MF909-03 EPSON

CMOS 4-BIT SINGLE CHIP MICROCOMPUTER EOC63 Family

ASSEMBLER PACKAGE MANUAL

ENERGY

SAVING
EPSON

SEIKO EPSON CORPORATION

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written
permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice.
Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material
or due to its application or use in any product or circuit and, further, there is no representation that this material
is applicable to products requiring high level reliability, such as medical products. Moreover, no license to any
intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that
anything made in accordance with this material will be free from any patent or copyright infringement of a third
party. This material or portions thereof may contain technology or the subject relating to strategic products under
the control of the Foreign Exchange and Foreign Trade Control Law of Japan and may require an export license
from the Ministry of International Trade and Industry or other approval from another government agency. Please
note that "EOC" is the new name for the old product "SMC". If "SMC" appears in other manuals understand that
it now reads "EOC".

MS-DOS, Windows and Windows NT are registered trademarks of Microsoft Corporation, U.S.A.

PC/AT and IBM are registered trademarks of International Business Machines Corporation, U.S.A.

Pentium is a registered trademark of Intel Corporation.

All other product names mentioned herein are trademarks and/or registered trademarks of their respective owners.

© SEIKO EPSON CORPORATION 1999 Al rights reserved.

INTRODUCTION

Introduction

This document describes the development procedure from assembling source files to debugging. It also
explains how to use each development tool of the EOC63 Family Assembler Package common to all the
models of the EOC63 Family.

How To Read the Manual

This manual was edited particularly for those who are engaged in program development. Therefore, it
assumes that the reader already possesses the following fundamental knowledge:

* Basic knowledge about assembler language

¢ Basic knowledge about the general concept of program development by an assembler

¢ Basic operating methods for Windows®95 or Windows NT®4.0

Before installation

See Chapter 1. Chapter 1 describes the composition of this package, and provides a general outline of
each tool.

Installation
Install the tools following the installation procedure described in TBD ("Install.txt (Install.pdf)").

To understand the flow of program development
See the program development flow in Chapter 2.

For coding

See the necessary parts in Chapter 4. Chapter 4 describes the grammar for the assembler language as
well as the assembler functions. Also refer to the following manuals when coding:

EO0C63xxx Technical Manual

Covers device specifications, and the operation and control method of the peripheral circuits.
EO0C63000 Core CPU Manual

Has the instructions and details the functions and operation of the Core CPU.

For debugging

Chapter 8 gives detailed explanation of the debugger. Sections 8.1 to 8.8 give an overview of the
functions of the debugger. See Section 8.9 for details of the debug commands. Also refer to the follow-
ing manuals to understand operations of the In-Circuit Emulator ICE63 and the Peripheral Circuit
Board PRC63xxx:

EO0C63 Family In-Circuit Emulator (ICE63) Manual
Explains the functions and handling methods of the In-Circuit Emulator ICE63.

EOC63 Family Peripheral Circuit Board (PRC63xxx) Manual
Covers the functions and handling methods of the peripheral circuit board that provides the
hardware specifications of each model to the ICE63.
For details of each tool
Chapters 3 to 8 explain the details of each tool. Refer to it if necessary.

Once familiar with this package

Refer to the listings of instructions and commands contained in Appendices.

EO0C63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON i

INTRODUCTION

Manual Notations

This manual was prepared by following the notation rules detailed below:

(1) Sample screens
The sample screens provided in the manual are all examples of displays under Windows®95. These
displays may vary according to the system or fonts used.

(2) Names of each part
The names or designations of the windows, menus and menu commands, buttons, dialog boxes, and
keys are annotated in brackets []. Examples: [Command] window, [File | Exit] menu item ([Exit]
command in [File] menu), [Key Break] button, [q] key, etc.

(3) Names of instructions and commands
The CPU instructions and the debugger commands that can be written in either uppercase or lower-

case characters are annotated in lowercase characters in this manual, except for user-specified sym-
bols.

(4) Notation of numeric values
Numeric values are described as follows:

Decimal numbers: Not accompanied by any prefix or suffix (e. g., 123, 1000).
Hexadecimal numbers:Accompanied by the prefix "0x" (e. g., 0x0110, Ox{fff).
Binary numbers: Accompanied by the prefix "0b" (e. g., 0b0001, 0b10).

However, please note that some sample displays may indicate hexadecimal or binary numbers not
accompanied by any symbol. Moreover, a hexadecimal number may be expressed as xxxxh, or a
binary number as xxxxb, for reasons of convenience of explanation.

(5) Mouse operations
To click: The operation of pressing the left mouse button once, with the cursor (pointer)
placed in the intended location, is expressed as "to click". The clicking operation of
the right mouse button is expressed as "to right-click".
To double-click: Operations of pressing the left mouse button twice in a row, with the cursor (pointer)
placed in the intended location, are all expressed as "to double-click".

To drag: The operation of clicking on a file (icon) with the left mouse button and holding it
down while moving the icon to another location on the screen is expressed as "to
drag".

To select: The operation of selecting a menu command by clicking is expressed as "to select".

(6) Key operations
The operation of pressing a specific key is expressed as "to enter a key" or "to press a key".
A combination of keys using "+", such as [Ctrl]+[C] keys, denotes the operation of pressing the [C] key
while the [Ctr]] key is held down. Sample entries through the keyboard are not indicated in [].
Moreover, the operation of pressing the [Enter] key in sample entries is represented by "00".
In this manual, all the operations that can be executed with the mouse are described only as mouse
operations. For operating procedures executed through the keyboard, refer to the Windows manual or
help screens.

(7) General forms of commands, startup options, and messages
Items given in [] are those to be selected by the user, and they will work without any key entry
involved.
An annotation enclosed in < > indicates that a specific name should be placed here. For example, <file
name> needs to be replaced with an actual file name.
Items enclosed in { } and separated with | indicate that you should choose an item. For example, {A |
B} needs to have either A or B selected.

i EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CONTENTS

Contents

CHAPTER L GENERAL . tente e e ettt ettt e et et e e e et e e e e e e e e e enaens 1
I O == U= 1

1.2 TOOI COMPOSILION ...eeeiiiiiiiiiiee ittt st e e e s b ee e e aaes 2
1.2.1 Composition Of PACKAGEccoiiiiiiiiieiiiieiee e 2
1.2.2 Outline of SOftware TOOIScoiiiiiiiiiiee e 2

1.3 WOrking ENVIFONMENTooiiiiiiiiiiiiiie e 3

1.4 INSTANALION ...oooiiiiiiieeeeee e 3

1.5 Directories and Files after Installationoovvviiiiiiiiii e 4

CHAPTER 2 SOFTWARE DEVELOPMENT PROCEDURE. ettt 5
2.1 Software Development FIOW ... 5

2.2 Development Using WOrK BENCHcuuiiiiiiiiiiiiie e 6
2.2.1 Starting Up the WOrk BeNChcoooiiiiiiic e 6
2.2.2 Creating @ NEW PrOJECLc.coiiiiiiiiieiiiiie e 7
2.2.3 Editing SOUICE FlESeeiiiiiiiei e 7
2.2.4 Configuration of TOOI OPLIONScccuviiiieiiiiiiie e 9
2.2.5 Building an Executable ODJecCt ..o, 10
2.2.6 Debugging

CHAPTER 3 WWORK BENCH ... iiiiiiie ettt e et e et e e e e e ean e eaaaes 12
Bl FRAIUIES. ..ottt a 12
3.2 Starting Up and Terminating the Work BeNnch ..., 12

3.3 WOrk BENCh WINUOWS ...ttt e e e 13
3.3.1 WIiNndow ConfiguIationccceeiriiieiiiie e 13
3.3.2 WINAOW ManipUIAtioNccueeiiiiiiiiiieiiee et 14

3.4 Toolbar and BUONSuuiiiiiiiiee e e e e e e
3.4.1 Standard TOOIDATccoiiiiiiiiee e
3.4.2 BUIld TOOIDA ...
3.4.3 WINAOW TOOIDAY ...
3.4.4 Toolbar Manipulation
3.4.5 [Insert into project] Button on a [Edit] WINAOWc..ceeeeiiiiiiieeiiiiineen. 20

3.5 MEBINUS .. e e 21
3.5.1 [File] Menu
3.5.2 [Edit] Menu
3.5.3[View] Menu........occvveeeernnnnn.
3.5.4 [Insert] Menu
3.5.5 [Build] Menu
3.5.6 [Tools] Menu

3.5.7 [WINAOW] MENU ..t
3.5.8 [HEIP] MENU .t
3.6 Project and WOrK SPACEcooiiiiiiiiiiiiiiee e 25

3.6.1 Creating & NEW PrOJECLcccoiiuiiiiiiiiiiiie e 25
3.6.2 Inserting SoUrces iNt0 @& PrOJECTcuuveiiiiiiiiieie e 26
3.6.3 [ProjeCt] WINGOWeeiiiiiiiiiiie ettt 27
3.6.4 Opening and CloSing @ ProJECEuueiiiiiiiiiie e 27
3.6.5 Files in the Work Space FOlder ... 28

EO0C63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON iii

CONTENTS

CHAPTER 4

3.7

3.8

3.9

3.10
3.11
3.12
3.13

PASSEMBLER v tttteeteeseeease s en s e eae e s e ee e e e e e ee s e s e e e e e s e e e et entenee et enrenenaeenranns 46

4.1
4.2

4.3
4.4
45

4.6

4.7

SOUCE EQITOF i 29
3.7.1 Creating a New Source or Header File ... 29
3.7.2 Loading and Saving Files ...

3.7 3 EdIt FUNCHON ..eiiiiiiiiiic e

3.7.4 Tag JUMP FUNCHON ..cooiiiiiiiee ettt e e

T N3 = 1101 1] o PP SP PP UPT T PPPPPRP

BUIIA TASK ..t
3.8.1 Preparing a Build TaSKc.cueeiiiiiiiiiiiee e

3.8.2 Building an Executable Object
3.8.3 DEDUGTING - ..etteeeeeiiitit ettt
3.8.4 Executing Other TOOIScoouiiiiiiiiii e
TOOI OPLION SELHNGS ...t
3.9.1 ASSEMDIET OPLIONS ...eeiiiiiiiiiee ettt
3.9.2 LINKEI OPLIONS ..ttt e e e e
3.9.3 DEDUJGEr OPLIONS ...eeiiiiiiiiieeeiiie ettt e e e s et e e e e nibe e e e e e anes
3.9.4 HEX CoNnVverter OPLIONScuoiiiiiiiieeiiiiee et ee e e senee e

WOIK BENCH OPLIONS ...ttt
ShOrt-CULt KEY LIST ...ciiiiiiiiii i e e e e e e e e e e e e e e e aaaeees
EITOr MESSAQES .. iiiiiiiiii ittt e e e e e e et e et e e e e e aebnneeaaees
[(=T07= 101 o] 1SS

0] (o1 0] 1R 46

INPUL/OULPUL FIES . 46
A 2.1 INPUL FIIE ettt 46
4.2.2 OULPUL FIES .. a7

Starting Methodo.oveviiiiic e 48
Y oS IST= (o [S PP 49

Grammar of ASSEMDIY SOUICEccoiiiiiiiiiiii e 50
4.5.1 STAEMENTS ...oeiiiiiiie ettt e e e e e e e s s e e e e e nanne 50
4.5.2 Instructions (Mnemonics and Pseudo-inStructions)ccccccveerueeennnnennn 52
4.5.3 SYMDOIS (LADEIS)eeiiiiieeii e 53
4.5.4 COMMENTS ...eiiiiiiiiiiiee ettt e e e s e e e e s e ennreeeeeas

4.5.5 Blank Lines
4.5.6 Register Names
4.5.7 Numerical NOTALIONSc..viiiiiieiiiie et 56
4.5.8 OPEIALOISoviiiiiiiiieii ettt e e e e s e s 57
4.5.9 Location Counter SYmbDOol "$"ccooiiiieieie e 59
4.5.10 Optimization Branch Instructions for Old Preprocessorcccccveenee. 59

SECHON MANAGEMENTeiiiiiiiiie ettt 60
4.6.1 Definition Of SECHONScvvviiiiiieei e 60
4.6.2 Absolute and Relocatable SECHiONSveeieiiiieiiieeeicee e, 60
4.6.3 Sample Definition Of SECLONSccoiiiiiiiiiiiii e 61

Assembler PSeudo-INStrUCHIONSeviiiiiiiieiiit e 62
4.7.1 Include Instruction (FNCIUAE)coiuviieiiiiiiiiiee e 63
4.7.2 Define Instruction (#Aefine)c..eeviiiiiiiiiei e 64
4.7.3 Numeric Define Instruction (#defnum)cccoiiiiiiiiiniieeceeee 66
4.7.4 Macro Instructions (#macro ... HENAM)ccooiiiiiiiiiiiieeeeeiieee e 67
4.7.5 Conditional Assembly Instructions

(#ifdef ... #else ... #endif, #ifndef... #else ... #endif)ccccoiiiii 69
4.7.6 Section Defining Pseudo-Instructions (.code, .data, .bSS)ccccceernnne 71
4.7.7 Location Defining Pseudo-Instructions (.org, .align)ccccoocvveveeenninnee. 73
4.7.8 Absolute Assembling Pseudo-Instruction (.abs)ccccoviiiiiiiiiiiiiieennns 76
4.7.9 Symbol Defining Pseudo-Instruction (.Set)ccccoviuiieeeiiiiiiieee e 77

EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CONTENTS

4.7.10 Data Defining Pseudo-Instructions (.codeword, .word)cc.ceeeuuneeee. 78
4.7.11 Area Securing Pseudo-Instructions (.comm, .[comm)ccccceeeeininnnn. 79
4.7.12 Global Declaration Pseudo-Instruction (.global)cccccoviiiieiinnnnen. 80
4.7.13 List Control Pseudo-Instructions (.list, .NOISt)oeeeeviiiiiiiiiiiiiieenn, 80
4.7.14 Source Debugging Information Pseudo-Instructions (.stabs, .stabn) 80
4.7.15 Comment Adding FUNCLONooiiiiiiiiiiii e 81
4.7.16 Priority of PSeudo-INStrUCHIONScccoiiiiiiiiiiiiiieieec e 81
4.8 Relocatable LISt Filecc..vvviiiiiiieeiies e 82
4.9 SAMPIE EXECULIONS ...oeiiiiiiiiiiiiitit ettt et e e e e e e e e e e aaes 83
4.10 Error/Warning MESSAQESccvvvuvrriiiieieiiiiiiiiieisieseseeseeaaaeaaaasasaeeeeeeereranersnnnnnn 86
O 1 (o] £ PP PP 86
O =Yg 1 oo [PP PRPUTPPRPRN 87
4. 11 PrECAULIONS ..eeeuiveiiieiiitteetee sttt e ettt e st e e s st e e s e e e e e e s e e e e e 87
CHAPTER O LINKER .1ititiiiiitii i s it e ettt e ettt e et e e et e e et e e e et e e e eaa e e e et e e e eaneeeees 88
Lo TNt R U o 1 o] o USSP 88
5.2 INPUYOULPUL FIIES .ottt 88
B.2.L INPUE RIS et 88
5.2.2 OULPUL FIIES ...ttt e e e 89
5.3 Starting MethOduuuiiiiiie e 90
5.4 IMIEBSSAQGES .. iiiiiiiiei ettt aae 93
5.5 Linker Command File..........cooiiiiiiiiii e 94
5.6 LINKMAP FIlE oo 95
5.7 SYMDBDOI Rl .o 96
5.8 ADSOIULE LISt FIle .ccoeiieeeeeee e 97
5.9 Cross ReferenCe Fileoooeiiiiiiiiiiee e 98
B5.10 LINKING coeiiiiiiiie et 99
5.11 Branch Optimization FUNCHONooiiiiiiiiiiiiieee e 101
5.12 Error/Warning MESSAQEScceeeeiiieiiiieeeeeeeeeeete e n e a e e e e e 102
ST 0 R (o] £ TP OO PRSP PPPPPRPRN 102
5.12.2 WAIMING .eeeeeiiieeitee ettt ettt e b e et as 102
5.13 PrECAULIONSeviiiieiiiieiie sttt s ettt et s e e e s enneas 103
CHAPTER 6 HEX CONVERTER 111t ititi it iiiis e ettt e et ettt e e et e e et s e et e e e et e e e ean e e e enne s 104
B.1 FUNCHONS ..ottt e e e e e e e e e s e eeeaaaeees 104
6.2 INPUL/OULPUL FIES ..o 104
B.2.1 INPUL FIIES ..ottt e e 104
6.2.2 OULPUL FIlES ...ttt e e e 104
6.3 Starting Method.............uuuiiiiiiii e 105
6.4 MEBSSAQES ..uiiiiiiiiiiiii ettt et 106
6.5 OULPUL HEX FlES ... 107
6.5.1 Hex File CoNnfIQUrationcoceeeiieeeiiiee it 107
6.5.2 MOLOrola-S FOIMALcooiiiiiiiieeiiie e 107
6.5.3 INtEI-HEX FOIMALcoiiiiiiiiiieie et 108
6.5.4 CONVEISION RANGE ...ooiiiiiiiiiieiiiie ittt 108
6.6 Error/Warning MESSAGESccceiiuiiiieiiiiiiee e itieee e sttt e ettt e e e aibeeee e 109
B.6. L EITOIS ...oeiiieiiieiie ettt e e e e e e e e e e e 109
B.6.2 WAIINGeeeeitiee ettt ettt 109
6.7 PrECAULIONS ...t e e e e e e e e e s s e e e e e aaeees 109

EO0C63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON \Y

CONTENTS

CHAPTER 7 DISASSEMBLER ..vvvvuiiitiiieiitineeeet e e ettt e e e eaiseeeai s e s et e e e et e e estn e e eanneeeenn s 110
7485 T g o 1T LSS 110
7.2 INPUY/OULPUL FIIES ... 110

T.2.L INPUL FLES et e e 110
7.2.2 OULPUL FIES ..o 110
7.3 Starting MethOdocveiiiiic e 111
A (=S ST= To [T PO 112
7.5 Disassembling OULPULooieiiiiiiiiieiee e e e 113
7.6 Error/Warning MESSAJESccceiuuriieiiiiiieeesitiiee e e aitiee e et e e e rbre e e e s anbeeee e 116
0 R = 1 (o] £ TP PPPPPPUUTPTPRPN 116
T.6. 2 WAIMING ..eeeeiiiie ettt ettt et e 116
CHAPTER 8 DEBUGGER ...tttuiiiiiiie it e ettt e ettt e ettt e et e e et e e e et e e et e e e aan e e e e neeeaan s 117
8.1 FRALUIES ..ottt 117
8.2 INPUYOULPUL FIES ..o e 117
B.2. L INPUL FIES et 117
8.2.2 OULPUL FIES ..ttt 118

8.3 Starting MethOduuuuiiiiii i 119
8.3.1 Start-up FOIMAL ...t 119
8.3.2 StArt-UP OPLIONS ..ottt 119
8.3.3 StArt-UP MESSAGEScoveiieeiiiiiiiee ettt 120
8.3.4 Hardware Check at Start-Upccocovviiiieeeriiieeiie e 120
8.3.5 Method of Terminationcoccveeiiiiiiiiee e 122

