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

96 EPSON E0C33 FAMILY APPLICATION NOTES

5.3 10-bit D/A Conversion by PWM
The E0C33208 is able to realize high-resolution audio output, from 10 bits up to 15 bits, thanks to its high-
resolution PWM technology. This section will first describe 10-bit output with high-resolution PWM, then
discuss 15-bit output. (See Section 5.6, "15-bit D/A Conversion by PWM".)

� Differences between PWM and DAC
As previously described, PWM uses the duty ratio to represent voltages, and its waveform differs
markedly to the eye. However, when PWM components are removed by a low-pass filter, the result-
ing waveform closely resembles DAC output waveforms.

5V

0V

5V

0V

PWM waveform

PWM output

Low-pass
filter output

Voltage is represented by changing the duty ratio in this one cycle.

The human ear perceives frequency spectrum as sound rather than waveforms.

Spectrum of DAC output

100 1k 10k 100k (Hz)

Spectrum of PWM output

100 1k 10k 100k (Hz)

PWM carrier

PWM output has significant power near the carrier frequency, but in the same spectrum as that of
DAC output in the audible frequency range. Thus, although the output waveforms of PWM and DAC
are quite different, both PWM and DAC outputs are perceived as identical by human ears. Because
the PWM carrier noise disappears when processed by the low-pass filter unit, eliminating quantiza-
tion noise, the spectra of both waveforms ultimately match.

� About high-resolution PWM mode
The accuracy of PWM output depends on how elaborately the duty ratio of output waveform can be
controlled. Obtaining 8-bit accuracy using a constant cycle of 80 kHz requires: 80 kHz × 256 clock
periods = 20 MHz clock, which indicates that pulse width must be controlled in units of 0.05 µs. The
PWM available with the audio output middleware for the E0C33208 is 10-bit accurate, so that control
of one clock width requires 80 kHz × 1024 = 80 MHz clock. The E0C33208 drives the 16-bit timer for
PWM use with a 40 MHz clock, and controls output pulse width in units of half-clock periods.
Combined, this results in 80 MHz equivalent PWM output.

PWM output in high-resolution mode

Compare A = 0

05 1 2 3 4 0 1 05 1 2 3 4 0 1 05 1 2 3 4 0 1 05 1 2 3 4 0 1 05 1 2 3 4 0 1 05 1 2 3 4 0 1

Compare A = 1 Compare A = 2 Compare A = 3 Compare A = 4 Compare A = 7

x

Compare B = 4

Output in normal mode

16-bit timer clock

16-bit timer counter

Output in
 high-resolution mode

x Inverted output in
 normal mode
 Inverted output in
 high-resolution mode

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

E0C33 FAMILY APPLICATION NOTES EPSON 97

� PWM programming using high-resolution mode
In this section, we'll discuss how to produce PWM output in high-resolution mode, using
cc33\sample\drv33208\pwm as an example.

High-resolution PWM control (Excerpt from drv_pwm.c)

void init_16timer1(unsigned short compareA, unsigned short compareB)
{

/* Save PSR and disable all interrupt */
save_psr();

/* Set 16bit timer1 prescaler */
*(volatile unsigned char *)PRESC_P16TS1_ADDR (1)

= PRESC_PTONL_ON | PRESC_CLKDIVL_SEL0;
// Set 16bit timer1 prescaler (CLK/1)

/* Set 16bit timer1 TM1 port enable */
*(volatile unsigned char *)IO_CFP2_ADDR |= IO_CFP23_TM1; (2)

/* Set 16bit timer1 comparison match A data */
*(volatile unsigned short *)T16P_CR1A_ADDR = compareA; (3)

/* Set 16bit timer1 comparison match B data */
*(volatile unsigned short *)T16P_CR1B_ADDR = compareB; (3)

/* Set 16bit timer1 mode, fine mode, comparison buffer enable, output normal */
*(volatile unsigned char *)T16P_PRUN1_ADDR = T16P_SELFM_FM | T16P_SELCRB_ENA

| T16P_OUTINV_NOR | T16P_CKSL_INT | T16P_PTM_ON | T16P_PSET_OFF
| T16P_PRUN_RUN; (4)

/* Restore PSR */
restore_psr();

}

void set_16timer1(unsigned short compareA)
{

/* Set 16bit timer1 comparison match A data */
*(volatile unsigned short *)T16P_CR1A_ADDR = compareA;

}

Initializing the PWM timer (16-bit timer channel 1)

(1) Setting the prescaler
Feed the clock directly to 16-bit timer 1 without dividing it by the prescaler.
/* Set 16bit timer1 prescaler */
*(volatile unsigned char *)PRESC_P16TS1_ADDR

= PRESC_PTONL_ON | PRESC_CLKDIVL_SEL0;
// Set 16bit timer1 prescaler (CLK/1)

(2) Switching over port functions
Switch the functions of pins shared with I/O ports for PWM output.
/* Set 16bit timer1 TM1 port enable */
*(volatile unsigned char *)IO_CFP2_ADDR |= IO_CFP23_TM1;

(3) Setting compare data
Set the compare A data (pulse rise timing) for 16-bit timer 1.
/* Set 16bit timer1 comparison match A data */
*(volatile unsigned short *)T16P_CR1A_ADDR = compareA;

Set the compare B data (cycle) for 16-bit timer 1.
/* Set 16bit timer1 comparison match B data */
*(volatile unsigned short *)T16P_CR1B_ADDR = compareB;

(4) Setting 16-bit timer 1 mode and starting
Set the timer's operational mode and allow PWM output to start.
/* Set 16bit timer1 mode, fine mode, comparison buffer enable, output normal */
*(volatile unsigned char *)T16P_PRUN1_ADDR = T16P_SELFM_FM | T16P_SELCRB_ENA

| T16P_OUTINV_NOR | T16P_CKSL_INT | T16P_PTM_ON | T16P_PSET_OFF | T16P_PRUN_RUN;

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

98 EPSON E0C33 FAMILY APPLICATION NOTES

The following settings are made here:
• Select high-resolution mode (to produce high-resolution PWM output)
• Enable the compare data buffer (to set duty change data asynchronously)
• Select non-inverted output (each cycle begins with 0)
• Select the internal clock (prescaler output clock)
• Turn timer output on (outputs PWM waveform)

When the timer starts, the output waveform begins with 0. When the counter matches compare A, it
goes high (= 1); when the counter matches compare B, it goes low (= 0). These ascending and descend-
ing transitions comprise one cycle, which is determined by the set value of compare B. Unless the
compare A register is changed at this point, the same waveform is output in the next cycle.

Changing the duty ratio
Because the compare data buffer is enabled in (4), compare A data can be written to asynchronously
with a count operation.
void set_16timer1(unsigned short compareA)
{

/* Set 16bit timer1 comparison match A data */
*(volatile unsigned short *)T16P_CR1A_ADDR = compareA;

}

When compare A is rewritten by this function, a new duty ratio takes effect, beginning with the next
cycle. Because the output waveform at the time of the write is unaffected, the waveform can be
changed smoothly.

Compare data
For audio output, set compare B to 80 kHz or higher in terms of cycle and write the data to be D/A
converted directly into the compare A data buffer asynchronously every sampling period (8 to 32
kHz).

80kHz

16kHz
(Sampling rate)

Write within this period

Write 0x100
into compare A

Write 0x300
into compare A

Write 0x200
into compare A

Compare B = 0x3ff
Compare A = 0x200

Compare A changes
to 0x100

Compare A changes
to 0x300

Compare A changes
to 0x200

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

E0C33 FAMILY APPLICATION NOTES EPSON 99

5.4 Examples of Audio Output Analog Circuits

� Power amp
Shown below is the power amp circuit mounted in the DMT33AMP.

0.1µ

0.1µ

(Film)

15k

+V

4
1

2

7
5

8
63

20k

LM4862

1µ
(OS)

–

+
+

Film capacitors are better than ceramic capacitors as capacitors for signal reception. Inexpensive
polyethylene film capacitors may be used without problems. Because ceramic capacitors exhibit
minute hysteresis, use of this capacitor type in a circuit in which signal passes directly may result in
signal distortion. An OS capacitor is most suitable for the 1 µF capacitor used for AC coupling apart
from GND. Although electrolytic capacitors may be used, they affect audio quality, if only slightly.
Carbon film type resistors with 5% accuracy should serve adequately.

The types of speakers generally used for audio applications are 4 Ω to 8 Ω. Commonly used for
portable equipment are 8 Ω speakers; even smaller equipment uses speakers above 8 Ω (e.g. 24 Ω).

� Low-pass filter configured with an op amp
The following shows examples of 8, 16, and 22.05 kHz sampling low-pass filters configured with one
op amp. All are audio quality-prioritized, fourth-order low-pass filters mounted in the DMT33AMP
and DMT33AMP2.

Fourth-order low-pass filter for 8 kHz sampling (DMT33AMP)

+

–
0.01µ

3.3k
20k

0.01µ

+V
3

2

8

4

1

TLC2272

20k30k

62k 470p3300p

To eliminate 8 kHz sampling quantization noise, choose a cutoff frequency in the range 3.5 kHz to 2.7
kHz. In this filter, the cutoff frequency is set to 3.0 kHz. As the cutoff frequency rises, quantization
noise becomes audible at around 3.5 kHz (when using x2 oversampling). The first dividing resistor
lowers the 5 V input to a little above 3 V, matching it to the op amp's rated input voltage (0 to about
3.5 V). The op amp is the third-order filter, and the RC network following it is the first-order filter.
Together, they comprise the fourth-order low-pass filter.

Here, use carbon film resistors with 5% accuracy or better. Metal film resistors are ideal, but the
difference is relatively insignificant, unless minute signals are being handled.

Capacitor selection requires care. When using laminated ceramic capacitors, select a B-characteristic
type that guarantees accuracy of ±10% or better (at worst, ±20%) within the operating temperature
range. Do not use capacitors with +80% -40% Z accuracy. Be particularly leery of inexpensive 0.01 µF
capacitors, since most are Z-accurate. Low-pass filter characteristics deteriorate with lower accuracy.
Although film capacitors are suitable for analog circuits, they are not always ideal for low-cost audio
output.

For the op amp, choose a CMOS-type single-power supply with an input voltage range of 0 to 3.5 V.
An inexpensive op amp is fine. The same applies for DAC output.

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

100 EPSON E0C33 FAMILY APPLICATION NOTES

Fourth-order low-pass filter for 16 kHz sampling (DMT33AMP2)

+

–
0.01µ

1.6k
10k

0.01µ

+V
3

2

8

4

1

TLC2272

10k15k

30k 470p3300p

Configured in the same way as the 8 kHz sampling circuit, this filter has a cutoff frequency set to 6.1
kHz. If all resistor values are halved without changing capacitor values, the cutoff frequency doubles
while the characteristic curve remains unchanged. The same is true when all capacitor values are
halved without changing resistor values. However, because the capacitors are primarily of the E6
series and the range of capacitance values is relatively narrow, E24 series-based resistors are to be
preferred.

E6 series: Six discrete values–10, 15, 22, 33, 47, and 68 (every 1.5-fold)
E24 series: 24 discrete values– 10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68,

75, 82, and 91 (every 1.1-fold)

Although more minute choices are available for some components, it is safer to design with the above-
valued resistors, which are relatively easy to obtain.

Fourth-order low-pass filter for 22.05 kHz sampling (DMT33AMP2)

+

–
0.01µ

1.2k
7.5k

0.01µ

+V
3

2

8

4

1

TLC2272

7.5k11k

22k 470p3300p

This circuit is the same as those described above, with the 8 kHz sampling resistance values replaced
by 8/22 values. The cutoff frequency is 8.3 kHz.

� Low-pass filter comprised of an RC network
The first-order low-pass filter consisting of R and C is configured as shown below. Its cutoff frequency
is obtained by calculating 1/ (2π × R × C).

R

C

The attenuation factor is 6 dB/oct. When frequency doubles, the waveform is halved. For this reason,
audible quantization noise cannot be entirely eliminated. Thus, two such filters are used, with one
placed above the other. The configuration creates an effective low-pass filter for cost-priority systems.
The resistors and capacitors used in this RC low-pass filter also require caution with regard to usage,
just as for op amp based fourth-order filters. Again, we recommend avoiding Z-accuracy capacitors.