8.4 WINAOWS ..ottt s e e 123
8.4.1 Basic Structure of WINAOWooocviiiiiiiiiiiieeiece e 123
8.4.2 [CommMANd] WINAOWccuviiiiiiiiiiiie ettt 125
8.4.3 [SOUICE] WINUOW ...ttt 126
8.4.4 [DAt@] WINUOWveiiiiiiieiiee ettt 128
8.4.5 [REQISEI] WINUOWcooiiiiiiiiiieiiiee ettt 128
8.4.6 [TraCe] WINUOWoeiiiuiieiiiiiieeiit ettt 129

S 2R TN Ko To I = - 130
8.5.1 TOOI BAF SITUCIUIEeeeeiiiiii ettt 130
8.5.2 [Key Break] BULIONcociiiiiiiieiiiie ettt 130
8.5.3 [Load File] and [Load Option] BUttONSceeeviiiieiieeiiiiieee e 130
8.5.4 [Source], [Mix], and [Unassemble] BUtONScccccoeciivieeeeiiiiiiiee e 130
8.5.5 [G0], [Go to Cursor], [Go from Reset], [Step], [Next],

aNd [RESEL] BUONSoeiiiiiiiiiie ittt 130

8.5.6 [Break] BULIONooiiiiiiiiiieeiet et 131
8.5.7 [HEIP] BULLON ...ttt 131

S 2N T 1Y/ 1Y o1 O R 132
8.6.1 MENU STITUCTUIEeiiiiiiiiiieee ittt 132
8.6.2 [FIlE] MEINU ... e e 132
8.6.3 [RUN] MEBNU .ttt e e e e 132
8.6.4 [Break] MENUuuiiiiiiiiiiee et 133
8.6.5 [TraCe] MENUuuiiiiiiiiiiiiie et 133
8.6.6 [MIEW] IMBINU ..ottt e 134
8.6.7 [OPLON] MENU ...ttt et e 134
8.6.8 [WINAOWS] MENU ...ttt 134
8.6.9 [HEIP] MEINU ..ot 134

8.7 Method for Executing COMMEANAScoocuuiiieiiiiiieee i 135
8.7.1 Entering Commands from Keyboardcccceoiiiiiieeiiiiiiieiee e 135
8.7.2 Executing from Menu Or TOOI Bar.........cc..eviiiiiiiiiiiiiiiiiee e 137
8.7.3 Executing from a Command Fileccccooiiiiiiiinii e 138
874 LOG FlE e 139

Vi

CONTENTS

8.8 DebUQP FUNCLIONSooiiiiiiiiiiiiiie e 140
8.8.1 Loading Program and Data Filescccccoeiiiiiiiiiiiiiieice e 140
8.8.2 Source Display and Symbolic Debugging Functioncccccooviieeennn. 141
8.8.3 Displaying and Modifying Program, Data, Option Data and Register 143
8.8.4 EXECULING PrOGIaIMeiiiiiiiiiiiiee ittt ettt 145
8.8.5 Break FUNCHIONSooiiiiiiiiie e 148
8.8.6 TraCe FUNCHIONSooiiiiiiiiiiie ettt 151
8.8.7 Operation of FIash Memoryccoccviiiiiiiiiiic e 154
8.8.8 COVEIATEevviiiiiiiiieii e 155

8.9 Command REfEIENCEeeviiiiiiiiie e 156
8.9.1 ComMMANT LiSTeiiiiiiiiiiieiiie e 156
8.9.2 Reference for Each Commandcocceeiiiiiiiiiiiiiie e 157
8.9.3 Program Memory OPErationccueeieeiiiiieieee et 158

a/as (assemble MNEMONIC)ccceiriiiiiiiiiiiiieee e 158
pe (program MemOrY €NEEI)uveeieeiiiiiieee et 160
pf (program memory fill)coeeeeiiii 161
pm (pProgram MEMOIY MOVE)cccivreeriireeriiieeesreeesireessneeeenireeens 162
8.9.4 Data Memory OPEIAtIONccoiuiiiiiiieiiiee ettt 163
dd (data memory dump).........cceeerieeeriieeiiee e 163
de (data MEemMOrY ENLET)ceeiiiiieiiiie e 165
df (data memory fill)cueeeeiii 167
dm (data MemOrY MOVE)cccouiuiiiiieeiiiiiiee e e 168
dw (data memory WatCh)cccovveiiiiiiiiiee e 169
8.9.5 Command to Display Option Informationccccevevieriieeiniiennieeene, 171
od (option data dumMP)ccccvviiiieieiiiee e 171
8.9.6 ReEQIStEr OPEIAtiONeeiiiiiiiiiiee ittt 173
rd (register diSPlay)eoovvieieie e 173
IS (FEQISTEN SEL) ..eiiiiiiiiiiee ettt 174
8.9.7 Program EXECULIONccoiiuiiiiiiiiiiiee et 176
[0 I (o[) E PO PSP PP UUPRPTPIPN 176
gr (go after reset CPU) ..o 178
L (1 (=] o) IO PP UPPPOPPUPPTN 179
N (NEXE) 1ttt 181
8.9.8 CPU RESEL ...ttt ettt 182
ISt (F@SEL CPU) ... 182
8.9.9 Brak ... 183
bp (break PoiNt SEt)cooiiiiiiiieie e 183
bc / bpc (break point Clear)cocoveeeiiieii e 185
bd (data break)cccooviiiiiiee e 186
bdc (data break Clear) ... 188
br (register Break) ... 189
brc (register break Clear) ..o 191
bs (sequential break)ccccvieriiiiiiiee e 192
bsc (sequential break clear) ... 194
bsp (break Stack POINter)ccueeiiiiiiiiiiie e 195
bl (break PoiNt lISt)ccoviieeiiiie e 197
bac (break all Clear)cuueeiiiiii 198
8.9.10 Program DiSPIaycceeiiuiieiiaiiiieiee ettt 199
U (UNASSEMDIE) ...t 199
SC (SOUICE COOR) ..veeeeiiiiiiieee ittt ettt e e 201
M (IMIX) 2ttt e st e e st e e e e e snreeenaee 203
8.9.11 Symbol INfOrMALIONo.vveiiiiiieie s 205
SY (SYMDBOITISE) . 205
8.9.12 LOAM FlE ..ot 206
If (108 fil€) .eeeiiiieieiee e 206
10 (I0ad OPLION) ...eoiiiiieiiee e 207
8.9.13 Flash Memory OPErationcceoiviierieieiiiee e 208
Ifl (load from flash MEeMOrY)ccovvviiiiiiii 208
sfl (save to flash MEMOrY)coooveeiiiiiii e 210
efl (erase flash MeMOry) ... 212

EO0C63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON vii

CONTENTS

8914 TIACE ...eeiiiiiieiie e
tm (trace mode)
td (trace data display)
ts (trace search)
tF (Trace fil@) ...veeeeeeeeee e

8.9.15 COVEIAGE .. .oiiiiiiiieire ettt e e e e e e e e e e e e e e e e
CV (COVEIATER) ..eeieeiuiiiieee ittt e e ettt ettt e et e e e e e
CVC (COVEIAQE ClIRAN .eiiiiiiiiiiie ittt

8.9.16 CommMANd Filecooiiiiiiiiieeii e
com (execute command file)
cmw (execute command file with wait)
rec (record commands to afile).........ccccvnunnneen.

8017 100 ittt a e e anaee
100 (10G) +eeeeeeeiiiiiee e

8.9.18 Map Informationccccoevvvveeeennnnns
ma (map information)

8.9.19 MOAE SELHNGeveeeeeeiiiiei ettt e e e e et e e
M (MOUE) .

8.9.20 QUIL ..ttt

8920 HEIP .ottt

viii EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 1: GENERAL

CHAPTER1 (ENERAL

1.1 Features

The E0C63 Family Assembler Package contains software development tools that are common to all the
models of the EOC63 Family. The package comes as an efficient working environment for development
tasks, ranging from source program assembly to debugging.

Its principal features are as follows:

Simple composition
A task from assembly to debugging can be made with minimal tools.

Integrated working environment
A Windows-based integrated environment allows the tool chain to be used on its Windows GUI
interface.

Modular programming
The relocatable assembler lets you develop a program which is made up of multiple sources. This
makes it possible to keep a common part independently and to use it as a part or a basis for the next
program.

Source debugging
A debugger can display an assembler source to show its execution status and allow debugging
operations on it. This makes debugging much easier to perform.

Common to all EOC63 chips
The tools (workbench, assembler, linker, hex converter, disassembler, and debugger) are common to
all EOC63 Family models except for several chip dependent masking tools ("Dev" tools). The chip
dependent information is read from the ICE parameter file for each chip.

Complete compatibility with old syntax sources
By supporting old syntax, existing sources written for old 63 tools are available with these new tools.

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON

CHAPTER 1: GENERAL

1.2 Tool Composition

1.2.1 Composition of Package

The E0C63 Family Assembler Package contains the items listed below. When it is unpacked, make sure
that all items are supplied.

1) CD-ROM ...ttt One
2) WaArranty Cardocceveiiiieeeiiiiie e One each in English and Japanese

1.2.2 Outline of Software Tools

The following shows the outlines of the software tools included in the package:

Assembler (as63.exe)
Converts the mnemonic of the source files into object codes (machine language) of the EOC63000. The
results are output in a relocatable object file. This assembler includes preprocessing functions such as
macro definition/ call, conditional assembly, and file-include functions.

Linker (1k63.exe)
Links the relocatable objects created by the assembler by fixing the memory locations, and creates
executable absolute object codes. The linker also provides an auto EXT insertion/ correction function
allowing the programmer to create sources without having to know branch destination ranges.

Hex converter (hx63.exe)
Converts an absolute object in IEEE-695 format output from the linker into ROM-image data in
Motorola-S format or Intel-HEX format. This conversion is needed when making the ROM or when
creating mask data using the mask data checker.

Disassembler (ds63.exe)
Disassembles an absolute object file in IEEE-695 format or a hex file in Motorola-S format, and restores
it to a source format file. The restored source file can be processed in the assembler/linker/hex
converter to obtain the same object or hex file.

Debugger (db63.exe)
This software performs debugging by controlling the ICE63 hardware tool. Commands that are used
frequently, such as break and step, are registered on the tool bar, minimizing the necessary keyboard
operations. Moreover, sources, registers, and command execution results can be displayed in multiple
windows, with resultant increased efficiency in the debugging tasks.

Work Bench (wb63.exe)
This software provides an integrated development environment with Windows GUIL Creating/
editing source files, selecting files and major start-up options, and the start-up of each tool can be
made with simple Windows operations.

2 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 1: GENERAL

1.3 Working Environment

To use the EOC63 Family Assembler Package, the following conditions are necessary:

Personal computer
An IBM PC/ AT or a compatible machine which is equipped with a CPU equal to or better than a
Pentium 75 MHz, and 32MB or more of memory is recommended.
To use the optional In-Circuit Emulator ICE63, the personal computer also requires a serial port (with
a D-sub 9 pin).

Display
A display unit capable of displaying 800 x 600 dots or more is necessary.

Hard disk and CD-ROM drive
Since the installation is done from a CD-ROM to a hard disk, a CD-ROM drive and a hard disk drive
are required.

Mouse
A mouse is necessary to operate the tools.

System software
The EOC63 Family Assembler Package supports Microsoft® Windows®95 (English or Japanese),
Windows®98 (English or Japanese) and Windows NT®4.0 (English or Japanese).

Other development tools
To debug the target program, the optional In-Circuit Emulator ICE63 and a Peripheral Circuit Board
PRC63xxx are needed as the hardware tools.
The PRC63xxx board is prepared for each EOC63 model.

1.4 Installation

The supplied CD-ROM contains the installer (Setup.exe) that installs the tools.

To install the tools, start up the "Setup.exe" and follow the instructions in the dialog boxes that will be
appeared. For more information on the installation procedure, please refer to "setup_e.pdf" on the CD-
ROM.

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON

CHAPTER 1: GENERAL

1.5 Directories and Files after Installation

The installer copies the following files in the specified directory (default is "C:\E0C63\"):

[Specified folder]
README.TXT

/bin
WB63.EXE
AS63.EXE
LK63.EXE
HX63.EXE
DS63.EXE
DB63.EXE
EO0C63.CNT
EO0C63.HLP
CORE63.DLL
ICE63.DLL
IEEE695.DLL
HEXLIB.DLL
AS63.DLL
SPAWNEX.EXE
OLEPRO32.DLL
MSVCRT.DLL

/doc
MANUAL_E.PDF
QUICK_E.PDF
63xxx.PDF

/dev63
/DEV63xxx

Online manual in PDF format

... ReadMe document

... Work bench

... Assembler

... Linker

... Hex converter

... Disassembler

... Debugger

... Help index

... Help contents

... Core class library for debugger

... ICE control / communication module for debugger
... Object format library for debugger

... Hex file library for debugger

... Inline assembler module for debugger
... Child task library for work bench

... OLE library for work bench

... Run time library for work bench

... EOC63 Family Assembler Package Manual in PDF format
... Quick Reference in PDF format
... E0OC63xxx Development Tool Manual in PDF format

(for the model selected at installation)

... Selected E0C63 development tool for each chip type

The online manuals are provided in PDF format, so Adobe Acrobat Reader Ver. 3.0 or later is needed
to read it. The English version and Japanese version of Acrobat Readers are included in the CD-ROM
(\ Acrobat). To install it, run its set up program (\ Acrobat\ ar32eXXX.exe for English, \ Acrobat

\ ar32jXXX.exe for Japanese). Acrobat Reader can be installed any time before or after the installation

of the E0C63 tools.

EPSON EO0C63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 2: SOFTWARE DEVELOPMENT PROCEDURE

CHAPTERZ2 S FTWARE DEVELOPMENT PROCEDURE

This chapter outlines a basic development procedure.

2.1 Software Development Flow

Figure 2.1.1 represents a flow of software development work.

Work Bench
wb63

Make ————
file Lfile.MAK

Assembly
source file(s)

Assembler
as63

Assembly
list file(s)

Linker
command file

Preprocessed
source file(s)

Development tools for each model

file.par
— —

Function Option
Generator fog63xxx

Function option Function option

HEX file document file

Segment Option

Segment option
source file

Linker
k63
Symbol file§ file.ABS | :

! Absolute
list file

Generator sog63xxx

Disassembled
source file

i
i
i
i
i
i
i
i
i
i
i
|

Segment option Segment option ‘
|
|
|
|
|
|
|
|
|
|
|
|

. . - Absolute - Cross
Link map file file.MAP] object file ~ Lfile-XRF] reference HEX file document file
| \ file
‘ Melody
— HEX converter _f'le'MEL data file
hx63 Melody Assembler
Intel-HEX Motorola-S mla63xxx
format files format files
Melody Melody
HEX file document file
: Di nbler Mask Data Checker
ds63 mdc63xxx
S — ———— Mask
"""""""""""" | data file

db63

Debugger

0

In-circuit Emulator ICE63

Fig. 2.1.1 Software development flow

The work bench provides an integrated development environment from source editing to debugging.

Tools such as the assembler and linker can be invoked from the work bench. The tools can also be in-

voked individually from the DOS prompt.

Refer to the respective chapter for details of each tool.

The part indicated as "Development tools for each model" is not covered in this manual. For details, refer

to the tool manual associated with each specific model.

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

EPSON

CHAPTER 2: SOFTWARE DEVELOPMENT PROCEDURE

2.2 Development Using Work Bench

This section shows a basic development procedure using the work bench wb63.
Refer to Chapter 3, "Work Bench", for operation details.

2.2.1 Starting Up the Work Bench

ACCesEones 4 |

i E0CE embler Package anual

Startllp 4 Quick Reference
Setlings » HE MS-DOS Prompt {7 ReadMe

. @ “Windows Explorer

PFrograms

LDocuments 4

Find

Help

dowsSb

Bun...

Shut Down...

.3 | Wi

Start up the work bench by choosing "WorkBench63" from the program menu.

WorkBench63 Version X%
File Edit “iew Ingert Buld Tool: Help

MEEEEEEEEEER]

2l [Fareaaoarar =] [Absoutetbiet =] gl

For Help. presz F1 Mo document | OVR MM

6 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 2: SOFTWARE DEVELOPMENT PROCEDURE

2.2.2 Creating a New Project

The work bench manages necessary file and tool setting information as a project.
First a new project file should be created.

1. Select [New] from the [File] menu (or click the [New] button).
3 | [New] button

The [New] dialog box appears.

Hew

i

EOC Aszembly Source File

EOC Azsemnbly Header File Cancel |
Help |

2. Select [EOC Project File] and click [OK].
The [Project] dialog box appears.

Project: ICE parameter file; oK I
tes PARE3A08. FAR h
I I J Cancel |

Lioc:ation:
CAEOCE3est J
< 2
3. Enter a project name, select an ICE parameter file and select a i'workBenchB3 Version X.30<
directory, then click [OK]. File Edit Yiew Insett Buid Tools Hel
OThe [ICE parameter file:] box lists the parameter files that exist) (=2 L= e e
in the "dev63" directory. IPAF!BSADS.F'AF! vI
The work bench creates a folder (directory) with the specified [, T test files
project name as a work space, and puts the project file (.epj) into
the folder.
The specified project name will also be used for the absolute object \
and other files. Created project [Project] window

2.2.3 Editing Source Files

The work bench has an editor function. This makes it possible to edit source files without another editor.
To create a new source file:

1. Select [New] from the [File] menu (or click the [New] button).
[| [New] button

The [New] dialog box appears.

Cancel
EOC Project File 4'

2. Select [EOC Assembly Source File] and click [OK].

EO0C63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 7

CHAPTER 2: SOFTWARE DEVELOPMENT PROCEDURE

A new edit window appears. [Edit] window

“WorkBenchb3 Version x.x<- [EDCASM1]

BY) File Edt Yiew Insett Buld Tocls Window Help NEET
sEEEIEEE R

| i [Fareaaoarar =] [AbsouteObiect =] ,1'5*,¢|';'§|"t£|‘ %|E|ED|‘

------ [test files Gotolabet | =l /

1| /

For Help. presz F1 Ln1, Col1 MLUIM

3. Enter source codes in the [Edit] window.

ot Label: j
1|3: main.s =
2|: ASHMA63 test brugram {(main routine)
3|3
i
| sxxxxx JHITIAL SP1 & SP2 ADDRESS DEFINHITIOH #:*xxx
G
7 |#ifdef SHALL_RAH |
8 -set SP1_INIT_ADDR Bzb :5P1 init addr = 8x2c
7 | #else
18 -set SP1_INIT_ADDR Bz4b :5P1 dinit addr = B8x12c
11 | #endif
12
13 .set 3P2_INIT_ADDR 8x1f :5P2 init addr = 8=1f
14
15
16 | jexxxx HMI & BOOT, LOOP #=%*xxx
17 =

4. Save the source in a file by selecting [Save] from the [File] menu (or clicking the [Save] button).

El [Save] button

8 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 2: SOFTWARE DEVELOPMENT PROCEDURE

5. Click the [Insert into project] button on the [Edit] window.
| [Insert into project] button

The created source file is added in the project.

To add existing source files, use [Files into project...] in the [Insert] menu. It can also be done by dragging
source files from Windows Explorer to the project window.
Create necessary source files and add them into the project.

ElD test files

[mains sample list in the [Project] window
- subs

The added source files are listed in the project window. Double-clicking a listed source file name opens

the edit window.