Second-order RC low-pass filter for 8 kHz sampling
3.9k 3.9k

0.01µ 0.01µ

This configuration comprises a low-pass filter whose cutoff frequency is 2 kHz. However, because the
preceding and following RC networks have the same impedance, the roll-off near the cutoff frequency
is moderated by interference.

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

E0C33 FAMILY APPLICATION NOTES EPSON 101

Shown below is a circuit with this part improved (used in the DMT33AMP).

390 3.9k

0.1µ 0.01µ

Because the impedance in the following stage differs by a factor of 10 from the preceding stage, the
attenuation characteristics near the cutoff frequency are quite sharp. However, since the resistance in
the preceding stage is small, a current of about 2 mA (when operating at 5 V) flows into it from the
E0C33208 chip. When the resistance is 3.9 kΩ, this current is around 0.2 mA. Note that the PWM
output characteristics are slightly bowl-shaped, a shape determined by the resistance value in the
preceding stage. For example, the output characteristics are bowl-shaped by about 40 mV for 390 Ω,
and by about 4 mV for 3.9 kΩ. This affects the distortion factor slightly.

When connecting to the DAC of the E0C33A104, change the 390 Ω resistor in the preceding stage to
150 Ω, since the DAC's output section contains an internal resistor of approximately 250 Ω in series.

The impedance in the following stage must be lower than that of the power amp's high-pass filter. To
prevent impedance interference, this impedance value must be 1/4 or less — preferably 1/10 or less
— that of the latter. A resistance value of 3.9 kΩ was determined, assuming a power amp input
impedance of 15 kΩ or greater. Because large impedances greater than 1/4 of the power amp value
affect the characteristics of both, overall design considerations must also account for the design of the
power amp.

Of the two circuits above, we recommend the first example (3.9 kΩ + 0.01 µF stacked two-high). If a
greater emphasis on high tones is desired, try changing 0.01 µF to 6800 pF. Note that quantization
noise will increase.

When using a two-high stack of RC networks, take care that the impedance of the following stage is
never lower than that of the preceding stage. Characteristics may otherwise become degraded to the
point of unusability.

RC low-pass filter for 16 kHz sampling

3.9k 3.9k

4700p 4700p

With this circuit, the 0.01 µF capacitor for 8 kHz sampling is nearly halved to 4700 pF. The cutoff
frequency is approximately 4 kHz. If a greater emphasis on high tones is desired, change 4700 pF to
3300 pF. Note that quantization noise will increase.

RC low-pass filter for 22.05 kHz sampling

3.9k 3.9k

3300p 3300p

With this circuit, the 0.01 µF capacitor for 8 kHz sampling is nearly divided by 3 to 3300 pF. The cutoff
frequency is approximately 6 kHz. If a greater emphasis on high tones is desired, change 3300 pF to
2200 pF. Note that quantization noise will increase.

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

102 EPSON E0C33 FAMILY APPLICATION NOTES

� Driving the speaker with a transistor
When using transistors to drive the speaker, design the low-pass filter and power amp unit side by
side. The third-order low-pass filter is adopted here.

Transistor amp circuit for 8 kHz sampling

300 *
(Used for

PWM output)

∗ 47Ω for DAC output

+V

100

300 300 1000p

2SD2474 (Matsushita)
or

2SD2153 (Rohm)

0.1µ

0.22µ

0.1µ 0.1µ

Choose a transistor of 500 or larger hfe (current amplification factor). Because the current is amplified,
the low-pass filter unit must have low impedance. An impedance of about 1 kΩ from the D/A con-
verter unit to the transistor results in a good balance. Larger impedances values rapidly reduce sound
volume, so that a small increase in impedance will result in a dramatic drop in sound volume. Con-
versely, smaller impedances make circuit design difficult, including selection of capacitor capacitance
current values. Nor will this noticeably raise sound volumes. In the above example, the cutoff fre-
quency is approximately 2.5 kHz.

When entering from the DAC of the E0C33A104, change the 300 Ω resistor in the preceding stage to 47
Ω (300 Ω minus the DAC's internal resistor of about 250 Ω). Note that the 0.1 µF capacitor connected
to +V is used to decouple the power supply, and that the 1000 pF is used to prevent oscillation.
Without these capacitors, the transistor output may oscillate. The 100 Ω variable resistor in front of the
speaker is used to control the volume.

Transistor amp circuit for 16 kHz sampling

300 *
(Used for

PWM output)

∗ 47Ω for DAC output

+V

100

300 300 1000p

2SD2153

0.1µ

0.047µ 0.047µ

0.1µ

The low-pass filter's cutoff frequency is about 5 kHz.

Transistor amp circuit for 22.05 kHz sampling

300 *
(Used for

PWM output)

∗ 47Ω for DAC output

+V

100

300 300 1000p

2SD2153

0.1µ

0.033µ 0.033µ

0.068µ

The low-pass filter cutoff frequency is about 8 kHz.

The low-pass filters used here can may be used in combination with the E0C33208 PWM or
E0C33A104 DAC.

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

E0C33 FAMILY APPLICATION NOTES EPSON 103

5.5 Example of a Sound Input Analog Circuit
This section explains how to enter sound using an A/D converter.

Filter unitMicrophone
amp unit

Electrostatic
microphone

unit
ADC

Although the specific configuration of the sound input circuit depends on the input source, we'll examine
it separately in the blocks shown above (configuration of the DMT33AMP circuit).