2.2.4 Configuration of Tool Options

The work bench supports all the start up options of each tool and they can be selected in a dialog box. A
make process for generating an executable object will be configured based on the settings.

In addition to option selection, command files for the linker and debugger can be configured here.

To set tool options:

1. Select [Setting...] from the [Build] menu.
A dialog box appears.
Settings

Aszembler I Lirker I Debuggerl Hex Conveltell

Saurce | Error file | Debug infa | List file | Defines
[Default] Mo Yes Mo

[sub.s Mo Mo Mo

1 main.z Mo Mo Mo

‘ | |

K I Cancel | Al | Help |

2. Configure options if necessary.
Check box items can be selected by clicking. Items in the list can be toggled or entered by double-

clicking.
Settings

Aszembler | Linker I Debuggerl Hex Eonverterl

Source | E rror file | [ebug info | Ligt file | Defines
[Crefault] Mo Tex Mo

Yes

[main.z Mo Mo Mo

Refer to Chapter 3, "Work Bench", for details of the [Settings] dialog box.

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON

CHAPTER 2: SOFTWARE DEVELOPMENT PROCEDURE

2.2.5 Building an Executable Object

To make an executable object file:

1. Select [Build] from the [Build] menu (or click the [Build] button).
[Build] button

This will invoke the assembler and linker to create an executable object file. If a HEX file format (Intel
HEX or Motorola S) is selected by the [Output format] box, the HEX converter will be invoked after
linking. By default, an absolute object file in IEEE-695 format will be created.

Ahbzalute Object j

E [Output format] box

kotorola 5

Messages delivered from each executed tool are displayed in the [Output] window. The work bench has a
tag-jump function that jumps to the source line in which an error has occurred by double-clicking a
source syntax error message that appears in the [Output] window. It opens the Corresponding source
window if it is closed.

IworkBenchB3 Version x.>0¢- main_s

File Edit “iew Inzert Build Toolz ‘“Window Help
sEEEEEE)
[PameaenePaR | [absolte Dbiect =] ..‘E*,,|';'§|"t£|‘ %|E|ED|‘

=[] test files % main_s
Goto Label: I j
13 .set SP2_INIT_ADDR Bxz1f ;5P2 init addr
14
15

16 | jexexxx NHI & BOOT, LODP ssxsxx

.global INIT_RAM_BLK1 ; subroutine in sub

-
L=N--]
“

L

.global INGC_RAM_BLK1 ; subroutine in sub
28
21 .org 8x180
22 |HMI:
23| dalr INIT_RAM BLKA1 ; initialize RAM bl
2y '\ reti ; in HMI{watchdog t|+
1] |] |
.I«I | o
Assembler 63 Uer X.xx] _]]]
Copyright (€) SEIKD EPSON CORP. 199x Linked with the corresponding source line
C:\EBCAHINTESTWMAIN.S(23) Error: Unknown mnemonic daly
C:\EBCH3N\TESTA\MAIN.S{41)} Warning: Section activation expected, use .bss
Created preprocessed source file MAIN.MS J
fAssembly 1 error{s) 1 warning{s) LI
\
For Help, presz F1 \ Ln 23, Caoll MUK

[Output] window

In the build task, a general make process is executed to update the least necessary files. To rebuild all the
files without the make function, select [Rebuild All] from the [Build] menu (or click the [Rebuild All]
button).

[Rebuild All] button

To invoke the assembler only to correct syntax errors, select [Assemble] in the [Built] menu (or click the
[Assemble] button).

ﬁl [Assemble] button

10 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

2.2.6 Debugging
To debug the executable object:

CHAPTER 2: SOFTWARE DEVELOPMENT PROCEDURE

1. Select [Debug] from the [Build] menu (or click the [Debug] button).

El [Debug] button

The debugger starts up with the specified ICE parameter file and then loads the executable object file.

Note: Make sure that the ICE63 is ready to debug before invoking the debugger. Refer to the "ICE
Hardware Manual” for settings and startup method of the ICE63.

=i Db63 - Command HE E
Fil= Run Break Trace Wiew Option Window Help
I =N N = S NG AU
i Mix ol xl| B S[=] B3
Search Label: I 'l il :C 52113 =
[Addy] Code | Unassemble [Sourc«||| B H|
2 57 8118 694b 1ldb ba,4b 1db %ba,SP1_INIT_ADDR i :[ARAR] = =
58 6111 1fc4 1db spi1,ba 1db %sp1,%ba ¥ :[AAAR] = =
59 @112 891f 1db ba,1f 1db %ba,SP2_INIT_ADDR EICZ :60060
68 8113 1fch 1db sp2,ba 1db %sp2,%ba SP1 :ARA
61 68114 88fe 1db ext,fe {+) 1db ext,fe 5F2 AR
62 8115 02ea calr ea calr INIT_RAM_BLK1 EXT :AA
63 LOOP: QUEUE:AAAA
64 8116 B88Fe 1db ext,fe (+) 1db ext,fe 60000086888 cycle
65 8117 82ef calr ef calr INC_RAM_BLKA1 J [B086A] = AAARA —
66 68118 aofd jr d jr LOOP [6864] = AAAA
li¥d hd 0881 = AAAA d
< | |l v
i Command H=] =1 = [=]
LCD board version H ADDR: 01 2 3456 7 BBABCDEFAI
EXT board version : NHo use warning : chect [|0000 AAAAAAAA AAAAAARA n=—
ICE hardware version 1.8 00lo AAAAAAAA AAAAAAADNRN
ICE software version 1.8 0020 AAAAAAAA AAAAAAAAN
DIAG test : omitted 0030 AAAAAAAARA AAAARNAAAAR
L= 1 done o040 A AAAAAAA AAAAAAAAR
Initialize cccciiooaaaaaaan done 0050 AAAAAAAA AAAAAAAAN
>com "C:\EBC63\Testitest_.cmd" @ 0060 A AAAAAAA AAAAAAARNRN
>1f "test.abs" o0 AAAAAAAA AAAAAAAAN
Loading file...OK? oog0 AAAAAAAARA AAAARNAAAR
> 0090 A AAARAAAA AAAAARAAAN
207} EA! | Bl
Ready UM
For the debugging functions and operations, refer to Chapter 8, "Debugger".
EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 11

CHAPTER 3: WORK BENCH

cHAPTER 3 WoRk BENCH

This chapter describes the functions and operating method of the Work Bench wb63.

3.1 Features

The Work Bench wbé3 provides an integrated operating environment ranging from editing source files to
debugging. Its functions and features are summarized below:

e Source edit function that supports copy/ paste, find /replace, print, label jump and tag jump from error
messages.

¢ Allows simple management of all necessary files and information as a project.

¢ General make process to invoke necessary tools and to update the least necessary files.

e Supports all options of the assembler, linker, HEX converter, disassembler and debugger.

¢ Windows GUI interface for simple operation.

3.2 Starting Up and Terminating the Work Bench

To start up the work bench

Choose "WorkBench63" from the [Program] menu to start
up the work bench.

FE Programs

Manual
Quick Rieference

S .
@ Startlp 3
B 15-DO0S Prompt
(2 Windows Explorer
LB

O If "WorkBench63" is not registered in the [Program]
menu, it means that the installation was not successful.
Therefore, reinstall the tools .

When the work bench starts up, the window shown below

B p— appears.

File Edit “iew Inset Build Tools Help

NEEEREEEEEER]

| | |PersasnaraR = |absobte Object x] ulusl | %lglm

For Help, press F1 Mo document | OWR MLUM

To terminate the work bench
Select [Exit] from the [File] menu.

12 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 3: WORK BENCH

3.3 Work Bench Windows

3.3.1 Window Configuration

Menu bar Toolbar [Edit] window

WorkBench63 Version x.x0¢- sub.s

File Edit “iew Inzert Build Tool: “Window Help

sEEE R E)
& [Fareaensrar | [absolte Obiect =] ek #‘ﬂ"ﬁ” %/lElEDH

=27 test files
main.s
) sub.s .
Goto Label: j
1|; sub.s
2|; AS63 test program (subroutine)
3
4 .global RAM_BLK1
5
6| ;eexxx RAM block 1 initialize sxsxsx
7
8 .global INIT_RAM_BLKA1
9| INIT_RAM_BLK1:
18 1db %ext ,RAM_BLK1@h
: 11 1db %x1,RAM_BLK1@1 ;set RAM_BLK1 addre:
< 12 1d [%x]+,0x0 -
1
Linker 63 \Ver x.xx ;l
Copyright \{C) SEIKO EPSON CORP. 199x
Created abgolute object file "TEST.ABS"
Link 8 errar(s) 8 warning(s)
Build Done. J

Far Help, press F1 \ \ / LnZ7.Co13 | |CAP [NUM
[Project] window [Output] window Status bar

The work bench has three types of windows: [Edit] window, [Project] window and [Output] window.

[Edit] window
This window is used for editing a source file. A standard text file can also be displayed in this win-
dow. Two or more windows can be opened in the edit window area.
When an E0C63 assembly source file is opened, the source is displayed with in colors according to the
contents. The default colors are shown below.
EO0C63 instructions: Black
Preprocess (#) pseudo-instructions: Dark brown
Assemble (.) pseudo-instructions: ~ Blue
Labels: Light brown
Comments: Green

These colors can be changed by the [Tools | Options | menu command (refer to Section 3.10).

[Project] window
This window shows the currently opened work space folder and lists all the source files in the project,
with a structure similar to Windows Explorer.
Double-clicking a source file icon opens the source file in the [Edit] window.

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 13

CHAPTER 3: WORK BENCH

[Output] window

This window displays the messages delivered from the executed tools in a build or assemble process.
Double-clicking a syntax error message with a source line number displayed in this window activates
or opens the [Edit] window of the corresponding source so that the source line in which the error has

occurred can be viewed.

Menu bar
Refer to Section 3.5.

Toolbar
Refer to Section 3.3.

Status bar

Shows help messages when the mouse cursor is placed on a menu item or a button.
It also indicates the cursor position in the [Edit] window and Key lock status (Num lock, Caps lock,

Scroll lock).

3.3.2 Window Manipulation

Resizing the windows
Each window area can be
resized by dragging the win-
dow boundary. The size
information is saved when the
work bench is terminated. So
the same window layout will
appear at the next time the
work bench starts up.

Floating and docking the

[Project] and [Output]

window
The [Project] window and the
[Output] window can be made
a floating window by double-
clicking the window boundary
and the floating window can be
moved and resized in the work
bench window. The floating
window will be restored to a
docking window by double
clicking the window's title bar
or dragging the title bar
towards an edge of the work
bench window.

B el bl ek ke o
Lletuller i) ml=]s) @i
= e | e F
=] e lEm = :

-y
of

Fikl Erpn pragrey | b e g
FIEEE]L WA EE1

----- BN Elawih P BalRaliée vweer

mimial DRI TS S

(£ 1 bt _iwi i
L Bl ma mEwEl
14 1] -

iFL FRF LT G

iLipker i bor w.ox
fespgrighi SE5 Simb Diins . T l

[Crealind Eelalule dljed File ™

ink § preoris] B warwingfsd

- :I

by g 01 itk [R e

Double click

- BSkE bt prwgres |nelroatiee
gl
remer B Mook | Baillalisr
¥ - ==
I el e T ——
i S 6 [reshling
]

muesispr 4§ wr z.0m
coparlght {Ep SieD iFiEm cnee. wes

Tew
T

Crealsdl reprimrvied daesid File TE0.M

Erealidl relusafahle Lisk Fike GEE,1ET
abrd prrer Ing #ile G, D

freaien reliscstanle sujert Tlie W6

NIAEEIE 8 PR I0] B s Rgia g
T

BapEkler #3 WP w.as

Eopurighl {E} TFIEE AFRES CHEF, ¥s

P T e

14

EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 3: WORK BENCH

Closing the [Project] and [Output] window
The [Project] window and the [Output] window can be closed by selecting [Project Window] and
[Output Window] from the [View] menu, respectively. To open them, select the menu items again.

Maximizing the [Edit] window area

e # The [Edit] window area can be maxi-
B2l o e ety " mized to the full screen size by selecting
s i T e o — [Full Screen] from the [View] menu. All
b =t T, P pr—— E other windows and toolbars are hidden
18 ::_.I L EE 1M imin mier - Sl behind the [Edit] window area.
e i 42 fnln s = To return it to the normal display, click
....... s M R the button that appears on the screen.
' abekal. |01 R e This button can be moved anywhere in
T the screen by dragging its title bar.
e - imitialim nal fie 1 Pressing the [ESC] key also returns the
g, R window to the normal display.
" E gRTT e
o b T =T IiCiaTi w1 |
el — oo inrite ey

Opening/Closing [Edit] windows
An [Edit] window opens when a source file (text file) is loaded using a menu, button or a file icon in
the [Project] window, or when a new source is created.

[Edit] windows close by clicking the [Close] box of each window or selecting [Close] from the [File]
menu.

When a project file is saved, the [Edit] window information (files opened, size and location) is also
saved. So the next time the project opens, editing can begin in the saved condition.
Arrangement of the [Edit] windows

The [Edit] windows being opened can be arranged similar to standard Windows applications.

1 Cascade windows
Select [Cascade] from the [Window] menu or click the [Cascade Windows] button.

El [Cascade Windows] button

B E sub.s M= B3
[Goto Labet I j

1|; sub.s &

2 |; ASM63 test program (subroutine}

3

L} -.qlobal RAM_BLKA1

5

fi | jx=*%xx RAM block 1 initialize s=xssxx

7

8 .qlobal IMIT RAM BLK1

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 15

CHAPTER 3: WORK BENCH

2 Tile windows
To tile windows vertically, select [Tile Vertically] from the [Window] menu or click the [Tile Vertically]

button.
ml [Tile Vertically] button
T =Tk
Gaoto Label: I j Gaoto Label: I j
1|]; main.s - 1|; sub.s -
2|; AS63 test program {main ri 2|; AS63 test program {subroul
3| 3
n i .gqlobal RAM_BLK1
G| ;exxxx JTHITIAL 3P1 & SP2 ADI L
G 6| pxx*xx RAM block 1 initiali:
7 |#ifdef SHALL_RAH 7
8 .set SP1_INIT_ADDR | 8 .global INIT_RAM BLI
9| #else 9 |IMIT_RAM_BLK1:
18 .set SP1_INHIT_ADDR | 18 1db %ext ,RAM_BLI
11 | #endif ik 1dh %x1,RAM_BLK-
12 12 1d [%x]+,6x8
13 .set SP2_INIT_ADDR | 13 1d [%x]+,0=8
1u h 14 1d r‘z.xn.axa_l;l
4] | A EY I v

To tile windows horizontally, select [Tile Horizontally] from the [Window] menu or click the [Tile
Horizontally] button.

El [Tile Horizontally] button

3B main_s =] B3
Goto Labet I ﬂ

1|;: main.s il

2| ; ASHG3 test program {main routine)

3|s

N

G| ;xxxxx JTHITIAL SP1 & SP2 ADDRESS DEFIMITION e LI
Jklsub's =10] x|
Gota Label: I j

1|; sub.s il

2| ; ASHG3 test program {subroutine}

3

y .global RAM_BLKA1

’ | |

16

EPSON

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 3: WORK BENCH

3 Maximizing an [Edit] window
Click the [Maximize] button on the window title bar. The window will be maximized to the [Edit]
window area size and other [Edit] windows will be hidden behind the active window.

Gaoto Label: I j
1|: main.s =
2|: ASHM63 test program (main routine)
3|3
N
5| ;xxxxx ITHITIAL SP1 & SP2 ADDRESS DEFIHITIOH *:xxx
[}

7 |#ifdef SHMALL_RAM

] .5et SP1_INIT_ADDR 8xb :5P1 init addr = B8x2c
9| #else

18 .set SP1_INIT_ADDR 8x4b :5P1 init addr = Bx12c
11 | #tendif

12

13 .set SP2_INIT_ADDR 8x1f ;5P2 init addr = 8x1f
14

15

16 | ;*xx%x HMI & BOOT, LOOP wxwxxx

17 =]

4 Minimizing an [Edit] window
Click the [Minimize] button on the window title bar. The window will be minimized as a window
icon. The minimized icons can be arranged at the bottom of the [Edit] window area by selecting
[Arrange Icons] from the [Window] menu.

5 Moving and resizing an [Edit] window
The [Edit] window allows changing of its location and its size in the same way as the standard
Windows applications if it is not maximized.

Switching active [Edit] window
Click the window to be activated if it can be viewed. Otherwise, select the window name (source file
name) from the currently-opened window list in the [Window] menu.

Scrolling display contents
A standard scroll bar appears if the display contents exceed the display size of a window. Use it to
scroll the display contents. The arrow keys can also be used.

Showing and hiding the status bar
The status bar can be shown or hidden by selecting [Status Bar] from the [View] menu.

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 17

CHAPTER 3: WORK BENCH

3.4 Toolbar and Buttons

Tree types of toolbars have been implemented in the work bench: standard toolbar, build toolbar and
window tool bar.

Standard toolbar

N
N = EE AR E N EENEE)

=

[FarEaanarar v [absolte Obiect | |45 [B%| =S| M|
\

Build toolbar Window toolbar

3.4.1 Standard Toolbar
This toolbar has the following standard buttons:

=

o &

= =

iy

= @

B = =

[

[New] button

Creates a new document. A dialog box will appear allowing selection from among three document
types: EOC63 assembly source, EOC63 assembly header and project.

[Open] button

Opens a document. A dialog box will appear allowing selection of the file to be opened.

[Save] button
Saves the document in the active [Edit] window to the file. The file will be overwritten.
This button becomes inactive if no [Edit] window is opened.

[Save All] button
Saves the documents of all [Edit] windows and the project information to the respective files.

[Cut] button
Cuts the selected text in the [Edit] window to the clipboard.

[Copy] button
Copies the selected text in the [Edit] window to the clipboard.

[Paste] button

Pastes the text copied on the clipboard to the current cursor position in the [Edit] window or
replaces the selected text with the copied text.

[Find] button
Finds the specified word in the active [Edit] window. A dialog box will appear allowing specifica-
tion of the word to be found and a search condition.

[Find Next] button
Finds next target word towards the end of the file.

[Find Previous] button
Finds next target word towards the beginning of the file.

[Print] button
Prints the document in the active [Edit] window. A standard print dialog will appear allowing a
specific print condition.

[Help] button
Displays the help window.

EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 3: WORK BENCH

3.4.2 Build Toolbar
This tool bar has the following buttons and list boxes used to build a project:

&

[Assemble] button

Assembles the assembly source in the active [Edit] window. This button becomes active only when
the active [Edit] window shows an assembly source file.

[Build] button

Builds the currently opened project using a general make process.

[Rebuild All] button

Builds the currently opened project. All the source files will be assembled regardless of whether
they are updated or not.

[Stop Build] button
Stops the build process being executed. This button becomes active only while a build process is
being executed.

|PﬂH53&DE PAR j [ICE Parameter] pull-down list box

Selects the ICE parameter file for the model being developed. In this box, all the
ICE parameter files that exist in the "Dev63" directory are listed.

kotorola 5

j [Output Format] pull-down list box

 Selects an executable object file format. Three types of formats are available:
IEEE-695 absolute object format, Intel HEX format and Motorola S format. The
build process will generate an executable object in the format selected here.