+

–
0.01µ

68µ

5.1k
20k

0.01µ

0.01µ

+V

+V

+V

5

6

8

4

7

TLC2272

+

–

+V
3

2

8

4

1

TLC2272

20k39k

390

5.6k 470k

470k

330p2200p39k
0.01µ

3300p

1500p

+V

470k

470k

+V

480k

480k

+

1µ
(OS)

1k

+

500k24k

22p

+

–

+V

ADC

5

6

8

4

7

TLC2272
1µ

(OS)

10k

+

100k20k

220p

Electrostatic microphone unit Microphone amp unit Filter unit

� Electrostatic microphone unit

68µ

0.01µ

+V

+V

390

5.6k 470k

470k

+

Electrostatic microphone and AC coupling
The manufacturer's original recommendation for the 5.6 kΩ resistor inserted in the line-feed power to
the electrostatic microphone was originally 1.5 kΩ. This is because the potential difference here
constitutes the input signal level; we therefore increased the resistor value to reduce the burden on the
microphone amp in the next stage, producing a 3.7-fold gain. This also reduces current consumption.
However, an excessively large resistor value reduces current more than necessary, destabilizing the
electrostatic microphone itself. The feasible limit may be around 4 times the original value. We use
metal film resistors here, since minute signals of a magnitude less than mV are being handled.
The noise appearing here, including power supply noise, is amplified in direct proportion to the
amount of gain here and in the next stage. Thus, noise must be smaller here than at any other point in
the circuit. To this end, the analog power supply has a first-order low-pass filter with a cutoff fre-
quency of 5 Hz comprised of 390 Ω and 68 µF, which cuts voice band noise over a wide frequency
range.

68µ

390 5.6k

+

Analog power supply Input

For 68 µF, an electrolytic capacitor may be used without problems.

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

104 EPSON E0C33 FAMILY APPLICATION NOTES

The 0.01 µF capacitor and 470 kΩ resistors, one to GND and one to the power supply, are used for AC
coupling to 1/2 power supply voltage, and to cut the DC component as a first-order high-pass filter.
The cutoff frequency is approximately 70 Hz, below which frequencies are attenuated.

High-pass filter equivalent circuit
0.01µ

235k

2.5V

For resistors used for AC coupling, select ones providing 1% accuracy or better. Unless the exact
middle point is set here, large-scale amplification by the microphone amp may cause the signal to
exceed the VDD–GND range, producing clipping. Depending on the amplification factor, an accuracy
of 0.5% may be required. Because minute signals pass through the high-pass filtering capacitor, use a
film capacitor (polyester). Ceramic or other types of capacitors may degrade audio quality.

� Microphone amp unit

+

–

+V
3

2

8

4

1

TLC2272
1µ

(OS)

1k

+

500k24k

22p

The gain for this AC amplifier may be adjusted in the range of 24-fold to 524-fold using a variable
resistor. Combined with the 3.7-fold gain in the electrostatic microphone unit, this amounts to a gain
of 90-fold to 2,000-fold. However, because 524-fold is used for experimental purposes, the amp as
installed in actual products may need to be configured in two stages, or receive other consideration.
Note that with the same gain, noise is smaller for amplification in one stage than for amplification in
two stages.

Adjust the gain in the range 24 k/1 k = 24-fold to (24 k + 500 k)/1 k = 524-fold using the 500 kΩ
variable resistor. This variable resistor may be preselected from the readily-available values 1, 2, or 5.
The 22 pF capacitor connected in parallel with 24 kΩ and 500 kΩ is a low-pass filter that lowers the
gain in highs. However, to prevent oscillation of the op amp, its cutoff frequency is high, varying with
the variable resistor value. Such feedback loop low-pass filters do little to prevent oscillation. It is
better to lower the gain with the RC low-pass filter at the input, since the cutoff frequency in this case
is fixed and high oscillation prevention effects are already present. But because the input stage is
already AC-coupled, we gave up the idea of using an RC low-pass filter.

The 1 kΩ and 1 µF comprise the first-order high-pass filter with cutoff of 150 Hz. For low-cost systems
discussed in this manual, 50 or 60 Hz — including ham noise and low frequencies — results in
various problems. Along with AC coupling in the preceding stage, this filter reduces these noise
sources to a minimum. The remaining noise is eliminated by a filter in the following stage.

� Filter unit

Fourth-order low-pass filter

+

–
0.01µ

5.1k
20k

0.01µ

+V
5

6

8

4

7

TLC2272

20k39k

330p2200p39k

Mounted on the DMT33AMP board is a microphone low-pass filter with 3.5 kHz cutoff, as shown
above. This filter cuts unwanted high-frequency components, improving perceived sound quality. The
effect is not dramatic, and the filter may be omitted. Here, the amplitude is halved with a dividing
resistor, as matched to the op amp. This is divided by considering the gain of the AC amp in the next
stage.

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

E0C33 FAMILY APPLICATION NOTES EPSON 105

AC amp

0.01µ

+V

470k

470k

+

–

+V
5

6

8

4

7

TLC2272
1µ

(OS)

10k

+

100k20k

220p

This circuit is a 2-fold to 20-fold AC amp. The 0.01 µF and 470 kΩ comprise the first-order high-pass
filter with 70 Hz cutoff, and the 10 kΩ and 1 µF comprise a 15 Hz, first-order high-pass filter, while the
20 kΩ + 100 kΩ (20–120 kΩ) and 220 pF comprise a 50 kHz–10 kHz first-order low-pass filter. If
amplification up to high frequencies is desired, reduce the 220 pF. The cutoff frequency increases in
inverse proportion to this capacitance.

High-pass filter

3300p

1500p

+V

480k

480k

Here, a high-pass filter is used for AC coupling to 1/2 power supply voltage and to cut low tones that
adversely affect sound compression. The relationship between capacitor capacitances and cutoff
frequencies is shown below.
4800 pF: 250 Hz cutoff
3300 pF: 300 Hz cutoff
1500 pF: 500 Hz cutoff

Although the default capacitance for the DMT33AMP is 4800 pF, other capacitances may be tried,
depending on the usage environment. For example, the VSX sound compression included in the
VOX33 sound compression/expansion middleware may yield better results at 500 Hz, since it is
susceptible to DC noise.

� About the analog power supply
Using the same power supply in both analog and digital systems leaves systems susceptible to noise
and other problems. Use dedicated batteries and linear regulators in the analog system, separate from
the digital system. Dividing the analog power supply between heavy load blocks (e.g. speaker) and
minute voltage blocks (microphone) will prove more effective. The use of multiple regulators is ideal.
A simpler alternative, one-point grounding (connecting to GND at one point centering around the
power supply), helps eliminate common impedance, which is also beneficial.

Digital systemPositive
power
supply Analog power system

Comprises common impedance,
so make as short as possible.

Analog microphone system

AC noise is absorbed by
the decoupling capacitor in each

Digital systemGND

Analog power system

Analog microphone system

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

106 EPSON E0C33 FAMILY APPLICATION NOTES

Microcomputer programs cause loads to fluctuate periodically, which as power supply fluctuations
affect microphone input. To absorb these fluctuations, separate the regulator. Or better, insert a low-
pass filter with several Hz to 10 Hz cutoff in the power supply for the electrostatic microphone, as
with the MDT33AMP.

68µ

+V

390

5.6k
+

Due to their noise, even linear regulators (especially of the low-drop type) affect microphone input.
For the sake of safety, we strongly recommend attaching this low-pass filter to the microphone input
circuit.

For switching-mode power supplies as used in the DMT33005, use an OS capacitor with low-ESR or
an SP cap for the output capacitor to minimize ripples. Never use electrolytic capacitors; they increase
noise. In DMT33005 + DMT33AMP systems, noise is suppressed with only the low-pass filter for the
microphone power supply, based on various characteristics measurements. However, this solution is
imperfect. The AC coupling part and op amp power supply issue remain to be resolved. We recom-
mend using linear regulators, which are less problematic than switching regulators. When using
switching regulators, be sure to verify usefulness with the actual product, and take various noise
preventive measures.

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

E0C33 FAMILY APPLICATION NOTES EPSON 107

5.6 15-bit D/A Conversion by PWM
The E0C33208 is able to support 8 kHz to 48 kHz sampling frequencies up to 15-bit precision, thanks to
Seiko Epson's exclusive hybrid PWM technology. This makes possible high audio quality approaching
CD quality, at extremely low cost.

The hybrid PWM technology is implemented by a combination of the following three techniques:

(1) High-resolution PWM
By controlling PWM output in units of half-clock periods as described in Section 5.3, this technique
can produce speech/music output of up to 10-bit precision in a single channel.

(2) Dual PWM
Through a synthesis of two channels of high-resolution PWM, this technique can produce speech/
music output with a precision of up to 15 bits.

(3) Soft adjust PWM
During PWM output, this technique deploys corrective software processing to produce high-accuracy
output, with a linearity error as small as 0.01%.

This section discusses dual PWM and soft-adjust PWM.

� Dual PWM

Basic principle
Dual PWM is a technique used to extend bit precision by forwarding the same output data from two
channels in high-resolution PWM mode, then synthesizing them with external resistors. We recom-
mend synthesizing the main and sub channels at a ratio of 1 to 64, and directly synthesizing raw
PWM waveforms before passing them through the low-pass filter.

7.5k

480k

High-resolution PWM main channel output

High-resolution PWM sub channel output

To low-pass filter

480 / 7.5 = 64.0

High-resolution PWM provides extremely high differentiation accuracy, with an error of 1/100 LSB or
less when actually measured. (Use PLL at x2 or better. Using x1 OSC3 directly as is destroys the duty
ratio, making it impossible to obtain this level of differentiation accuracy. For 1-channel high-resolu-
tion PWM, x1 may be used without problems.)

By adding the sub PWM divided exactly by 64 to the main PWM, we can add a precision of 6 bits to
the bit precision of the main channel alone. For the main channel, use a carrier frequency of 160 kHz
or higher for noise reduction (320 kHz is the upper limit; do not use any carrier frequency higher than
that). As a result, the main channel is 9 bits precise (when operating at 40 MHz or better). Adding 6
sub-channel bits improves overall precision to 15 bits.

Resistance accuracy
The accuracy of resistors configuring the 1:64 ratio affects the accuracy of the D/A conversion. If the
resistors are exactly 480.0 kΩ and 7.5 kΩ, no problem arise. However, for reasons involving manufac-
turing cost, the resistors used in mass production have ±1% or ±0.5% errors. In addition, 480 kΩ
resistors are difficult to obtain; it is not available in the E24 series. Two resistors, 470 kΩ + 10 kΩ, may
be substituted. Most affected by this error is the change part of the main channel. If the sub channel is
exactly 1/64 of the main channel, the sub channel changes from 0x3f to 0x0 in the main channel's
change part. An error in the combined resistance causes this relative position to drift. The differential
error in only this part is as follows:
Resistor with 0.1% error: 15 bits ±1 LSB or less
Resistor with 0.5% error: 14 bits ±1 LSB or less
Resistor with 1% error: 13 bits ±0.7 LSB or less

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

108 EPSON E0C33 FAMILY APPLICATION NOTES

n+3n+2n+1n

High-resolution PWM
Main channel output

A change in the 1:64 ratio
results in an error in the main
channel change part.

For the error to fall within ±1 LSB,
the ratio must be at least
±1/64 = ±1.5% accurate.

High-resolution PWM
Sub channel output
(main channel × 1/64)

Linearity error of differentiation
is ±1/100 LSB for both main and sub

0

0x3f
Added

Since a differentiation accuracy of 15 bits ±0.5 LSB more or less applies to 63/64 patterns in which the
sub channel changes to other values, audio quality is not degraded as much by the error. Neverthe-
less, we recommend using resistors with small error values, about 0.5% accuracy, if possible. At worst,
try using resistors with 1% error. Do not use resistors with 5% error values.
The two to three resistors used to combine resistance are the only resistors requiring high accuracy.
Resistors with 5% error or so may be used for the low-pass filter in the following stage.