+ 4
HE¥

[HEX Convert] button

Invokes the HEX converter to convert an absolute object into an Intel HEX object or a Motorola S
object. A dialog box will appear allowing selection of an absolute object and options of the HEX
converter.

[Disassemble] button
Invokes the disassembler to disassemble an absolute object. A dialog box will appear allowing
selection of an absolute object and options of the disassembler.

[Debug] button
Invokes the debugger with the specified ICE parameter file.

3.4.3 Window Toolbar

This tool bar has the following buttons used in window manipulation:

B
E
|

[Cascade] button
Cascades the opened [Edit] windows.

[Tile Horizontally] button
Tiles the opened [Edit] window horizontally.

[Tile Vertically] button
Tiles the opened [Edit] window vertically.

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 19

CHAPTER 3: WORK BENCH

3.4.4 Toolbar Manipulation

Hiding and showing toolbars
Each toolbar can be hidden if not needed. Select the toolbar name from the [View] menu. This opera-
tion toggles between hiding and showing the toolbar.

Changing the toolbar location
Toolbars can be moved to another location in the toolbar area by dragging them. If a toolbar is moved
out of the toolbar area, it will be changed to a window.

3.4.5 [Insert into project] Button on a [Edit] Window
[Insert into project] button

When a source file (.s or .ms) is opened, the [Insert into project] button appears on the [Edit] window. It
can be used to insert the source file into the current opened project.
For other file types, the [Edit] window opens without the [Insert into project] button.

20 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

3.5 Menus

CHAPTER 3: WORK BENCH

File Edit “iew Inzert Build Tool: ‘wWindow Help

3.5.1 [File] Menu
File
Mew. .. Clrl+M

Open... Ctrl+0
Cloze

Open Workzpace. ..
Cloze ‘Workzpace

Save Clrl+5
Save bz,
Save all

Frirtt.... Chril+F
Print Prewisw
Page Setup...

1 zub.z
2 main.=

B test.ep

E xit

The file names listed in this menu
are recently used source and
project files. Selecting one opens
the file.

The number of files to be listed can
be selected by the [Tools | Options]
menu command.

[New...] ([Ctrl]+[N])

Creates a new document. A dialog box will appear allowing selection
from among three document types: EOC63 assembly source, EOC63
assembly header and project.

[Open...] ([Ctrl]+][O])
Opens a document. A dialog box will appear allowing selection of the
file to be opened.

[Close]
Closes the active [Edit] window. This menu item appears when an
[Edit] window becomes active.

[Open Workspace...]

Opens a project. A dialog box will appear allowing selection of the
project to be opened.

[Close Workspace]
Closes the currently opened project. This menu item becomes inactive
if no project is opened.

[Save] ([Ctrl]+[S])

Saves the document in the active [Edit] window to the file. The file
will be overwritten. This menu item appears when an [Edit] window
becomes active.

[Save As...]

Saves the document in the active [Edit] window with another file
name. A dialog box will appear allowing specification of a save
location and a file name. This menu item appears when an [Edit]
window becomes active.

[Save All]

Saves the documents of all [Edit] windows and the project information
to the respective files.

[Print...] ([Ctrl]+[P])

Prints the document in the active [Edit] window. A standard [print]
dialog box will appear allowing a specific print condition. This menu
item appears when an [Edit] window becomes active.

[Print Preview]

Displays a print image of the document in the active [Edit] window.
This menu item appears when an [Edit] window becomes active.

[Page Setup...]
Displays a dialog box for selecting paper and printer.

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 21

CHAPTER 3: WORK BENCH

3.5.2 [Edit] Menu

Undo Clrl+Z
Cut Chrl+
Copy Chrl+C
Pazte Chrl+t
Select Al Chrl+d,
Find... Chl+F
Replace Chl+H
GoTo Clrl+(z

3.5.3 [View] Menu

Standard B ar
Statuz Bar
Clukput Safindow
Project Window
Build Bar
Window Bar

L € £ £ & < |

Full Screen

[Undo] ([Ctrl]+[Z])

Undoes the previous executed operation in the [Edit] window.

[Cut] (JCtrI]+[X])
Cuts the selected text in the [Edit] window to the clipboard.

[Copy] ([Ctrl]+[C])
Copies the selected text in the [Edit] window to the clipboard.

[Paste] ([Ctrl]+[V])

Pastes the text copied on the clipboard to the current cursor position in the
[Edit] window or replaces the selected text with the copied text.

[Select All] ([Ctrl]+[A])

Selects all text in the active [Edit] window.

[Find...] ([Ctrl]+[F])

Finds the specified word in the active [Edit] window. A dialog box will
appear allowing specification of the word to be found and a search condition.

[Replace] ([Ctri]+[H])
Replaces the specified words in the active [Edit] window with one another. A
dialog box will appear allowing specification of the words.

[Go To] ([Ctrl]+[G])

Jumps to the specified line or label in the active [Edit] window. A dialog box
will appear allowing specification of a line number or a label name.

[Standard Bar]
Shows or hides the standard toolbar.

[Status Bar]
Shows or hides the status bar located at the bottom of the work bench
window.

[Output Window]

Opens or closes the [Output] window.

[Project Window]
Opens or closes the [Project] window.

[Build Bar]
Shows or hides the build toolbar.

[Window Bar]
Shows or hides the window toolbar.

[Full Screen]
Maximizes the [Edit] window area to the full screen size.

22

EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

3.5.4 [Insert] Menu

File...
Filez into project...

3.5.5 [Build] Menu

Azzemble Ctil+F7
Build F7
Bebuild Al

Stop Build Ctrl+Ereal:
Debug F&
Settings... Alt+F7

ICE parameter fils...

Output Farmat...

CHAPTER 3: WORK BENCH

[File...]

Inserts the specified file to the current cursor position in the [Edit]
window or replaces the selected text with the contents of the
specified file. A dialog box will appear allowing selection of the file
to be inserted.

[Files into project...]
Adds the specified source file in the currently opened project. A
dialog box will appear allowing selection of the file to be added.

[Assemble] ([Ctrl]+[F7])

Assembles the assembly source in the active [Edit] window. This
menu item becomes active only when the active [Edit] window
shows an assembly source file.

[Build] ([F7])

Builds the currently opened project using a general make process.

[Rebuild All]

Builds the currently opened project. All the source files will be
assembled regardless of whether they are updated or not.

[Stop Build] ([Ctrl]+[Break])
Stops the build process being executed. This button become active
only while a build process is being executed.

[Debug] ([F5])
Invokes the debugger with the specified ICE parameter file.

[Settings...] ([AI]+[F7])
Displays a dialog box for selecting tool options.

[ICE parameter file...]
Displays a dialog box for selecting an ICE parameter file.

[Output Format...]

Displays a dialog box for selecting an executable object file format.
Three types of formats are available: IEEE-695 absolute object
format, Intel HEX format and Motorola S format. The build process
will generate an executable object in the format selected here.

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 23

CHAPTER 3: WORK BENCH

3.5.6 [Tools] Menu
Tools

Hex Corvverter...
Dizaszembler...

Options. ..

[HEX Converter...]

Invokes the HEX converter to convert an absolute object into an Intel HEX object
or Motorola S object. A dialog box will appear allowing selection of an absolute
object and options for the HEX converter.

[Disassembler...]
Invokes the disassembler to disassemble an absolute object. A dialog box will
appear allowing selection of an absolute object and options for the disassembler.

[Options...]
Displays a dialog box for selecting work bench options such as character colors
in the [Edit] window and a printing font.

3.5.7 [Window] Menu

ﬂ irl d Qi

Cazcade

Tile Horizontally
Tile *erthically
Arrange lconz
Cloze Al

3.5.8 [Help] Menu
Help
Help

About WEE...

This menu appears when an [Edit] window is opened.

[Cascade]
Cascades the opened [Edit] windows.

[Tile Horizontally]
Tiles the opened [Edit] window horizontally.

[Tile Vertically]
Tiles the opened [Edit] window vertically.

[Arrange Icons]
Arranges the minimized [Edit] window icons at the bottom of the [Edit] win-
dow area.

[Close All]
Closes all the [Edit] windows opened.

[Help]
Displays the [Help] window.

[About WB63...]
Displays a dialog box showing the version of the work bench.

24

EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 3: WORK BENCH

3.6 Project and Work Space

The work bench manages a program development task using a work space folder and a project file that
contains file and other information necessary for invoking the development tools.

3.6.1 Creating a New Project

A new project file can be created by the following procedure:

1. Select [New] from the [File] menu or click the [New] button.

gl [New] button

The [New] dialog box appears.
Hew E
per

EOC Aszzembly Source File

EOC Azzembly Header File Cancel |
Help |

2. Select [EOC Project File] and click [OK].
The [Project] dialog box appears.

Project: ICE parameter file; oK I
P&RE3408. PAR -
I I J Cancel |

Location:

CAEOCED, J
1 =

3. Enter a project name, select an ICE parameter file and select a directory, then click [OK].
OThe [ICE parameter file:] box lists the parameter files that exist in the "dev63" directory.

The work bench creates a folder (directory) with the specified project name as a work space, and puts the
project file (.epj) into the folder.

If a folder which has the same name as that of a specified one already exists in the specified location, the
work bench uses the folder as the work space. Thus you can specify a folder in which sources are created.
The specified project name will also be used for the absolute object and other files.

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 25

CHAPTER 3: WORK BENCH

3.6.2 Inserting Sources into a Project

The sources created must be inserted into the project.
To insert a source into a project, use one of the four methods shown below:

1. [Insert | Files into project...] menu item
A dialog box appears when this menu item is selected.
Open [7] %]
Lookjr: |3 Test = =

main. s

sub.s

File narne: I Open I
Files of type: IAssemny Source Files [7.5:%ms] j Cancel |

Choose a source file from the list box and then click [Open].

2. [File | Open...] menu item or [Open] button
ﬁl [Open] button

A dialog box appears when this menu item or button is selected.
Open EHE
Lok in: Ia Test j gl

main. s

subus

File narne: I Open I
Files of type: IAssemny Source Files [7.5:%ms] j Cancel |

™ Open as read-only

W

Choose a source file from the list box and select the [Into project] button, then click [Open].

3. [Insert into project] button on the [Edit] window

[Insert into project] button

When the source file has been opened, click the [Insert into project] button on the [Edit] window. Do
not forget to save the source to the file before inserting into the project.

4. Dragging source files on the [Project] window
Drag source files from Windows Explorer to the [Project] window. These files will be added to the
current project.

When a source file is inserted into the project, the source file name appears in the [Project] window.
Removing a source from the project

To remove a source file from the project, select the source in the [Project] window and then press the
[Delete] key. This removes only the source information, and does not delete the actual source file.

26 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 3: WORK BENCH

3.6.3 [Project] Window

The [Project] window shows the work space folder and the source files included in the project that has
been opened.

=[] test files
mair. 3

] subs

When a source file icon is double-clicked, the source file will be opened or the corresponding [Edit]
window will be activated.

When the folder icon or a source file icon is clicked with the right mouse
button, a shortcut menu including the available build menu items

= appears.
-4 subs . - .
[Properties...] shows the source file information as follows:

ElD test files

Azzemble

Bz Fle narme: CAEOCE3 Testhsubs
Settings... Last modified date: 13:09:58 92/11405
Properties... Diependencizs:

Shortcut menu in the [Project] window

Last modified date:

Note: Note that the list in the [project] window is not the actual directory structure.
Sources of the project in other folders than the work space folder are also listed as they exist in
the work space folder.

3.6.4 Opening and Closing a Project
To open a project, select [Open WorkSpace...] from the [File] menu.
A dialog box appears allowing selection of a project file.
Open HE
Look jr: Ia Test j gl i i

Hest epi

File name: I Open I
Files of bype: IEDE Project Files [*.epj) j Cancel |

The work bench allows only one project to be opened at a time. So if a project has been opened, it will be
closed when another project is opened. At this time, a dialog box appears to select whether the current

project file is to be saved or not if it has not already been saved after a modification.

The project file can also be opened by selecting [Open] from the [File] menu or clicking the [Open]
button. In this case, choose the file type as EOC Project Files (*.epj) in the file open dialog box.

To close the currently opened project file, select [Close WorkSpace] from the [File] menu. At this time, a
dialog box appears to select whether the current project file is to be saved or not if it has not already been
saved after a modification. If [Yes] (save) is selected in this dialog box, all the modification items includ-
ing sources, tool settings and window configuration will be saved.

EO0C63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 27

CHAPTER 3: WORK BENCH

3.6.5 Files in the Work Space Folder
The work bench generates the following files in the work space folder:

<file>.epj Project file
This file contains the project information.

<file>.cm Linker command file
This file is generated when a build task is started, and is used by the linker to generate an absolute
object file.

Example:
; EOC WorkBench Generated
; Thursday, November 05, 1998

"C:\E0C63\dev63\DEV63A08\PARG63A08.PAR" ;ICE parameter file
-0 "test.abs" ;output file : absolute object

; linked object file(s)

"sub.o"

"main.o"

The contents vary according to the source files included in the project and the linker option setting.

<file>.cmd Debugger startup command file
This file is generated when a build task is started, and is used by the debugger to execute the com-
mand in this file when it is started up.

Example:
If "test.abs"

The work bench generates this file so that the executable file according to the format selection is
loaded when the debugger starts up.

<file>.mak "make" file for build task
This file is generated when a build task is started, and is used for the build process in the work bench.
Example:

EOC WorkBench Generated
Thursday, November 05, 1998

ASM = as63.exe
LINK = k63.exe
HEX = hx63.exe
ASM_FLG =-g
LINK_FLG =-g
HEX_FLG =

ALL : test.abs

test.abs : test.cm sub.o main.o
$(LINK) $(LINK_FLG) test.cm

sub.o : C:\EOC63\Test\sub.s
$(ASM) $(ASM_FLG) C:\EOC63\Test\sub.s

main.o : C:\EOC63\Test\main.s
$(ASM) $(ASM_FLG) C:\EOC63\Test\main.s

This is a generic make file that contains macro setting and dependency list.

The following files are generated by the development tools during a build process:

<file>.0 Relocatable object files (generated by the assembler)
<file>.abs Absolute object file (generated by the linker)
<file>.hsa, <file>.1sa, <file>.csa Motorola S files (generated by the HEX converter when this format

is specified in the work bench)
<file>h.hex, <file>l.hex, <file>c.hex Intel HEX files (generated by the Hex converter when this format
is specified in the work bench)

28 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 3: WORK BENCH

3.7 Source Editor

The work bench has a source editor function. Sources can be created and modified in the [Edit] window.

3.7.1 Creating a New Source or Header File
To create a new source file:

1. Select [New] from the [File] menu or click the [New] button.

gl [New] button

The [New] dialog box appears.

Hew

: bI i i Cancel |

E
EOC Project File
Help |

2. Select [EOC Assembly Source File] and click [OK].
An [Edit] window appears.

"; WorkBenchb3 Wersion X.>0¢- [EOCASM1]
@Eile Edit Wiew |nget Buld Tool: “window Help _1&] x|

sEEE I R

@ j IAbsqute Object j f[ﬁlﬂ?l%l ‘ %IEI ED| ‘
------ [C7 test files Goto Label: I j

1]l

[Edit] window
Enter source codes here.

[ntCalt [[o[

For Help, press F1

Enter source codes in this window.
The [New] dialog box allows selection of the [EOC Header File]. Select it when creating a header file for

constant definitions.

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 29

CHAPTER 3: WORK BENCH

3.7.2 Loading and Saving Files

To load a source file:

1. Select [Open...] from the [File] menu or click the [Open] button.
El [Open] button
The [Open] dialog box appears.

Open HE
Look in: I £ Test

main. s
sub.g

File: name: || Open I
Filzs of type: I.t‘-\ssembly Source Files [%.3;%msz) j Cancel |

™ Open as read-only

[~ Into project

2. Choose a source file to be opened after selecting the file type (*.s, *.ms) and click [OK].
An [Edit] window opens and shows the contents of the source file.

orkBenchb3 Wersion X.33- [main_s]
@Eile Edit Wiew |nzet Buld Tool: ‘window Help & x|

sE IR EEER)
& [Fareaaoarar =] [AbsouteObiect =] ,1'5*,¢|';'§|"t£|‘ %|E|ED|‘

------ [C7 test files Gaoto Label: I j
1|[; main.s -
2 |; ASHMG63 test program (main routine)
33
N
L | ;xx%xx JHITIAL SP1 & SP2 ADDRESS DEFIHITIOH #*xxxx
[
7 |#ifdef SHALL_RAM
8 .set SP1_INIT_ADDR 8xb ;SP1 init addr = Bx2c
9 f#else
18 .set SP1_INIT_ADDR Bx4b ;SP1 ipit addr = Bx12c
11 | #fendif
12
13 .set SP2_INIT_ADDR Bx1f ;SP2 init addr = Bxi1f
14
15
16 | ;%x%xx NMI & BOOT, LODP *xxxx
17 =l
For Help. presz F1 Ln 1, Call l_ I_IW l—

30 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 3: WORK BENCH

To save the source:
1. Activate the [Edit] window of the source to be saved.

2. Select [Save as...] from the [File] menu.
The [Save As] dialog box appears.

Save As HE

Save jm: IaTest j gl IEET

File harme: Save

Save as ype: IAssembly Source Files [*.2;".ms) j Cancel |

3. Enter the file name and then click [OK].

When overwriting the source on the existing file, select [Save] from the [File] menu or click the [Save]
button.

El [Save] button

To save all the source files opened and the project file, use the [File | Save All] menu item or the [Save
All] button.

El [Save All] button

3.7.3 Edit Function

The source editor has general text editing functions similar to standard Windows applications.

Editing text
Basic text editing function is the same as general Windows applications.
Cut, copy and paste are supported in the [Edit] menu and with the toolbar buttons. These commands
are available only in the [Edit] window.
Undo can be selected from the [Edit] menu.

The tab stops are set at every 8 characters.

Find, replace and go to
Any words can be searched in the active [Edit] window.

Find
To find a word, select [Find...] from the [Edit] menu or click the [Find] button.

ﬂl [Find] button

The [Find] dialog box appears.
Find (2] %]

vt
™ Match whole word anly Direction Cancel |
™ Match case C Up & Down

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 31

CHAPTER 3: WORK BENCH

The controls in the dialog are as follows:

[Find what:] text box
Enter the word to be found in this text box. The specified word is maintained as the finding word
even if this dialog box is closed.

[Match whole word only] check box
If this option is selected, the work bench searches only the words that are completely matched
with the specified word. If not, only the part of word that matches the specified word will be
searched.

[Match case] check box
If this option is specified, a case-sensitive search is performed. If not, a case-insensitive search is
performed.

[Direction] option
If the [Up] radio button is selected, the specified word is searched toward to the beginning of the
file. If the [Down] radio button is selected, a search is performed toward to the end of the file.

[Find Next] button
Clicking this button starts searching the specified word. If the specified word is found, the [Edit]
window refreshes the display and highlights the word found.

[Cancel] button
Clicking this button closes the dialog box.

Once a word to be found is specified in the [Find] dialog box, the [Find Next] and [Find Previous]
buttons on the toolbar can be used for a forward or backward search.

ﬁl [Find Next] button ﬁl [Find Previous] button

Replace

To replace a word with another one, select [Replace] from the [Edit] menu.
The [Replace] dialog box appears.