� Circuit example (DMT33AMP3)

Low-pass filter for 32 kHz or higher sampling

Fourth-order op amp block

+

–
0.01µ

820
5.1k

0.01µ

+V

TLC2272

5.1k

7.5k(±0.5%)
16k 470p3300p

PWM sub channel

PWM main channel

10k(±1%)470k(±0.5%)

Third-order RC network
3.9k 3.9k

1000p1000p 1000p
3.9k(±0.5%)

PWM sub channel

PWM main channel

10k(±1%)240k(±0.5%)

Before the ordinary low-pass filter, add the first-stage synthesizing resistors and connect two-channel
PWM outputs. Make sure the ratio of the synthesizing resistors is as close to 64.0-fold as possible (by
calculation, within ±0.2% error, from 63.87-fold to 64.13-fold). Use resistance values in the E24 series
that are readily available. For difficult to obtain resistance values, use two resistors in pairs as an
alternative. Use high-accuracy (0.5% to 1%) resistors for the synthesizing resistors. The resistance
values in the above example fall within ±0.2%, as follows:
480 k/7.5 k = 64.0 (480k = 470 k + 10 k)
250 k/3.9 k = 64.10 (250k = 240 k + 10 k)

With an emphasis on the attenuation factor, the RC filter is stacked three-high. Although the differ-
ence is infinitesimal for 32 kHz sampling, a fourth-order filter using an op amp is more effective.

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

E0C33 FAMILY APPLICATION NOTES EPSON 109

For the circuits shown below, capacitor values have been changed to adjust the cutoff frequency,
making the circuits useful for 22.05 kHz sampling and 16 kHz sampling, respectively. In either case,
the ratio of the first-stage synthesizing resistors is 1:64.

Low-pass filter for 22.05 kHz sampling

Fourth-order op amp method

+

–
0.015µ

820
5.1k

0.015µ

+V
3

2

8

4

1

TLC2272

5.1k

16k 680p4700p
7.5k(±0.5%)

PWM sub channel

PWM main channel

10k(±1%)470k(±0.5%)

Third-order RC network method
3.9k 3.9k

1500p1500p 1500p
3.9k(±0.5%)

PWM sub channel

PWM main channel

10k(±1%)240k(±0.5%)

Low-pass filter for 16 kHz sampling

Fourth-order op amp method

+

–
0.022µ

820
5.1k

0.022µ

+V
3

2

8

4

1

TLC2272

5.1k

16k 1000p6600p
7.5k(±0.5%)

PWM sub channel

PWM main channel

10k(±1%)470k(±0.5%)

Third-order RC network method
3.9k 3.9k

2200p2200p 2200p
3.9k(±0.5%)

PWM sub channel

PWM main channel

10k(±1%)240k(±0.5%)

� Linearity correction by software
High-resolution PWM technology offers a differentiation accuracy of 1/100 LSB or better (actual
measured value), which may be said to approach ultimate accuracy. The linearity error is relatively
good, with bowl-shaped characteristics. This is because PWM outputs have minute differences in
impedance between high and low levels. If the difference between the low-pass filter's first-stage
resistance and the E0C chip's internal equivalent resistance is known, the drift can be theoretically
calculated. For example, if the first-stage resistance is 3.9 kΩ when the PWM output voltages are 0.0 V
and 5.0 V, the middle part of the output curve deflects 2.5 mV downward. The deflection is 1.3 mV for
7.5 kΩ, and 25 mV for 390 Ω.

5V

0V
0x0 0x200

2.5mVOutput
voltage

Output data
0x3ff

This deflection is corrected using a table like the one (for 3.9 kΩ) shown below.

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

110 EPSON E0C33 FAMILY APPLICATION NOTES

Table example
const unsigned char ucAdj18 [] = { // PWM adjust for 3.9Kohm with 18bit precision

0x4, // 0
0x8, // 1
0xc, // 2
0x10, // 3
0x14, // 4
0x17, // 5
0x1b, // 6
0x1f, // 7
0x22, // 8
0x26, // 9
0x29, // a
0x2d, // b
0x30, // c
0x33, // d
0x36, // e
0x39, // f
0x3c, // 10
0x3f, // 11
0x42, // 12
0x45, // 13
0x48, // 14
0x4b, // 15
0x4d, // 16
0x50, // 17
0x52, // 18
0x55, // 19
0x57, // 1a
0x5a, // 1b
0x5c, // 1c
0x5e, // 1d
0x60, // 1e
0x62, // 1f
0x64, // 20
0x66, // 21
0x68, // 22
0x6a, // 23
0x6c, // 24
0x6d, // 25
0x6f, // 26
0x71, // 27
0x72, // 28
0x74, // 29
0x75, // 2a
0x76, // 2b
0x77, // 2c
0x79, // 2d
0x7a, // 2e
0x7b, // 2f
0x7c, // 30
0x7d, // 31
0x7e, // 32
0x7e, // 33
0x7f, // 34
0x80, // 35
0x80, // 36
0x81, // 37
0x81, // 38
0x82, // 39
0x82, // 3a
0x83, // 3b
0x83, // 3c
0x83, // 3d
0x83, // 3e
0x83, // 3f
0x83, // 40
0x83, // 41
0x83, // 42
0x83, // 43
0x82, // 44

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

E0C33 FAMILY APPLICATION NOTES EPSON 111

0x82, // 45
0x82, // 46
0x81, // 47
0x80, // 48
0x80, // 49
0x7f, // 4a
0x7e, // 4b
0x7e, // 4c
0x7d, // 4d
0x7c, // 4e
0x7b, // 4f
0x7a, // 50
0x79, // 51
0x78, // 52
0x76, // 53
0x75, // 54
0x74, // 55
0x72, // 56
0x71, // 57
0x6f, // 58
0x6d, // 59
0x6c, // 5a
0x6a, // 5b
0x68, // 5c
0x66, // 5d
0x64, // 5e
0x62, // 5f
0x60, // 60
0x5e, // 61
0x5c, // 62
0x5a, // 63
0x57, // 64
0x55, // 65
0x52, // 66
0x50, // 67
0x4d, // 68
0x4b, // 69
0x48, // 6a
0x45, // 6b
0x42, // 6c
0x3f, // 6d
0x3c, // 6e
0x39, // 6f
0x36, // 70
0x33, // 71
0x30, // 72
0x2d, // 73
0x29, // 74
0x26, // 75
0x22, // 76
0x1f, // 77
0x1b, // 78
0x17, // 79
0x14, // 7a
0x10, // 7b
0xc, // 7c
0x8, // 7d
0x4, // 7e
0x0, // 7f

};

The values in this table have been created as 18-bit precision data by subtracting correction values
from 7 high-order bits, so that the values are ultimately added after right-shifting three bits before use
for correction. By this correction, the linearity error can be suppressed to about ±0.2 mV on average,
or down to about ±1 mV even for large errors. An error of ±1 mV is equivalent to 12 bits ±1 LSB for 5
V.