Replace HE

Find what: | EiralfiEw:

Replace with: I Heplace

Eeplase Al
™ Match whole waord only

[~ Match case

ile

Cancel

The controls in the dialog are as follows:

[Find what:] text box

Enter the word to be found in this text box. If a word has been specified in the [Find] dialog box, it
appears in this box.

[Replace with:] text box
Enter the substitute word in this box.

[Match whole word only] check box
If this option is selected, the work bench searches only the words that are completely matched

with the specified word. If not, only the part of word that matches the specified word will be
searched.

[Match case] check box
If this option is specified, a case-sensitive search is performed. If not, a case-insensitive search is
performed.

32

EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 3: WORK BENCH

[Find Next] button
Clicking this button starts searching the specified word. If the specified word is found, the [Edit]
window refreshes the display and highlights the word found.

[Replace] button
By clicking this button after the specified word is found, it is replaced with the substitute word.
Then the work bench searches the next.

[Replace All] button
Replaces all the specified found words with the substitute word. Note that undo function cannot
be performed for this operation except for the last replaced word.

[Cancel] button
Clicking this button closes the dialog box.

Goto

You can go to any source line or any label position quickly.
To do this, select [Go To] from the [Edit] menu.

The [Go To] dialog box appears.

Go to what: Enter Line Humber G e I

|Labe| I Cloze |

Going to a source line

1. Select "Line" in the [Go to what:] list box.
2. Type a line number in the [Enter Line Number] box and then click the [Go To] button.
Going to a label position

1. Select "Label" in the [Go to what:] list box.
The [Enter Line Number] box changes to the [Select Label] list box.

G to what: Select Label Eola I

Line j
Cloze:
F_ TSRS ‘_l
IMIT_Raibd_BLEI:

2. Select a label from the [Select Label] box and then click the [Go To] button.

The [Select Label] list box has a pull-down menu that contains the list of labels defined in the current
source file.

The [Edit] windows for source files (*.s, *.ms) have the [Go To Label] list box similar to the [Select
Label] list box in the [Go To] dialog box. You can also go to a label position using this box.

Inserting a file
To insert a file such as a header file and another source at the cursor position of the current source,
select [File...] from the [Insert] menu.
A dialog box will appears allowing selection of the file to be inserted.

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 33

CHAPTER 3: WORK BENCH

Shortcut menu
The [Edit] window supports a short cut menu that appears by clicking the right mouse button on the
[Edit] window. It can also be done by pressing the [Short cut menu] key while the [Edit] window is
active if the key is available on the keyboard. It contains the editing menu items descried above, so
you can select an edit command using this menu.

S8 main.s =] E3
Goto Label: I j

6 [

7 |#ifdef SHALL RAH

8 LI SP1 INIT [T ;5P1 init addr = 8x

9 |#else Co-

18 .set SP1_INIT | =" :SP1 init addr = ox

11 | endif Paste

12 Find... L

13 .set SP2_IHNIT_ Fleplace ;3P2 init addr = Bx

14

15 Goto...

16 | jexxwxx NHI & BOOT, LOO| ., Toobar

17 =
1] I 4

3.7.4 Tag Jump Function

When assembler syntax errors occur during assembling, their error messages are displayed in the [Out-
put] window. In this case, you can go to the source line in which an error has occurred by double-clicking
the error message in the [Output] window.

However, this function is available only when the error message contains a source line number.

‘WorkBenchB3 Version x.>0<- main_s

File Edit “iew Inzert Build Toolz ‘“Window Help
sEEEEEE)
) [PameaenePaR | [absolte Dbiect =] ..‘E*,,|';'§|"t£|‘ %|E|ED|‘

=] test files & main.s
mals Gota Label: I ﬂ

13 .set SP2_INIT_ADDR Bxz1f ;5P2 init addr
14
15
16 | ;%%exe NMI & BOODT, LOOP %
17
18 .global INIT_RAM_BLK1 ; subroutine in sth
19 .global INGC_RAM_BLK1 ; subroutine in sub
28
21 .org Bx1600
22 |HMI:
23 || dalr INIT_RAM_BLK1 ; initialize RAM bl
24 \ reti 5 in NMI{watchdog t=
4 I LA
.I < | oy
Assembler 63 Uer X.xx _ _ _ _]
Copyright (C) SEIKD EPSON CORP. 199x Linked with the corresponding source line
C:\EBCAHINTESTWMAIN.S(23) Error: Unknown mnemonic daly
C:\EBCH3N\TESTA\MAIN.S{41)} Warning: Section activation expected, use .bss
Created preprocessed source file MAIN.MS J
fAssembly 1 error{s) 1 warning{s) LI
For Help, presz F1 Ln 23, Caoll MUK

34 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 3: WORK BENCH

3.7.5 Printing

The document in the [Edit] window can be printed out.

The [Print...], [Print Preview] and [Page Setup...] commands are provided in the [File] menu. The [Print]
button can also be used. They have the same function as those of standard Windows application.

Select one after activating the [Edit] window of the document to be printed.

3.8 Build Task

By using the [Build] menu or [Build] toolbar, the assembler, linker, debugger, HEX converter and
disassembler can be executed from the work bench.
In the work bench, process to generate an executable object from the source files is called a build task.

For details of each development tool, refer to the respective chapter.

3.8.1 Preparing a Build Task

Before starting a build task, necessary source files should be prepared and tool options should be config-
ured.

1. Create a new project. (Refer to Section 3.6.1.)

2. Select an ICE parameter file. (Refer to Section 3.6.1.)

3. Create source files and add them into the project. (Refer to Sections 3.7 and 3.6.2.)

4. Select tool options (Refer to Section 3.9.)

3.8.2 Building an Executable Object

To generate an executable object:
1. Open the project file.
2. Select an output format (absolute, Intel HEX or Motorola S) using the [Output Format] list box.

Ahbzalute Object j

nlute Obect
ntel Hex
kotorola 5

3. Select [Build] from the [Build] menu or click the [Build] button.
[Build] button

The work bench generates a make file according to the source files in the project and the tool options set
by the user. This file is used to control invocation of tools.

First, the make process invokes the assembler for each source file to be assembled. If the latest relocatable
object file exists in the work space, the corresponding source file is not assembled to reduce process time.
Next, the linker is invoked to generate an absolute object file. The linker command file used in this phase
is automatically generated.

If absolute object has been selected as the output format, the build task is completed at this phase. If Intel
HEX or Motorola S has been selected, the HEX converter will be invoked to generate an object in the
specified format.

To rebuild all files including the latest relocatable object files, select [Rebuild All] from the [Build] menu
or click the [Rebuild All] button.

| [Rebuild All] button

The build task can be suspended by selecting [Stop Build] from the [Build] menu or clicking the [Stop
Build] button.

[Stop Build] button

EO0C63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 35

CHAPTER 3: WORK BENCH

To invoke only the assembler, select [Assemble] from the [Build] menu or click the [Assemble] button
after activating the [Edit] window of the source to be assembled.

@l [Assemble] button

3.8.3 Debugging
To debug the generated executable file, select [Debug] from the [Build] menu or click the [Debug] button.

El [Debug] button

The debugger starts up with the specified ICE parameter file and then loads the executable object by the
command file generated from the work bench.

This command file contains the command to load the specified type of an executable object to the
debugger. The contents of the command file can be edited in the [Settings] dialog box explained in
Section 3.9.

0 When the building process is performed again after invoking the debugger, the debugger will reload
the object file if its window can be activated.

i Db63 - Command HEE

File Run Break Trace Miew Option ‘wWindow Help

IR === R A U

Search Label: I l_l =
[Addy Code Unassemble [Sourc
=3 57 #1148 894b ldh ba,ub 1db %ba,SP1_INIT_ADDR = %
58 111 1fch 1db sp1,ba 1db %sp1,%ba = ¥
59 #1112 891 f 1db ba,if 1db %ba,SP2_INIT_ADDR
68 P113 1fch 1db sp2,ba 1db %sp2,%ba
61 8114 88fe 1db ext,fe (+) 1db ext,fe
62 8115 82ea calr ea calr INIT_RAM_BLK1 :
63 LOOP: QUEUE: nnnn
64 6116 08fe 1db ext,fe {+) 1db ext,fe 00aA0AAAAA cycle
65 8117 B82ef calr ef calr INC_RAM_BLK1 J [6668] = AAAR
66 8118 @e8fd jr fd ir LOOP [B884] = AARARA
7 h 100081 = AAARA h
| | ALK M s
LCD board version H I ADDE:| 0 1 2 3 456 7 BQABCDEFAI
EXT board version : Ho use warning : checl_| 0000 AAAAAAAAR ARRARAAAARA
ICE hardware version 1.8 0010 AAAAAAARA AARAAAAR
ICE software version 1.8 0020 AAAAAAAA AARAAARAAAN
DIAG test : omitted 0030 AAAAAAAR AARAAAAR
L= T 1 done 0040 AAAAAAAR AARAAAAR
Initializec.icceanannn. done 0050 AAAAAAARA AAARAAAAAAR
»com "CI\EBC63\Test\test.cmd™ @ 0060 AAAAAAAR AARAAAAR
>1f "test.abs" 0070 AAAAAAAA AAAAAAAR
Loading file...0K? 0080 AAAAAAAR AARAAAAR
000 AAAAAAAR AARAAAAR
A7) K8 | ®
Fieady [[nUM

Refer to Chapter 8, "Debugger", for operating the debugger.

36 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 3: WORK BENCH

3.8.4 Executing Other Tools

The HEX converter and disassembler can be invoked independently.

HEX converter
To invoke the HEX converter, select [HEX converter...] from the [Tools] menu or click the [HEX
convert] button.

d’ﬁ’.:l [HEX convert] button
Then select an absolute object file to be converted in the [Hex data convert] dialog box.

Hex data convert HE

Loaak, i |ETest j gl E
Tesl.abs

File name: I Open

Files of type: [absolute Obiect File [*.abs) =] o] |

ICE Parameter file: IPAH E3408.PAR ‘I
Output Farmat |M0t0[0|a S ‘I

™ Output ermrar log file
™ Dok fill roarn with 0xFF

This dialog box allows selection of the HEX converter options.

[ICE Parameter file:] list box
Select an ICE parameter file from the pull-down list.

[Output Format:] list box
Select an output format from between Intel HEX and Motorola S.

[Output error log file] check box
Select this option to generate the error log file of the HEX converter.

[Do not fill room with OxFF] check box
Select this option when not filling the unused program area with 0xFF.

After selecting an absolute object and options, click the [Open] button. The HEX converter starts up
and converts the selected object into the specified format. The messages delivered from the HEX
converter are displayed in the [Output] window.

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 37

CHAPTER 3: WORK BENCH

Disassembler

To invoke the disassembler, select [Disassembler...] from the [Tools] menu or click the [Disassemble]
button.

B3 | [Disassemble] button

Then select the executable object file to be disassembled in the [Disassemble] dialog box.

Look jr: IaTest j gl IE_
Test.abs

File: name: I Open I
Files of bype: IAbsqute Object File [*.absg] ﬂ Cancel |

™ Output erar log file
"Dutput Optiot

& Default " Lowercase © Uppercase

This dialog box allows selection of the disassembler options.

[Output error log file] check box
Select this option to generate the error log file of the disassembler.

[Output Option]
Select a character case option using the radio buttons.
When [Default] is selected, the disassembled source will be made with all labels in upper-case
characters and instructions in lower-case characters.
When [Upper case] is selected, the source will be made with upper-case characters only.
When [Lower case] is selected, the source will be made with lower-case characters only.

After selecting an executable object and options, click the [Open] button. The disassembler starts up
and converts the selected object into the source file. The messages delivered from the disassembler are
displayed in the [Output] window.

38 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 3: WORK BENCH

3.9 Tool Option Settings

The development tools have startup options that can be specified when invoking them.
These settings can be made in the [Settings] dialog box that appears by selecting [Settings...] from the

[Build] menu.

Settings
Aszembler | Linker I Debugger | Hex Corverter I
Source | E rror file | [ebug info | Ligt file | Defines
[Default] Mo Ves Mo
[sub.s Mo Mo Mo
[main.z Mo Mo Ma
4 | |
0K I Cancel | Sppi | Help |

Click the tool name tab to view option settings of each tool.

Clicking the [OK] button updates option setting information in the project and then closes the dialog box.
To continue to select other tool options, click the [Apply] button. This does not close the dialog box.
Clicking the [Cancel] button closes the dialog box.

3.9.1 Assembler Options

Settings
Aszembler I Lirker I Debugger | Hes Corveerter I
Saurce | Error file | Debug infa | List file | Defines
[Default] Mo Yes Mo
[sub.s Mo Mo Mo
1 main.z Mo Mo Mo
1 | i
K I Cancel | Al | Help |

In this dialog, the following four assembler options can be selected.

[Error file] ~ Output of an error file (No: Not output, Yes: Output)

[Debug info] Addition of debugging information to the relocatable object (No: Not added, Yes: Added)
[List file] Output of the relocatable list file (No: Not output, Yes: Output)

[Defines] Name definition for conditional assembly (Enter a define name.)

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON

CHAPTER 3: WORK BENCH

The edit box shows the default setting ([Default]) and the list of source files in the project.
The default setting applies to all the sources excluding ones that are specified independently.
To select options of a specific source, select the check box at the front of the source file name.

Check here- O sub.s No No No

Each of the [Error file], [Debug info] and [List file] options is set to either "No" or "Yes" and it toggles by
double-clicking. For example, to change the default [List file] option from "No" to "Yes", double click "No"
in the [Default] line. It changes to "Yes".

Source Error file Debug info List file Defines

[Default] No Yes No — Double-click here. It will be changed to Yes.

To define a name for conditional assembly, double-clicking the [Defines] part.

Source Error file Debug info List file Defines
[Default] No Yes No — Double-click here, then type a define name.

An text box appears. Type a name in the box. If two or more names are to be entered, separate each name
with a comma (,).

Refer to Chapter 4, "Assembler”, for details of the assembler options.

3.9.2 Linker Options

Settings

Assembler Linker IDebuggerI Hex Eonveltell

Source [Bss [copE [m New | Delete |
[[Default]

O subs Spmbol | addr |
[main.z

4] |
[~ Disable full branch optimization ™ DOutput Map file

[~ Dizable removal branch optimization [~ Output Sembol file

[~ Output Errar log file ™ Output cross reference file
v &dd source debug information

[~ Output absalute fist file

K I Cancel Al | Help |

In this dialog, section allocation, symbol definition and other linker options can be specified.
The work bench generates a linker command file including these specifications, and specifies it when
invoking the linker.

Specifying section allocation

This option is set by default as all the sections will be allocated from the memory start address. To
specify a section start address, double click the cell and then enter the address.

Source BSS CODE DATA
ml[Default] — Double-click here to change default CODE section start address, then type an address.
Source BSS CODE DATA

[Default] ox100 |

The edit box shows the default setting ([Default]) and the list of source files in the project.
The default setting applies to all the sections excluding those of the source specified.
To set a specific source independently, select the check box at the front of the source file name.

Check here- O KIS 0x200

40 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 3: WORK BENCH

Symbol definition
To define a symbol, click the [New] button and then enter the symbol name and address in the edit

box.
Symbol Addr
[] [] < Enter a symbol name and the address.

To modify a symbol name or address, double click the name or the address in the edit box and then
enter a new name or address.

Symbol Addr
TEST 0x0000 « Double-click to modify.

To delete a symbol, highlight the symbol line by clicking and then click the [Delete] button.
Other option selections

[Disable full branch optimization] check box
Select this option if extension code insertions, deletions and corrections are not necessary.

[Disable removal branch optimization] check box
Select this option if extension code deletions are not necessary.

[Output Error log file] check box
Select this option to generate the error log file of the linker.

[Add source debug information] check box
Select this option to add the debugging information. If this option is not specified, the sources
cannot be displayed in debugging.

[Output absolute list file] check box
Select this option to generate the absolute list file.

[Output Map file] check box
Select this option to generate the link map file.

[Output Symbol file] check box
Select this option to generate the symbol file.

[Output cross reference file] check box
Select this option to generate the cross reference file.

Refer to Chapter 5, "Linker", for details of the linker options.

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 41

CHAPTER 3: WORK BENCH

3.9.3 Debugger Options

Setlings
Assemblerl Linker Debugger | Hex Eonverterl

COM Port; bpz:

o Rl "

Initial Command:

[COM Port:] list box

Select a COM port of the personal
computer used to communicate with
the ICE. COMI is set by default.

[bps:] list box
Select a baud rate to communicate

If "test.abs™

= with the ICE. 9600 bps is set by
default.

[Initial Command:] edit box
This box is used to edit the debugger
_|;| commands to be executed when the
k debugger starts up. The work bench
generates a command file with the

commands entered in this box and

0K I Cancel

£l | Help | specifies it when invoking the

3.9.4 HEX Converter Options

Settings

Assemblell Linkerl Debugger Hex Converter |

debugger. A load command is
initially set so that the debugger can
load the object at start up.

Refer to Chapter 8, "Debugger", for
details of the debugger options.

[Output Format:] list box
An output format of the executable
object to be generated by the build

Output Format: task can be selected.
f—‘«?slo'l_tlﬂe Obiject I™ Do nat fill o with 0<FF When "Absolute Object" is selected,
el el

[~ Otput erar lag file

the build task will be terminated
after linking has completed. The

Carwerts an absolute object fil in [EEE-635 HEX converter will not be invoked.
format to a hex file in Motarola-5 format. When "Intel Hex" or "Motorola S'" is

selected, the HEX converter will be
invoked after linking has completed.
Other HEX converter options
become selectable when one of them
is selected.

Ok I Cancel

Apply Help |

[Do not fill room with OxFF] check box

Select this option when not filling

the unused program area with OxFF.

[Output error log file] check box
Select this option to generate the
error log file of the HEX converter.

Refer to Chapter 6, "HEX Converter", for
details of the HEX converter options.

42

EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 3: WORK BENCH

3.10 Work Bench Options

[Options...] in the [Tools] menu allows selection of some options for customizing the work bench. When
this menu item is selected, a dialog box appears.

r— File Menu Print

MRU Files: |4 _I; Unit & lnch € mm

MAL Projects: |4 _|::‘ Fant: ICourier My j
— Editar

Ao S ave: ID _l; ¥ Line Mo.

Tt [—

Conment [—

Pzeud Instruction
Wssember] — B
Pzeud Instruction I] j

[PrePraceszer):
Lakel I_ j
Line Mo I_ j Cancel

File menu options
[MRU Files:] box
This option allows selection of a number of recently used files to be listed in the [File] menu. The
selectable range is 0 to 9.
[MRU Projects:] box

This option allows selection of a number of recently used project files to be listed in the [File]
menu. The selectable range is 0 to 9.

Print options
[Unit:] radio button
This option allows selection of a unit used for specifying the margins of the printing sheet. Either
"inch” or "mm" can be selected. This selection affects the margin setup field in the [Page Setup...]
dialog box.
[Font:] list box
This option allows selection of a font used for printing the document in the [Edit] window.

Editor options
[Auto Save:] box
This option sets an auto-save interval for the document to be edited in the [Edit] window. The
selectable range is 0 to 999 minutes. When 0 is selected, the document being edited will not be
automatically saved.
[Line No.] check box
This option enables or disables the line number display in the [Edit] window.

Color selection list box

These list boxes allow selection of colors used to display the document in the [Edit] window. Text
(mnemonics), comments, assembler pseudo-instructions, preprocessor pseudo-instructions, labels
and line numbers are displayed with different colors selected here.

Note: The contents selected in this dialog box will be effective after restarting the work bench.

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 43

CHAPTER 3: WORK BENCH

3.11 Short-Cut Key List

Key operation Function
Ctrl + N Creates a new document
Ctrl + O Opens an existing document
Ctrl + F12 Opens an existing document
Ctrl+S Saves the document
Ctrl+ P Print the active document
Ctrl + Shift + F12 Print the active document
Ctrl+zZ Undoes the last action
Alt + BackSpace Undoes the last action
Ctrl + X Cuts the selection and puts it on the clipboard
Shift + Delete Cuts the selection and puts it on the clipboard
Ctrl+ C Copies the selection to the clipboard
Ctrl + Insert Copies the selection to the clipboard
Ctrl +V Inserts the clipboard contents at the insertion point
Shift + Insert Inserts the clipboard contents at the insertion point
Ctrl + A Selects the entire document
Ctrl + F Finds the specified text
F3 Finds next
Shift + F3 Finds previous
Ctrl+ H Replaces the specified text with different text
Ctrl+ G Moves to the specified location
Ctrl + F7 Assembles the file
F7 Builds the project
Ctrl + Break Stops the build
F5 Debugs the project
Alt + F7 Edits the project build and debug settings
Ctrl + Tab Next MDI Window
Short-cut-key Opens the popup menu
Shift + F10 Opens the popup menu

3.12 Error Messages

The work bench error messages are given below.

Error message

Description

<filename> is changed by another editor. Reopen this file?

The currently opened file is modified by another editor.

Cannot create file: <filename>

The file (linker command file, debugger command file,
etc.) cannot be created.

Cannot find file: <filename>

The source file cannot be found.

Cannot find ICE parameter file

The ICE parameter file cannot be found.

Cannot open file: <filename>

The source file cannot be opened.

You cannot close workspace while a build is in progress.
Select the Stop Build command before closing.

The project close command or work bench terminate
command is specified while the build task is being
processed.

Would you like to build it?

The debugger invoke command is specified when the
build task has not already been completed.

44 EPSON

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 3: WORK BENCH

3.13 Precautions
(1) The source file that can be displayed and edited in the work bench is limited to 16M byte size.

(2) The label search and coloring function of the work bench does not support labels that have not ended
with a colon.

(3) The work bench can create a make, linker command and debugger command files, note, however, that
these files or settings created with another editor cannot be input into the work bench.

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 45

CHAPTER 4: ASSEMBLER

CHAPTER4 ASSEMBLER

This chapter describes the functions of the assembler as63 and grammar involved with the creation
of assembly source files.

4.1 Functions

The assembler as63 is a tool that constitutes the core of this software package. It assembles (translates)

assembly source files and creates object files in the machine language.

The functions and features of the assembler are summarized below:

e Allows absolute and relocatable sections mixed in one source.

¢ Allows to develop programs in multiple sources by creating relocatable object files that can be com-
bined by the linker.

¢ Can add source debugging information for source debugging on the debugger.

¢ Upper compatible with the old EOC63 preprocessor and assembler.

The assembler provides the following additional functions as well as the basic assembly functions:
e Macro definition and macro invocation

e Definition of Define name

® Operators

¢ Insertion of other file

¢ Conditional assembly

The assembler processes source files in two stages: preprocessing stage and assembling stage. The
preprocessing stage expands the additional function part described in the source file to mnemonics that
can be assembled, and delivers them to a temporary file (preprocessed file). The assembling stage as-
semble the preprocessed file to convert the source codes into the machine codes.

4.2 Input/Output Files

Assembly source file
—

Assembler
as63

file.lst file.o file.ms file.err

Relocatable Object file Preprocessed Error file

list file D source file

to Linker
Fig. 4.2.1 Flow chart

4.2.1 Input File

Assembly source file
File format: Text file
File name: <File name>.s

<File name>.ms (A preprocessed source file created by the assembler or disassembler.)

Description: File in which a source program is described. If the file extension is omitted, the
assembler finds a source file that has the specified file name and an extension ".s".

Note: When a ".s" source file is specified, it will be processed in the preprocessing stage

and then the assembling stage. When a ".ms" source file is specified, it will be
processed only in the assembling stage. Therefore, ".ms" files cannot include prepro-
cessor instructions.

46 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 4: ASSEMBLER

4.2.2 Output Files

Object file

File format:
File name:

Output destination:
Description:

Relocatable list file

File format:
File name:

Output destination:
Description:

Preprocessed file

File format:
File name:

Output destination:
Description:

Error file

File format:
File name:

Output destination:
Description:

Binary file in relocatable IEEE-695 format

<file name>.o0 (The <file name> is the same as that of the input file, unless otherwise

specified with the -o option.)
Current directory
File in which machine language codes are stored in a relocatable form available for

the linker to link with other modules and to generate an executable absolute object.

Text file

<file name>.Ist (The <file name> is the same as that of the input file, unless other-
wise specified with the -o option.)

Current directory

File in which offset locations, machine language codes and source codes are stored
in plain text.

Text file

<file name>.ms (The <file name> is the same as that of the input file, unless other-
wise specified with the -o option.)

Current directory

File in which instructions for preprocessing (e.g. conditional assembly and macro
instructions) are expanded into an assembling format.

Text file

<file name>.err (The <file name> is the same as that of the input file, unless other-
wise specified with the -o option.)

Current directory

The file is created if the -e option is specified. It records error messages and other
information which the assembler delivers via the Standard Output (stdout).

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

EPSON

47

CHAPTER 4: ASSEMBLER

4.3 Starting Method

General form of command line

as63 A [options] A [<source file name>]

A denotes a space.
[] indicates the possibility to omit.

Source file name
In the command line, only one assembly source file can be specified at a time. Therefore, you will
have to process multiple files by executing the assembler the number of times equal to the number of
files to be processed.

Along file name supported in Windows and a path name can be specified. When including spaces in
the file name, enclose the file name with double quotation marks (").

Options

The assembler comes provided with the following six start-up options:

-d <define name>

Function:
Explanation:

Function:
Explanation:

Default:

-0 <file name>

Function:
Explanation:

Default:

Function:
Explanation:
Default:

Function:
Explanation:

Default:

Function:
Explanation:

Default:

Definition of Define name

¢ Works in the same manner as you describe "#define <define name>" at top of
the source. It is an option to control the conditional assembly at the start-up.

¢ One or more spaces are necessary between -d and the <define name>.

¢ To define two or more Define names, repeat the specification of "-d <define
name>".

Addition of debugging information

e Creates an output file containing symbolic/source debugging information.

¢ Always specify this function when you perform symbolic/source debugging.
If this option is not specified, no debugging information will be added to the
relocatable object file.

Specification of output path/file name

e Specifies an output path/file name without extension or with an extension ".0".
If no extension is specified, ".0" will be supplemented at the end of the specified
output path/file name.

The input file name is used for the output file names.

Ignore character case of symbols
¢ Allows description of symbols in case insensitive.
If this option is not specified, symbol names will be case sensitive.

Output of relocatable list file
¢ Outputs a relocatable list file.
If this option is not specified, no relocatable list file will be output.

Output of error file

e Creates an .err file which contains the information that the assembler outputs to
the Standard Output (stdout), such as error messages.

If this option is not specified, no error file will be created.

When entering an option in the command line, you need to place one or more spaces before and after
the option. The options can be specified in any order. It is also possible to enter options after the
source file name.

Example: c:\eOc63\bin\as63 -g -e -1 -d TEST1 -d TEST2 test.s

48

EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 4: ASSEMBLER

4.4 Messag es
The assembler delivers all its messages through the Standard Output (stdout).

Start-up message
The assembler outputs only the following message when it starts up.

Assembler 63 Ver x.xx
Copyright (C) SEIKO EPSON CORP. 199x

End message
The assembler outputs the following messages to indicate which files have been created when it ends
normally.
Created preprocessed source file <FILENAME.MS>
Created relocatable object file <FILENAME.O>
Created relocatable list file <FILENAME.LST>
Created error log file <FILENAME.ERR>

Assembly 0 error(s) 0 warning(s)

Usage output

If no file name was specified or the option was not specified correctly, the assembler ends after
delivering the following message concerning the usage:

Usage: as63 [options] <file name>
Options: -d <symbol> Add preprocess definition

-e Output error log file ((ERR)

-g Add source debug information in object
-l Output relocatable list file (.LST)

-C Ignore character case of symbols

-o <file name> Specify output file name
File name: Source file name (.S or .MS)

When error/warning occurs
If an error is produced, an error message will appear before the end message shows up.
Example:
TEST.S(5) Error: lllegal syntax
Assembly 1 error(s) 0 warning(s)

In the case of an error, the assembler ends without creating an output file. If an error occurs at the
preprocessing stage in the assembler, the assembler stops processing and outputs preprocess-level
errors only.

If a warning is issued, a warning message will appear before the end message shows up.
Example:

TEST.S(6) Warning: Expression out of range

Assembly 0 error(s) 1 warning(s)

In the case of a warning, the assembler ends after creating an output file.
The source file name that was specified in the command line will appear at the beginning of the error

and warning messages.
For details on errors and warnings, refer to Section 4.10, "Error/ Warning Messages".

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 49

CHAPTER 4: ASSEMBLER

4.5 Grammar of Assembly Source

Assembly source files should be created on a general-purpose editor or the source editor of the work

bench. Save sources as standard text files. For the file name, a long file name supported in Windows can

be specified.

This section explains the rules and grammar involved with the creation of assembly source files.

4.5.1 Statements

Each individual instruction or definition of an assembly source is called a statement. The basic composi-
tion of a statement is as follows:

Syntax pattern

(1) Mnemonic Operand (;comment)
(2) Assembler pseudo-instruction Parameter (;comment)
(3) Label: (;comment)

(4) ;comment

Example:

<Statement>

#include "define.h"

.set 101, Oxfffl

; TEXT SECTION (ROM, 13bit width)

NMI:

BOOT:

.org 0x100
reti

nop

nop

ir NMI
.org 0x110
Id %f,0x4
Id %a,0
Id %a,0

ldb %ext,0

; clear memory 0 to 3

<Syntax Pattern>

2
2

4)

2
©)
@
@
@
@

2
©)
@
@
@
@

The example given above is an ordinary source description method. For increased visibility, the elements

composing each statement are aligned with tabs and spaces.

50

EPSON

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 4: ASSEMBLER

Restrictions

¢ Only one statement can be described in one line. A description containing more than two instructions
in one line will result in an error. However, a comment or a label may be described in the same line
with an instruction.

Example:
;OK
BOOT: Id %f,0x4
:Error
BOOT: Id %f,0x4 Id %a,0x0

¢ One statement cannot be described in more than one line. A statement that cannot complete in one
line will result in an error.

Example:
.word 0x0,0x1,0x2,0x3 ... OK
.word 0xa,0xb,0xc,0xd ... OK
.word 0x0,0x1,0x2,0x3

Oxa,0xb,0xc,0xd ... Error

e The maximum describable number of characters in one line is 259 (ASCII characters). If this number is
exceeded, an error will result.

¢ The usable characters are limited to ASCII characters (alphanumeric symbols), except for use in
comments. Also, the usable symbols have certain limitations (details below).

¢ The reserved words such as mnemonics and pseudo-instructions are all not case sensitive, while the
user defined items such as labels and symbols are all case sensitive if the -c option is not specified.
Therefore, mnemonics and pseudo-instructions can be written in uppercase (A-Z) characters, lower-
case (a—z) characters, or both. For example, "1d", "LD", and "Ld" are all accepted as "ld" instructions.
For purposes of discrimination from symbols, this manual uses lowercase characters for the reserved
words.

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 51

CHAPTER 4: ASSEMBLER

4.5.2 Instructions (Mnemonics and Pseudo-instructions)

The assembler supports all the mnemonics of the EOC63000 instruction set and the assembler pseudo-

instructions. The following shows how to describe the instructions.

Mnemonics

An instruction is generally composed of [mnemonic] + [operand]. Some instructions do not contain an
operand.

General notation forms of instructions

General forms: <Mnemonic>
<Mnemonic> tab or space <Operand>
<Mnemonic> tab or space <Operand1>, <Operand2>
<Mnemonic> tab or space <Operand1>, <Operand2>, <Operand3>
Examples: nop
it NMI
Id %f,0x4

There is no restriction as to where the description of a mnemonic should begin in a line. A tab or space
preceding a mnemonic is ignored.

An instruction containing an operand needs to be separated into the mnemonic and the operand with
one or more tabs or spaces. If an instruction requires multiple operands, the operands must be
separated from each other with one comma (,). Space between operands is ignored.

The elements of operands will be described further below.

Types of mnemonics
The following 39 types of mnemonics can be used in the EOC63 Family:

add adc and bit calr calz clr cmp dec ex halt inc int jp jr jrc jrnc jrnz
jrz Id Idb nop or pop push ret retd reti rets rl rr sbc set sll slp srl sub
tst xor

For details on instructions, refer to the "E0C63000 Core CPU Manual".

Note

The assembler is commonly used for all the EOC63 Family models, so all the instructions can be
accepted. Be aware that no error will occur in the assembler even if instructions or operands unavail-
able for the model are described. They will be checked in the linker.

Assembler pseudo-instructions

The assembler pseudo-instructions are not converted to execution codes, but they are designed to
control the assembler or to set data.

For discrimination from other instructions, all the assembler pseudo-instructions begin with a sharp
(#) or a period (.).

General notation forms of pseudo-instructions

General forms: <Pseudo-instruction>

<Pseudo-instruction> tab or space <Parameter>

<Pseudo-instruction> tab or space <Parameter1> tab, space or comma <Parameter2> ...
Examples: #define SW1 1

.org 0x100

.comm BUF 4

There is no restriction as to where the description of an instruction may begin in a line.

An instruction containing a parameter needs to be separated into the instruction and the parameter
with one or more tabs or spaces. If an instruction requires multiple parameters, they are separated
from each other with an appropriate delimiter.

52

EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 4: ASSEMBLER

Types of pseudo-instructions

The following 25 types of pseudo-instructions are available:

#include #define #macro #endm #ifdef #ifndef #else #endif #defnum

.abs .align .org .code .data .bss .codeword .word .comm .Ilcomm

.global .set .list .nolist .stabs .stabn

For details of each pseudo-instruction and its functionality, refer to Section 4.7, "Assembler Pseudo-
Instructions".

Restriction
The mnemonics and pseudo-instructions are all not case sensitive. Therefore, they can be written in
uppercase (A-Z) characters, lowercase (a-z) characters, or both. For example, "1d", "LD", and "Ld" are
all accepted as "ld" instructions. However, the user defined symbols used in the operands or param-
eters are case sensitive. They must be the same with the defined characters. When assembling with the
"-c" option, all symbols are case insensitive.

4.5.3 Symbols (Labels)

A symbol (label) is an identifier designed to refer to an arbitrary address in the program. It is possible to
refer to a branch destination of a program or a data memory address using the defined symbol.

Definition of a symbol
Usable symbols are defined as 16-bit values by any of the following methods:

1. <Symbol>:
Example: LABEL1:
... LABEL1 is a label that indicates the address of a described location.

Preceding spaces and tabs are ignored. It is a general practice to describe from the top of a line.

2. Definition using the .set pseudo-instruction
Example: .set ADDR1 0xff00
... ADDR1 is a symbol that represents absolute address 0xff00.

3. Definition using the .comm or .lcomm pseudo-instruction
Example: .comm BUF1 4
... BUF1 is a label that represents a RAM address.

The .comm and .Icomm pseudo instructions can define labels only in bss sections (data memory
such as RAM). Program memory addresses cannot be defined.

Reference with symbols
A defined symbol denotes an address.
The actual address value should be determined in the linking process, except in the case of absolute

sections.
Examples: LABEL1:

ir LABEL1 ... jumps to the LABEL1 location.

.set I0_M OxfffO
.org 0x0000
.bss

.comm COUNT1 1

.code

ldb %ext,|I0_M@h

ldb %xI,10_M@I ... OxfffO is loaded to X-registef@h and @I are symbol masks.)
inc [COUNT1] ... Regarded as inc [0x0000].

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 53

CHAPTER 4: ASSEMBLER

Scope
The scope is a reference range of a symbol (label). It is called local if the symbol is to be referenced
within the same file, and it is called global if the symbol is to be referenced from other files.
Any defined symbol's scope is local in default. To make a symbol's scope global, use the .global
pseudo-instruction both in the file in which the symbol is defined and in the file that references the
symbol.
A double definition of local symbols will be an error at the assembly stage, while a double definition
of global symbols will be an error at the link stage.

Example:
File in which global symbol is defined (filel)
.global SYMBOL ... Global declaration of a symbol which is to be defined in this file.
SYMBOL:
LABEL: ... Local symbol

(Can be referenced to only in this file)

File in which a global symbol is referenced to (file2)

.global SYMBOL ... Global declaration of a symbol defined in other source file.
call SYMBOL ... Symbol externally referenced to.
LABEL: ... Local symbol

(Treated as a different symbol from LABEL of filel)

The assembler regards those symbols as those of undefined addresses in the assembling, and includes
that information in the object file it delivers. Those addresses are finally determined by the processing
of the linker.

0 When a symbol is defined by the .comm pseudo-instruction, that symbol will be a global symbol.
Therefore, in a defined file, no global declaration needs to be made using the .global pseudo-instruc-
tion. On the contrary, in a file to be referenced, the global declaration is necessary prior to the refer-
ence.

Symbol masks
Symbol masks are designed to acquire the upper 8-bit address and the lower 8-bit address from a
symbol representing a 16-bit address.
The following 5 types of symbol masks can be used:
@l or @L Acquires the lower 8 bits of an absolute address.
@h or @H Acquires the upper 8 bits of an absolute address.
@rl or @RL Acquires the lower 8 bits of a relative address.
@rh or @RH Acquires the upper 8 bits of a relative address.
@xhor @XH Acquires the upper 8 bits of an absolute address by inverting them (Used exclu-
sively for the "ldb" instruction combined with the "ecmp" instruction).

Sample uses:

Idb %ext, ADDR@h

ldb %x|,ADDR@I ... Functions as "ld %x, ADDR (16-bit)"
Idb %ext, NUM@h

add %x,NUM@I ... Functions as "add %x, NUM (16-bit)"
Idb %ext,LABEL@rh

calr LABEL@rl ... Functions as "calr LABEL (16-bit)"
Idb %ext,DATA@xh

cmp %x,DATA@I ... Functions as "cmp %x, DATA (16-bit)"
.set IO_ADDR O0xff12

Idb %ext,|I0_ADDR@I

Id %a,[%y] ... Functions as "ld %a, [IO_ADDR]"

54 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 4: ASSEMBLER

Restrictions

¢ The maximum number of characters of a symbol is 259 (not including colon). If this number is ex-
ceeded, an error will result.

¢ Only the following characters can be used:
A-Z az _ 097

¢ A symbol cannot begin with a numeral.