Unless corrected, the error appears in the waveform as distortion. But errors of up to about 2.5 mV
produce no perceptible differences to human ears, and generally does not require correction. In
speech middleware, corrective processing is omitted to alleviate software burdens.

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

112 EPSON E0C33 FAMILY APPLICATION NOTES

5.7 Melody Output using a Piezoelectric Buzzer
In this section, we discuss producing melody output using PWM and connecting a piezoelectric buzzer.

� PWM and melody
Human ears can discriminate tone on the musical scale by sound frequency. For example, a 131 Hz
tone is heard as do (C3). A 262 Hz tone is heard as a do (C4) one-octave higher, while a 65.5 Hz tone is
heard as a do (C2) one-octave lower. When one octave (up to 2-fold frequency) is equally divided by
12, with frequency increased by about 6% for each, musical intervals are recognized as being raised by
a halftone at a time. The musical scale is expressed in this way.

Seiko Epson's melody33 middleware and general melody ICs use PWM (square) waveforms to
express these tones. Note that waveforms with perfect 50% duty cycles bear three-fold harmonics,
such as 3 times and 9 times the fundamental frequency, providing fairly extensive high-pitched
components in addition to the actual musical scale.

� 1-channel output
131Hz

Do (C3)

1k

Piezoelectric buzzer

TM0

E0C33

100k

� 2-channel synthesis output

1k

1k Piezoelectric buzzer

TM0

TM1

E0C33

100k

� Differential output

1k

1k

Piezoelectric buzzer

TM0

TM1

E0C33

100k

� Differential output, 2-channel synthesis output

1k
Piezoelectric buzzer

TM2

1k

1k

TM0

TM1

1k
TM3

E0C33

100k

The output waveform of 131 Hz produces a sound
corresponding to do (C).

One-channel output drives a piezoelectric buzzer, as
shown here.

Two or more channels can be synthesized, as shown
here.

Sound volume can be increased through differential
output, using inverted PWM on one channel.

Two-channel synthesis and differential output can be
used in combination using two differential outputs.

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

E0C33 FAMILY APPLICATION NOTES EPSON 113

5.8 <Reference Data> Characteristic Graphs

� RC second-order low-pass filter frequency response (for 8 kHz sampling)

(1) fc = 2.5 kHz
390

(150Ω for DAC output)

3.9k

0.1µ 0.01µ
+

–

IN OUT

6.00

-6.00

-18.00

-30.00

-42.00

-54.00
100 1k 10k 100k

Frequency [Hz]

G
ai

n
[d

B
]

Ta = 27°C

fc = 2.5kHz

-14dB

-28dB

(2) fc = 1.7 kHz
3.9k 3.9k

0.01µ 0.01µ
+

–

IN OUT

6.00

-6.00

-18.00

-30.00

-42.00

-54.00
10 100 1k 10k 100k

Frequency [Hz]

G
ai

n
[d

B
]

Ta = 27°C

fc = 1.7kHz

-16dB

-29dB

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

114 EPSON E0C33 FAMILY APPLICATION NOTES

� Transistor third-order low-pass filter frequency response (for 8 kHz sampling)

fc = 2.5 kHz

+V

300

8

300 300
2SD2153

0.22µ

0.1µ 0.1µ

(50Ω for DAC output)

+

–

IN

OUT

-6.00

-18.00

-30.00

-42.00

-54.00

-66.00
100 1k 10k 100k

Frequency [Hz]

G
ai

n
[d

B
]

Ta = 27°C

-16dB

-34dB

fc = 2.5kHz

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

E0C33 FAMILY APPLICATION NOTES EPSON 115

� Op amp fourth-order low-pass filter frequency response (for 8 kHz sampling)

fc = 3 kHz

+

–
0.01µ 100k

3.3k
20k

0.01µ

+V

1

TLC2272

20k30k

62k 470p3300p
+

–

IN
OUT

6.00

-6.00

-18.00

-30.00

-42.00

-54.00
100 1k 10k 100k

Frequency [Hz]

G
ai

n
[d

B
]

Ta = 27°C

fc = 3.0kHz

-31dB

� RC third-order low-pass filter frequency response (for 16 kHz sampling)

fc = 3.7 kHz
3.9k 3.9k

2200p 2200p

3.9k

2200p
+

–

IN OUT

6.00

-6.00

-18.00

-30.00

-42.00

-54.00
100 1k 10k 100k

Frequency [Hz]

G
ai

n
[d

B
]

Ta = 27°C

fc = 3.7kHz

-14dB

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

116 EPSON E0C33 FAMILY APPLICATION NOTES

� AC amp high-pass filter frequency response (for 8 kHz sampling)

0.01µ
C

+V

480k

480k

+V

480k

480k

+

–

+V
ADC

TLC2272
1µ

1k

+

R

(1) R = 24kΩ, C = 0.0048µF (fc = 250Hz)
(2) R = 24kΩ, C = 0.0015µF (fc = 500Hz)

22p

+

–

IN 20k

20p

OUT

(1) fc = 250 Hz

54.00

42.00

30.00

18.00

6.00

-6.00
10 100 1k 10k 100k

Frequency [Hz]

G
ai

n
[d

B
]

Ta = 27°C

fc = 250Hz

(2) fc = 500 Hz

54.00

42.00

30.00

18.00

6.00

-6.00
10 100 1k 10k 100k

Frequency [Hz]

G
ai

n
[d

B
]

Ta = 27°C

fc = 500Hz

AMERICA

EPSON ELECTRONICS AMERICA, INC.