Examples: ;0K :Error
FOO: 1llable:
L1: L1:
.set 10 OxfffO .set #IO OxfffO
.comm BUF 4 dcomm 1st BUF 2

¢ Since symbols are case sensitive by default, uppercase and lowercase are discriminated. When refer-
encing a defined symbol, use the characters exactly the same as the defined symbol.
Examples: _Abcd:

jr _ABCD ... Does not jump to _Abcd
However, symbols will be case insensitive if the -c option is specified.

e The symbol masks are effective only on the defined symbols. If a symbol mask is applied to a numeric
value, an error will result.

e If a symbol mask is omitted, the lower bits effective for that instruction will be used. However, if the
bit value does not fall within the instruction range, an error or warning will be issued.

e Symbols and symbol masks cannot be used on 4-bit immediate values.

4.5.4 Comments

Comments are used to describe a series of routines, or the meaning of each statement. Comments cannot
comprise part of coding.

Definition of comment
A character string beginning with a semicolon (;) and ending with a line feed code (LF) is interpreted
as a comment. Not only ASCII characters, but also other non-ASCII characters can be used to describe
a comment.
Examples: ;This line is a comment line.
LABEL: ;This is the comment for LABEL.
Id %a,%b ;This is the comment for the instruction on the left.

Restrictions
e A comment is allowed up to 259 characters, including a semicolon (;), spaces before, after and inside
the comment, and a return/line feed code.

¢ When a comment extends to several lines, each line must begin with a semicolon.
Examples: ;These are

comment lines. ... The second line will not be regarded as a comment. An error will
result.
;These are
; comment lines. ... Both lines will be regarded as comments.

4.5.5 Blank Lines

This assembler also allows a blank line containing only a return/line feed code. It need not be made into a
comment line using a semicolon.

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 55

CHAPTER 4: ASSEMBLER

4.5.6 Register Names
The CPU register names may be written in either uppercase or lowercase letters.

Table 4.5.6.1 Notations of register names

Register Notation
A Data register A %a, %A, a or A
B Data register B %b, %B, b or B
BA BA-register pair %ba, %BA, ba or BA
X Index register X %X, %X, x or X

XH Upper 8 bits of X-register |%xh, %XH, xh or XH
XL Lower 8 bits of X-register |%xl, %XL, xI or XL
Y Index register Y %y, %Y,y orY

YH Upper 8 bits of Y-register |%yh, %YH, yh or YH
YL Lower 8 bits of Y-register |%yl, %YL, yl or YL

F Flag register F %f, %F, for F

EXT | Extension register EXT %ext, %EXT, ext or EXT
SP1 | Stack pointer SP1 %spl, %SP1, spl or SP1
SP2 | Stack pointer SP2 %sp2, %SP2, sp2 or SP2

Note: "%" can be omitted. These symbols are reserved words, therefore they cannot be used as user-
defined symbol names.

4.5.7 Numerical Notations

This Assembler supports three kinds of numerical notations: decimal, hexadecimal, and binary.

Decimal notations of values

Notations represented with 0-9 only will be regarded as decimal numbers. To specify a negative
value, put a minus sign (-) before the value.
Examples: 1 255 -3

Characters other than 0-9 and the sign (-) cannot be used.
Hexadecimal notations of values

To specify a hexadecimal number, place "0x" before the value.
Examples: Oxla 0xff00

"0x" cannot be followed by characters other than 0-9, a—f, and A-F.

Binary notations of values

To specify a binary number, place "Ob" before the value.
Examples: 0b1001 0b1001100

"Ob" cannot be followed by characters other than 0 or 1.

Specified ranges of values

The size (specified range) of immediate data varies with each instruction.
The specifiable ranges of different immediate data are given below.

Table 4.5.7.1 Types of immediate data and their specifiable ranges

Symbol Type Decimal Hexadecimal Binary
imm2 | 2-bitimmediate data 0-3 0x0-0x3 0b0-0b11

imm4 | 4-bit immediate data 0-15 0x0—0xf 0b0-0b1111
imm6 | Software vectored interrupt address 0-64 0x0—0x3f 0b0-0b111111
imm8 | 8-bit immediate data 0-255 0x0—0xff 0b0-0b11111111
n4 4-bit n-ary specified data 1-16 0x1-0x10 0b0-0b10000
sign8 | Signed 8-bit immediate data -128-127 0x0—0xff 0b0-0b11111111
add6 | 6-bit address 0-64 0x0—-0x3f 0b0-0b111111

56 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 4: ASSEMBLER

Other numerical notations
The following numerical notations can also be used:
nnnnB: Binary numbers
nnnnO: Octal numbers
nnnNnQ: Octal numbers
nnnnH: Hexadecimal numbers

"nnnnB" (binary numbers) and "nnnnH" (hexadecimal numbers) are converted into the new format
("Obnnnn" and "0xnnnn") in the preprocessing stage.

"nnnnO" and "nnnnQ" (octal numbers) are converted into hexadecimal numbers ("0Oxnnnn") in the
preprocessing stage.

ASCII to HEX conversion
One or two ASCII characters (enclosed with ' ') can be described in source files unless converting into
numbers. The numeric operators can also be used. The described characters are converted into ASCII
codes and delivered to the output relocatable object file.

Examples: retd '1' - (retd Ox31)
retd '23' - (retd 0x3233)
retd '4'+1 - (retd O0x35)

Note: Three or more characters and the following characters cannot be described:
Control codes (0x0 to 0x1f) space @ [] ; ,

4.5.8 Operators

An expression that consists of operators, numbers and /or defined symbols (including labels) can be used
for specifying a number or defining a Define name (only for number definition).

The preprocess in the assembler handles expressions in signed 16-bit data and expands them as hexadeci-
mal numbers.

Types of operators

Arithmetic operators Examples

+ Addition, Plus sign +0xff, 1+2

- Subtraction, Minus sign -1+2, Oxff-Ob111
* Multiplication 0xf*5

/ Division 0x123/0x56

% Residue 0x123%0x56 (%% is also be supported.)
>> Shifting to right 1>>2

<< Shifting to left 0x113<<3

"H Acquires upper 8 bits 0x1234"H

L Acquires lower 8 bits 0x1234"L

O Parenthesis 1+(1+2*5)

The arithmetic operator returns the result of arithmetic operation on the specified terms.

Logical operators Examples

& Bit AND 0b1101&0b111
| Bit OR 0b123|0xff

n Bit XOR 12735

~ Bit inversion ~0x1234

The logical operator returns the result of logic operation on the specified terms.

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 57

CHAPTER 4: ASSEMBLER

Relational operators Examples

== Equal SW==0

I= Not equal SW!=0

< Less than ABC<5

<= Less than or equal ABC<=5

> Greater than ABC>5

>= Greater than or equal ABC>=5

&& AND ABC&&O0xf

Il OR ABC]||0b1010

The relational operator returns 1 if the expression is true, otherwise it returns 0.

Priority
The operators have the priority shown below. If there are two or more operators with the same
priority in an expression, the assembler calculates the expression from the left.

() High priority
+ (plus sign), - (minus sign), ~ 1

AH, "L

* 1 % (%%)

+ (addition), - (subtraction)

<<, >>

==, l=, < <= > >=

7T

&

A

O XN PN

—_
e

11. && !
12. 11 Low priority

Examples
#defnum BLK_HEADER_SIZE 4
#defnum BLK_START 0x30+BLK_HEADER_SIZE*2
#defnum BLK_END BLK_START+4*2

#macro ADD_X ADDR

ldb %ext,(ADDR*2)"H ... Can be used in macros.
add %x,(ADDR*2)"L
#endm
Idb %ext,BLK_STARTMH ; %x=BLK_START
Idb %xI, BLK_START/L
Id [%x],0011&0x110
Idb %ext, ~BLK_END"H ; cmp %x, BLK_END
cmp %x, BLK_ENDAL

ADD_X (0x1200+0x34)*2 ; %ox+=0x1234*2

58 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 4: ASSEMBLER

Precautions
e Minus numbers -1 to -32768 are handled as 0xffff to 0x8000.

¢ The assembler handles expressions as 16-bit data. Pay attention to the data size when using it as 4-bit
immediate data, especially when it has a minus value.

Example:
Id %a,-2+1 ... NG. It will be expanded as "Id a,0xffff".
Id %a,(-2+1)&0xf ... OK. It will be expanded as "Id a,0xf".

¢ Expressions are calculated with a sign (like a signed short in C language).
Pay attention to the calculation results of the >>, / and % operators using hexadecimal numbers.

Example:
.set NUM1 0xfffe/2 ... -2/2 = -1 (Oxffff)
The / and % operators can only be used within the range of +32767 to -32768.
.set NUM2 Oxfffe>>1 . m2>>1 = -1 (Oxffff)

Mask as (0xfffe>>1)&0x7fff.

¢ When using an expression in a #define statement, it will be expanded as is. Pay attention when a
number is defined using the #define pseudo-instruction.

Example:
#define NUM1 1+1
Id %a,NUM1*2 ... This will be expanded as "ld %a, 1+1*2" (=3).
#define NUM2 (1+1)
Id %a,NUM2*2 ... This will be expanded as "ld %a, (1+1)*2" (=4).

Do not insert a space or a tab between an operator and a term.

4.5.9 Location Counter Symbol "$"

The address of each instruction code is set in the 16-bit location counter when a statement is assembled. It
can be referred using a symbol "$" as well as labels. "$" indicates the current location, thus it can be used
for relative branch operation. The operators can be used with this symbol similar to labels.

Example: jr $... Jumps to this address (means endless loop).
ir $+2 ... Jumps to two words after this address.
ir $-10 ... Jumps to 10 words before this address.
jr $+16+(16*(BLK>16)) ... Operators and defined symbols can be used.
Precaution

When the address referred to relatively with "$" is in another section, it should be noted if the in-
tended section resides at the addressed place, because if the section is relocatable, the absolute
address is not fixed until the linking is completed.

4.5.10 Optimization Branch Instructions for Old Preprocessor

The old version of the EOC63 preprocessor has optimization branch instructions for optimizing the
extension code. Since this function is supported by the linker in the current version, they are expanded
without an extension code in the assembler. The relative distance to the label does not affect this expan-

s10n.
Optimization Branch Instruction Mnemonic after Expansion
Xjr LABEL - jr LABEL
xjrc LABEL - jrc LABEL
xjrnc LABEL - jmmc LABEL
xjrz LABEL - jrz LABEL
xjrnz LABEL - jmz LABEL
xcalr LABEL - calr LABEL

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 59

CHAPTER 4: ASSEMBLER

4.6 Section Management

4.6.1 Definition of Sections

The memory configuration of the EOC63 Family microcomputer is divided into a code ROM that contains
programs written, and data memories such as data RAM and I/ O memory. Moreover, some models carry
a data ROM that holds static data written.

A section refers to an area where codes are written (or to be mapped), and there are three types of sec-
tions in correspondence with the memories:

1. CODE section Area located within a code ROM.
2. DATA section Area located within a data ROM.
3. BSS section Denotes a RAM area.

To allow to specify these sections in a source file, the assembler comes provided with pseudo-instruc-
tions.

CODE section

The .code pseudo-instruction defines a CODE section. Statements from this instruction to another
section defining instruction will be regarded as program codes, and will be so processed as to be
mapped in the code ROM. The source file will be regarded as a CODE section by default. Therefore,
the part that goes from top of the file, to another section will be processed as a CODE section. Because
this section is of 13 bits/word, 4-bit data cannot be defined.

DATA section

The .data pseudo-instruction defines a DATA section. Statements from this instruction to another
section defining instruction will be regarded as 4-bit data, and will be so processed as to be mapped in
the data ROM. Therefore, nothing else can be described in this area other than the symbols for
referring to the address of the data ROM, the 4-bit data defining pseudo-instruction (.word), and
comments. This section is applied only to models having a data ROM.

BSS section

The .bss pseudo-instruction defines a BSS section. Statements from this instruction to another section
defining instruction will be regarded as 4-bit data, and will be so processed as to be mapped in the
data memory (RAM). Therefore, nothing else can be described in this area other than the symbols for
referring to the address of the data memory, the area securing pseudo-instructions (.comm and
dcomm).

The .comm pseudo-instruction and the .Icomm pseudo-instruction are designed to define the symbol
and size of a data area. Although the BSS section basically consists in a RAM area, it can as well be
used as a data memory area, such as display memory and I/O memory. Since code definition in this
area is meaningless in embedded type microcomputers, such as those of the EOC63 Family, nothing
else can be described other than the two instructions and comments.

4.6.2 Absolute and Relocatable Sections

The assembler is a relocatable assembler that always generates an relocatable object and needs the linker
to make it into an executable absolute object. However, each section in one source can be absolute or
relocatable depending on how they are described. The section whose absolute address is specified with
the .org pseudo-instruction in the source is an absolute section, while the section whose absolute address
is not specified is an relocatable section. Absolute addresses of relocatable sections will be fixed by the
linker. Both types of sections can be included in one source.

60 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 4: ASSEMBLER

4.6.3 Sample Definition of Sections

CODEL1 (Relocatable program)

.data.
DATA1 (Relocatable data definition)

.bss
BSS1 (Relocatable RAM area definition)

.codé

.org 0x0 ... If this specification is omitted, a CODE section begins from the address following CODEL1.
CODE2 (Absolute program)

.bss

.org 0x0 ... If this specification is omitted, a BSS section begins from the address following BSS1.
BSS2 (Absolute RAM area definition)

.codé
CODES3 (Relocatable program)

.data.

.org 0x8000 ... If this specification is omitted, a DATA section begins from the address following DATAL.

DATAZ2 (Absolute data definition)

In the section definition shown above, absolute sections and relocatable sections are mixed in one source.
Absolute sections are sections whose absolute addresses are specified with the .org pseudo-instructions.
CODE2, BSS2 and DATA? are absolute sections. Absolute sections will be located at the place specified.

Other sections are relocatable in the sense that the absolute location addresses are not fixed at the assem-
bly stage and will be fixed later at the linking stage.

Precautions
When there appears in a section a statement which is designed for other section, a warning will be
issued and a new section will be started according to the statement.
Examples: .code

.comm BUF 16 ... Warning; A new bss section begins
.bss
Id %a,%b ... Warning; A new code section begins

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 61

CHAPTER 4: ASSEMBLER

4.7 Assembler Pseudo-Instructions

The assembler pseudo-instructions are not converted to execution codes, but they are designed to control
the assembler or to set data.

For discrimination from other instructions, all the assembler pseudo-instructions begin with a character
"#" or ".". The instructions that begin with "#" are preprocessed pseudo-instructions and they are ex-
panded into forms that can be assembled. The expanded results are delivered in the preprocessed file

"o

(.ms). The original statements of the pseudo-instructions (#) are changed as comments by attaching a ;
before delivering to the file. The instruction that begins with "." are used for section and data definitions.
They are not converted at the preprocessing stage.

All the pseudo-instruction characters are not case sensitive.

The following pseudo-instructions are available in the assembler:

Pseudo-instruction Function

#include Includes another source.
#define Defines a constant string.
#defnum Defines a constant number. (1)
#macro—#endm Defines a macro.

#ifdef—#else—#endif Defines an assemble condition.
#ifndef—#else—#endif Defines an assemble condition.

.abs Specifies absolute assembling. ()

.align Sets alignment of a section.

.org Sets an absolute address.

.code Declares a CODE section (mapping to the built-in code ROM).
.data Declares a DATA section (mapping to the built-in data ROM).
.bss Declares a BSS section (mapping to the built-in RAM).
.codeword Defines data in the CODE section.

.word Defines data in the DATA section.

.comm Secures a global area in the BSS section.

comm Secures a local area in the BSS section.

.global Defines an external reference symbol.

.set Defines an absolute address symbol.

ist Controls assembly list output.

.nolist Controls assembly list output.

.stabs Debugging information (source name).

.stabn Debugging information (line number).

(l: Maintained only for compatibility with the older assembler.

62 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 4: ASSEMBLER

4.7.1 Include Instruction (#include)

The include instruction inserts the contents of a file in any location of a source file. It is useful when the
same source is shared in common among several source files.

Instruction format

#include "<File name>"

¢ A drive name or path name can as well be specified as the file name.
¢ One or more spaces are necessary between the instruction and the "<File name>".
¢ Character case is ignored for both #include itself and "<File name>".

Sample descriptions:
#include "sample.def"
#include "c:\EOC63\header\common.h"

Expansion rule
The specified file is inserted in the location where #include was described.

Precautions
¢ Only files created in text file format can be inserted.

¢ The #include instruction can be used in the including files. However, nesting is limited up to 10 levels.
If this limit is surpassed, an error will result.

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 63

CHAPTER 4: ASSEMBLER

4.7.2 Define Instruction (#define)

Any substitute character string can be left defined as a Define name by the define instruction (#define),
and the details of that definition can be referred to from various parts of the program using the Define
name.

Instruction format
#define <Define name> [<Substitute character string>]

<Define name>:
e The first character is limited to a—z, A-Z, ? and _.
¢ The second and the subsequent characters can use a-z, A-Z, 0-9, ? and _.
¢ Uppercase and lowercase characters are discriminated. (#define itself is case insensitive.)
When assembling with the "-¢" option, all symbols are case insensitive.
¢ One or more spaces or tabs are necessary between the instruction and the Define name.

<Substitute character string>:
¢ When writing all characters can be used, but a semicolon (;) is interpreted as the start of a comment.
¢ Uppercase and lowercase characters are discriminated.
¢ One or more spaces or tabs are necessary between the Define name and the substitute character string.
¢ The substitute character string can be omitted. In that case, NULL is defined in lieu of the substitute
character string. It can be used for the conditional assembly instruction.

Sample definitions:

#define TYPE1

#define L1 LABEL_01
#define Xreg %X

#define CONST (DATA1+DATA2)*2

Expansion rule
If a Define name defined appears in the source, the assembler substitutes a defined character string
for that Define name.

Sample expansion:
#define INT_F1 OxfffO
#define INT_F1.1 O

set [INT_F1], INT_F1_1 ... Expanded to "set [0xfff0],0".

64 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 4: ASSEMBLER

Precautions

¢ The assembler only permits backward reference of a Define name. Therefore the name definition must
precede the use of it.

¢ Once a Define name is defined, it cannot be canceled. However, redefinition can be made using
another Define name.
Example:
#define XL %oxI
#define Xlow XL
ldb [Xlow],%ba ... Expanded to "ldb [%xI],%ba".

¢ When the same Define name is defined duplicatedly, a warning message will appear. Until it is
redefined, it is expanded with the original content, and once it is redefined, it is expanded with the
new content.

¢ No other characters than delimiters (space, tab, line feed, and comma) can be added before and after a
Define name in the source, unless they are enclosed in [] or []+. However, an operator or a symbol
mask (@..) can be added to a Define name string without delimiters.

Examples:
#define INT_F Oxfff
tst [INT_F1],0 ;tst [Oxfff1],0? ... Specification like this is invalid.
#define L LABEL
Idb %ext,L@h ... Replaced with "ldb %ext,LABEL@h".
Idb %xI,L@!I ... Replaced with "Idb %xI|,LABEL@I".

¢ When using an expression in a #define statement, it will be expanded as is. Pay attention when a
number is defined using the #define pseudo-instruction.

Examples:
#define NUM1 1+1
Id %a,NUM1*2 ... Expanded as "ld %a, 1+1*2" (=3).
#define NUM2 (1+1)
Id %a,NUM2*2 ... Expanded as "ld %a, (1+1)*2" (=4).

¢ The internal preprocess part of the assembler does not check the validity of a statement as the result of
the replacement of the character string.