- HEADQUARTERS -
1960 E. Grand Avenue
EI Segundo, CA 90245, U.S.A.
Phone: +1-310-955-5300 Fax: +1-310-955-5400

- SALES OFFICES -

West
150 River Oaks Parkway
San Jose, CA 95134, U.S.A.
Phone: +1-408-922-0200 Fax: +1-408-922-0238

Central
101 Virginia Street, Suite 290
Crystal Lake, IL 60014, U.S.A.
Phone: +1-815-455-7630 Fax: +1-815-455-7633

Northeast
301 Edgewater Place, Suite 120
Wakefield, MA 01880, U.S.A.
Phone: +1-781-246-3600 Fax: +1-781-246-5443

Southeast
3010 Royal Blvd. South, Suite 170
Alpharetta, GA 30005, U.S.A.
Phone: +1-877-EEA-0020 Fax: +1-770-777-2637

EUROPE

EPSON EUROPE ELECTRONICS GmbH

- HEADQUARTERS -
Riesstrasse 15
80992 Munich, GERMANY
Phone: +49-(0)89-14005-0 Fax: +49-(0)89-14005-110

- GERMANY -
SALES OFFICE
Altstadtstrasse 176
51379 Leverkusen, GERMANY
Phone: +49-(0)2171-5045-0 Fax: +49-(0)2171-5045-10

- UNITED KINGDOM -
UK BRANCH OFFICE
Unit 2.4, Doncastle House, Doncastle Road
Bracknell, Berkshire RG12 8PE, ENGLAND
Phone: +44-(0)1344-381700 Fax: +44-(0)1344-381701

- FRANCE -
FRENCH BRANCH OFFICE
1 Avenue de l' Atlantique, LP 915 Les Conquerants
Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE
Phone: +33-(0)1-64862350 Fax: +33-(0)1-64862355

ASIA

- CHINA -
EPSON (CHINA) CO., LTD.
28F, Beijing Silver Tower 2# North RD DongSanHuan
ChaoYang District, Beijing, CHINA
Phone: 64106655 Fax: 64107319

SHANGHAI BRANCH
4F, Bldg., 27, No. 69, Gui Jing Road
Caohejing, Shanghai, CHINA
Phone: 21-6485-5552 Fax: 21-6485-0775

- HONG KONG, CHINA -
EPSON HONG KONG LTD.
20/F., Harbour Centre, 25 Harbour Road
Wanchai, HONG KONG
Phone: +852-2585-4600 Fax: +852-2827-4346
Telex: 65542 EPSCO HX

- TAIWAN -
EPSON TAIWAN TECHNOLOGY & TRADING LTD.
10F, No. 287, Nanking East Road, Sec. 3
Taipei, TAIWAN
Phone: 02-2717-7360 Fax: 02-2712-9164
Telex: 24444 EPSONTB

HSINCHU OFFICE
13F-3, No. 295, Kuang-Fu Road, Sec. 2
HsinChu 300, TAIWAN
Phone: 03-573-9900 Fax: 03-573-9169

- SINGAPORE -
EPSON SINGAPORE PTE., LTD.
No. 1 Temasek Avenue, #36-00
Millenia Tower, SINGAPORE 039192
Phone: +65-337-7911 Fax: +65-334-2716

- KOREA -
SEIKO EPSON CORPORATION KOREA OFFICE
50F, KLI 63 Bldg., 60 Yoido-dong
Youngdeungpo-Ku, Seoul, 150-763, KOREA
Phone: 02-784-6027 Fax: 02-767-3677

- JAPAN -
SEIKO EPSON CORPORATION
ELECTRONIC DEVICES MARKETING DIVISION

Electronic Device Marketing Department
IC Marketing & Engineering Group
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5816 Fax: +81-(0)42-587-5624

ED International Marketing Department Europe & U.S.A.
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5812 Fax: +81-(0)42-587-5564

ED International Marketing Department Asia
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5814 Fax: +81-(0)42-587-5110

International Sales Operations

In pursuit of “Saving” Technology, Epson electronic devices.
Our lineup of semiconductors, liquid crystal displays and quartz devices

assists in creating the products of our customers’ dreams.
Epson IS energy savings.

ELECTRONIC DEVICES MARKETING DIVISION

� EPSON Electronic Devices Website

http://www.epson.co.jp/device/
Issue MAY 2000, Printed in Japan M A

	1 ABOUT THE E0C33000 CPU CORE
	1.1 Outline
	1.2 Memory Map
	1.3 Trap Table
	1.4 CPU Registers
	1.5 Instruction Set Features
	1.6 Instruction Execution Speed
	1.7 Multiplier/Accumulator Functions
	1.8 Instruction Set List

	2 WRITING PROGRAMS FOR THE E0C33
	2.1 Vector Table and Boot Routine
	2.2 Interrupt Handling Routines
	2.3 C and Assembler Mixed Programming
	2.4 Tools and Files for Assembly
	2.5 C and Code Optimization
	2.6 Mapping by Linker

	3 PROGRAMMING THE E0C33 PERIPHERAL FUNCTIONS
	3.1 Setting Up BCU
	3.2 Setting Up the 8-bit Timer
	3.3 Setting Up 16-bit Timer
	3.4 Setting Up Serial Interface
	3.5 Setting Up A/D Converter
	3.6 About IDMA Settings
	3.7 Setting Up HSDMA
	3.8 Clock Settings
	3.9 SLEEP
	3.10 Other Sample Programs

	4 THE BASIC E0C33 CHIP BOARD CIRCUIT
	4.1 Power Supply
	4.2 Oscillation Circuit
	4.3 Reset Circuit
	4.4 Connecting ROM
	4.5 Connecting Flash Memory
	4.6 Connecting SRAM
	4.7 Connecting DRAM
	4.8 Connecting 5 V ROM and 3.3 V Bus
	4.9 Ports
	4.10 Connections for Debugging

	5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM
	5.1 General Sound Output Circuits Based on Microcomputer
	5.1.1 D/A Converter Unit
	5.1.2 Low-pass Filter Unit
	5.1.3 Power Amp and Speaker Unit

	5.2 About Sampling Frequency and Bit Precision vs. Audio Quality
	5.3 10-bit D/A Conversion by PWM
	5.4 Examples of Audio Output Analog Circuits
	5.5 Example of a Sound Input Analog Circuit
	5.6 15-bit D/A Conversion by PWM
	5.7 Melody Output using a Piezoelectric Buzzer
	5.8 <Reference Data> Characteristic Graphs