EO0C63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 65

CHAPTER 4: ASSEMBLER

4.7.3 Numeric Define Instruction (#defnum)

Instruction format
#defnum <Numeric Define name> <Number>

Function
The #defnum pseudo-instruction is provided for compatibility with the older assembler. In the older
assembler, #defnum is required to define a numeric constant, while #define is for defining a string. In
the new assembler, there is no need to differentiate between a numeric constant and a string.
Therefore the new assembler should use the #define instruction.

66 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 4: ASSEMBLER

4.7.4 Macro Instructions (#macro ... #endm)

Any statement string can be left defined as a macro using the macro instruction (#macro), and the content
of that definition can be invoked from different parts of the program with the macro name. Unlike a
subroutine, the part that is invoking a macro is replaced with the content of the definition.

Instruction format

#macro <Macro name> [<Dummy parameter>] [, <Dummy parameter>] ...
<Statement string>
#endm

<Macro name>:
¢ The first character is limited to a—z, A-Z, ? and _.
¢ The second and the subsequent characters can use a-z, A-Z, 0-9, ? and _.
¢ Uppercase and lowercase characters are discriminated. (#macro itself is case insensitive.)
When assembling with the "-¢" option, all symbols are case insensitive.
¢ One or more spaces or tabs are necessary between the instruction and the macro name.

<Dummy parameter>:
¢ Dummy parameter symbols for macro definition. They are described when a macro to be defined
needs parameters.
¢ One or more spaces or tabs are necessary between the macro name and the first parameter symbol.
When describing multiple parameters, a comma (,) is necessary between one parameter and another.
¢ The same symbols as for a macro name are available.
¢ The number of parameters are limited according to the free memory space.

<Statement string>:

e The following statements can be described:
- Basic instruction (mnemonic and operand)
- Conditional assembly instruction
- Internal branch label*
- Comments

¢ The following statements cannot be described:
- Assembler pseudo-instructions (excluding conditional assembly instruction)
- Other labels than internal branch labels
- Macro invocation

[Internal branch label
A macro is spread over to several locations in the source. Therefore, if you describe a label in a macro,
a double definition will result, with an error issued. So, use internal branch labels which are only
valid within a macro.
¢ The number of internal-branch labels are limited according to the free memory space.
¢ The same symbols as for a macro name are available.

Sample definition:
#define C_RESET 0b1101

#macro WAIT COUNT
Id %a,COUNT
and %f,C_RESET
LOOP:
nop
jr LOOP
#endm

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 67

CHAPTER 4: ASSEMBLER

Expansion rules
When a defined macro name appears in the source, the assembler inserts a statement string defined in
that location.
If there are actual parameters described in that process, the dummy parameters will be replaced with
the actual parameters in the same order as the latter are arranged.
The internal branch labels are replaced, respectively, with __ L0001 ... from top of the source in the
same order as they appear.

Sample expansion:
When the macro WAIT shown above is defined:
Macro invocation

WAIT 15

After expansion
SWAIT 15
Id %a,15
and %f,0b1101
__LOoo1:
nop
jr - __LOoo1

("__LO001" denotes the case where an internal branch label is expanded for the first time in the source.)

Precautions

¢ The assembler only permits backward reference of a macro invocation. Therefore the macro definition
must precede the use of it.

® Once a defined macro name is defined, it cannot be canceled. If the same macro name is defined
duplicatedly, a warning message will appear. Until it is redefined, it is expanded with the original
content, and once it is redefined, it is expanded with the new content. Definition should be done with
distinct names, although the program operation will not be affected.

¢ No other characters than delimiters (space, tab, line feed, and commas) can be added before and after
a dummy parameter in a statement.

¢ The same character string as that of the define instruction cannot be used as a macro name.
¢ When the number of dummy parameters differs from that of actual parameters, an error will result.

¢ The maximum number of parameters and internal branch labels are limited according to the free
memory space.

"

__Lnnnn" used for the internal branch labels should not be employed as other label or symbol.

68 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 4: ASSEMBLER

4.7.5 Conditional Assembly Instructior(gifdef ... #else ... #endif, #ifndef... #else ... #endif)

A conditional assembly instruction determines whether assembling should be performed within the
specified range, dependent on whether the specified name (Define name) is defined or not.

Instruction formats

Format 1) #ifdef <Name>
<Statement string 1>
[#else
<Statement string 2>]
#endif

If the name is defined, <Statement string 1> will be subjected to the assembling.
If the name is not defined, and #else ... <Statement string 2> is described, then <Statement string 2>
will be subjected to the assembling. #else ... <Statement string 2> can be omitted.

Format 2) #ifndef <Name>
<Statement string 1>
[#else
<Statement string 2>]
#endif

If the name is not defined, <Statement string 1> will be subjected to the assembling.
If the name is defined, and #else ... <Statement string 2> is described, <Statement string 2> will be
subjected to the assembling. #else ... <Statement string 2> can be omitted.

<Name>:
Conforms to the restrictions on Define name. (See #define.)

<Statement string>:
All statements, excluding conditional assembly instructions, can be described.

Sample description:
#ifdef TYPE1L

Id %x,0x12
#else

Id %x,0x13
#endif

#ifndef SMALL
#define STACK1 0x31
#endif

Name definition

Name definition needs to have been completed by either of the following methods, prior to the
execution of a conditional assembly instruction:

(1) Definition using the start-up option (-d) of the assembler.
Example: as63 -d TYPEL1 sample.s

(2) Definition in the source file using the #define instruction.
Example: #define TYPE1

The #define statement is valid even in a file to be included, provided that it goes before the
conditional assembly instruction that uses its Define name. A name defined after a conditional
assembly instruction will be regarded as undefined.

When a name is going to be used only in conditional assembly, no substitute character string
needs to be specified.

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 69

CHAPTER 4: ASSEMBLER

Expansion rule
A statement string subjected to the assembling is expanded according to the expansion rule of the
other preprocessing pseudo-instructions. (If no preprocessing pseudo-instruction is contained, the
statement will be output in a file as is.)

Precaution
A name specified in the condition is evaluated with discrimination between uppercase and lowercase.
When assembling with the "-¢" option, all symbols are case insensitive.
The condition is deemed to be satisfied only when there is the same Define name defined.

70 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 4: ASSEMBLER

4.7.6 Section Defining Pseudo-Instructions (.code, .data, .bss)

The section defining pseudo-instructions define one related group of codes or data and make it possible
to relocate by the groups at the later linking stage. Even if these section defining pseudo-instructions are
not used, the section kind will be automatically judged by its contents (however, a warning occurs). If the
new codes or data without section definition are different from the previous code or data kind, they will
be taken as another new section.

.code pseudo-instruction

Instruction format

.code

Function

Declares the start of a CODE section. Statements following this instruction are assembled as those to
be mapped in the code ROM, until another section is declared.

The CODE section is set by default in the assembler. Therefore, the .code pseudo-instruction can be
omitted at top of a source file. Always describe it when you change a section to a CODE section.

Precautions

¢ A CODE section can be divided among multiple locations of a source file for purpose of definition
(describing the .code pseudo-instruction in the respective start positions).

¢ A CODE section is relocatable by default unless its location is specified with the .org pseudo-instruc-
tion or more loosely with the .align pseudo-instruction.

.data pseudo-instruction

Instruction format
.data

Function

Declares the start of a DATA section. Statements following this instruction are assembled as those to
be mapped in the data ROM, until another section is declared.

Precautions
¢ The DATA section is a static data area, and effective only for models with data ROM installed.

¢ In a DATA section, nothing other than the .org and .word pseudo-instructions, symbols, and com-
ments can be described.

* A DATA section can be divided among multiple locations of a source file for purpose of definition
(describing the .data pseudo-instruction in the respective start positions).

e A DATA section is relocatable by default unless its location is specified with the .org pseudo-instruc-
tion or more loosely with the .align pseudo-instruction.

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 71

CHAPTER 4: ASSEMBLER

.bss pseudo-instruction

Instruction format

.bss

Function

Declares the start of a BSS section. Statements following this instruction are assembled as those to be
mapped in the RAM, until another section is declared.

Precautions
e In a BSS section, nothing else other than the .comm, .Icomm, and .org pseudo-instructions, symbols,
and comments can be described.

* A BSS section can be divided among multiple locations of a source file for purpose of definition
(describing the .bss pseudo-instruction in the respective start positions).

¢ A BSS section is relocatable by default unless its location is specified with the .org pseudo-instruction
or more loosely with the .align pseudo-instruction.

72 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 4: ASSEMBLER

4.7.7 Location Defining Pseudo-Instructions (.org, .align)

The absolute addressing pseudo-instructions (.align and .org) work to specify absolute location of a
section in different precision such as 2" words alignment level and complete absolute address level.

.org pseudo-instruction

Instruction format

.org <Address>

<Address>:
Absolute address specification
¢ Only decimal, binary and hexadecimal numbers can be described.
e The addresses that can be specified are from 0 to 65,535 (Ox£f).
¢ One or more spaces or tabs are necessary between the instruction and the address.

Sample description:
.code
.org 0x0100

Function

Specifies an absolute address location of a CODE, DATA or BSS section in an assembly source file. The
section with the .org pseudo-instruction is taken as an absolute section.

Precautions
e If an overlap occurs as the result of specifying absolute locations with the .org pseudo-instruction, an

error will result.

Examples:
.bss
.org 0x00
.comm RAMO 4 ... RAM secured area (0x00—0x03)
.org 0x01
.comm RAM1 4 ... Error (because the area of 0x01-0x03 is overlapped)

¢ When the .org pseudo-instruction appears in a section, a new absolute section starts at that point. The
section type does not change. The .org pseudo-instruction keeps its effect only in that section until the
next section definer (.code, .data or .bss) or the next location definer (.org or .align) appears.

Example:
.code - ... The latest relocatable section definition.
.org 0>-<100 ... Starts new absolute CODE section from address 0x100.
.bss ... This section is relocatable not affected by the ".org" pseudo-instruction.
.code - ... This section is also relocatable not affected by the ".org" pseudo-instruction.

¢ If the .org pseudo-instruction is defined immediately after a section definer (.code, .data or .bss), the
section definer does not start a new section. But .org starts a new section with the attribute of the
section definer.

Example:
.code ... This does not start a new CODE section.

.org 0x100 ... This starts an absolute CODE section.

EO0C63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 73

CHAPTER 4: ASSEMBLER

e If the .org pseudo-instruction is defined immediately before a section definer (.code, .data or .bss), it
does not start a new section and makes no effect to the following sections.

Example:
.code ... The latest relocatable section definition.
.org 0x100 ... This does not start a new absolute section and makes no effect.
.bss ... The another kind (BSS) of section which is not affected by the
: previous ".org" pseudo-instruction in the CODE section.
.code ... This will be an relocatable CODE section not affected by the

previous ".org" pseudo-instruction.

74 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 4: ASSEMBLER

.align pseudo-instruction

Instruction format
.align <Alignment number>

<Alignment number>:
Word alignment in 2" value
¢ Only decimal, binary and hexadecimal numbers can be described.
e The alignment that can be specified is a 2" value.

¢ One or more spaces or tabs are necessary between the instruction and the alignment number.
Sample description:

.code

.align 32 ... Sets the location to the next 32-word boundary address.

Function

Specifies location alignment in words of a CODE, DATA or BSS section in an assembly source file. The
section with the .align pseudo-instruction can be taken as a loosely absolute section in the sense that
its location is partially defined.

Precautions

e When the .align pseudo-instruction appears in a section, a new absolute section starts at that point.
The section type does not change. The .align pseudo-instruction keeps its effect only in that section
until the next section definer (.code, .data or .bss) or the next location definer (.org or .align) appears.

Example:
.code - ... The latest relocatable section definition.
.align 3-2 ... Starts new loosely absolute CODE section from the next 32-word boundary address.
.bss ... This section is relocatable not affected by the ".align" pseudo-instruction.
.code - ... This section is also relocatable not affected by the ".align" pseudo-instruction.

e If the .align pseudo-instruction is defined immediately after a section definer (.code, .data or .bss), the

section definer does not start a new section. But .align starts a new section with the attribute of the
section definer.

Example:
.code ... This does not start a new CODE section.
.align 32 ... This starts a loosely absolute CODE section.

o If the .align pseudo-instruction is defined immediately before a section definer (.code, .data or .bss), it
does not start a new section and makes no effect to the following sections.

Example:
.code ... The latest relocatable section definition.
.align 32 ... This does not start a new absolute section and makes no effect.
.bss ... The another kind (BSS) of section which is not affected by the
: previous ".align" pseudo-instruction in the CODE section.
.code ... This will be an relocatable CODE section not affected by the

previous ".align" pseudo-instruction.

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 75

CHAPTER 4: ASSEMBLER

4.7.8 Absolute Assembling Pseudo-Instruction (.abs)

Instruction format
.abs

Function

The .abs pseudo-instruction is provided for compatibility with the older assembler. In the older
assembler, this pseudo-instruction is required to specify that a source file uses absolute sections as
opposed to relocatable sections. It is not necessary to use this instruction in the new assembler,
because the new assembler allows the use of absolute and relocatable sections in one source file. Use
the .org or .align pseudo-instruction for defining absolute sections.

76 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 4: ASSEMBLER

4.7.9 Symbol Defining Pseudo-Instruction (.set)
Instruction format
.set <Symbol>[,] <Value>

<Symbol>:

Symbols for value reference

e The 1st character is limited to a—z, A-Z, ? and _.

¢ The 2nd and the subsequent character can use a—z, A-Z, 0-9, ? and _.

® Uppercase and lowercase are discriminated.

When assembling with the "-c" option, all symbols are case insensitive.

¢ One or more spaces, or tabs are necessary between the instruction and the symbol.
<Value>:

Value specification

¢ Only decimal, binary, and hexadecimal numbers can be described.

¢ The values that can grammatically be specified are from 0 to 65,535 (Oxffff).

¢ One or more spaces, tabs, or a comma (,) are necessary between the instruction and the value.

Sample description:

.set DATA1 0x20

.set STACK1 0x100

Function
Defines a symbol for a value such as an absolute address.

Precaution

When the defined symbol is used as an operand, the defined value is referred as is. Therefore, if the
value exceeds the valid range of the operand, a warning will result.

Example:
.set DATAL 0xff00
Idb %ext,DATAL@h ... OK
Idb %xI,DATAL1@I ... OK
Id %a,DATAL ... Warning
EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON

7

CHAPTER 4: ASSEMBLER

4.7.10 Data Defining Pseudo-Instructions (.codeword, .word)

.codeword pseudo-instruction

Instruction format

.codeword <Data>[,<Data> ...,<Data>]

<Data>:
13-bit data
¢ Only decimal, binary and hexadecimal numbers can be described.
¢ The data that can be specified are from 0 to 8,191 (Ox1fff).
¢ One or more spaces or tabs are necessary between the instruction and the first data.
e A comma (,) is necessary between one data and another.

Sample description:
.code
.codeword Oxa,0xa40,0xff3

Function
Defines 13-bit data to be written to the code ROM.

Precaution

The .codeword pseudo-instruction can be used only in CODE sections.

.word pseudo-instruction
Instruction format

.word <Data>[,<Data> ...,<Data>]

<Data>:
4-bit data
¢ Only decimal, binary and hexadecimal numbers can be described.
¢ The data that can be specified are from 0 to 15 (0xf).
¢ One or more spaces or tabs are necessary between the instruction and the first data.
e A comma (,) is necessary between one data and another.

Sample description:
.data
.word 0Oxa,0xb,0xc,0xd

Function
Defines 4-bit data to be written to the data ROM.

Precaution

The .word pseudo-instruction can be used only in DATA sections.

78 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 4: ASSEMBLER

4.7.11 Area Securing Pseudo-Instructions (.comm, .Icomm)
Instruction format

.comm <Symbol>[,] <Size>
dcomm <Symbol>[,] <Size>

<Symbol>:

Symbols for data memory access (address reference)

e The 1st character is limited to a—z, A-Z, ? and _.

¢ The 2nd and the subsequent character can use a—z, A-Z, 0-9, ? and _.

® Uppercase and lowercase are discriminated.

When assembling with the "-c" option, all symbols are case insensitive.

® One or more spaces or tabs are necessary between instruction and symbol.
<Size>:

Number of words of the area to be secured (4 bits/word)

¢ Only decimal, binary and hexadecimal numbers can be described.

e The size that can grammatically be specified is from 0 to 65,534.

¢ One or more spaces, tabs or a comma (,) are necessary between symbol and size.

Sample description:

.bss

.comm RAMO 4

Jlcomm BUF,1
Function

Sets an area of the specified size in the BSS section (RAM and other data memory), and creates a

symbol indicating its top address with the specified name. By using this symbol, you can describe an
instruction to access the RAM.

Difference between .comm and .lcomm

The .comm pseudo-instruction and the .Icomm pseudo-instruction are exactly the same in function,
but they do differ from each other in the scope of the symbols they create. The symbols created by the
.comm pseudo-instruction become global symbols, which can be referred to externally from other
modules (however, the file to be referred to needs to be specified by the .global pseudo-instruction.)

The symbols created by the .Icomm pseudo-instruction are local symbols, which cannot be referred to
from other modules.

Precaution

The .comm and .Icomm pseudo-instructions can only be described in BSS sections.

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 79

CHAPTER 4: ASSEMBLER

4.7.12 Global Declaration Pseudo-Instruction (.global)

Instruction format

.global <Symbol>

<Symbol>:
Symbol to be defined in the current file, or symbol already defined in other module
¢ One or more spaces or tabs are necessary between the instruction and the symbol.

Sample description:
.global GENERAL_SUB1

Function

Makes global declaration of a symbol. The declaration made in a file with a symbol defined converts
that symbol to a global symbol which can be referred to from other modules. Prior to making refer-
ence, declaration has to be made by this instruction on the side of the file that is going to make the
reference.

4.7.13 List Control Pseudo-Instructions (.list, .nolist)

Instruction format

ist
.nolist

Function
Controls output to the relocatable list file.
The .nolist pseudo-instruction stops output to the relocatable list file after it is issued.
The .list pseudo-instruction resumes from there the output which was stopped by the .nolist pseudo-
instruction.

Precaution

The assembler delivers relocatable list files only when it is started up with the -1 option specified.
Therefore, these instructions are invalid, if the -1 option was not specified.

4.7.14 Source Debugging Information Pseudo-Instructions (.stabs, .stabn)

Instruction formats

(1) .stabs "<File name>", FileName
(2) .stabn 0, FileEnd
(3) .stabn <Line number>, Linelnfo

Function
The assembler outputs object files in IEEE-695 format, including source debugging information
conforming to these instructions. This debugging information is necessary to perform debugging by
Debugger db63, with the assembly source displayed.

Format (1) delivers information on the start position of a file.
Format (2) delivers information on the end position of a file.
Format (3) delivers information on the line No. of an instruction in a source file.

Insertion of debugging information
When the -g option is specified as a start option, the preprocess stage of the assembler will insert
debugging pseudo-instructions in the preprocessed file. Therefore, you do not have to describe these
pseudo-instructions in creating source files.

80 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 4: ASSEMBLER

4.7.15 Comment Adding Function

The preprocessing pseudo-instructions that begin with "#" are all expanded to codes that can be as-
sembled, and delivered in the preprocessed file. Even after that, those instructions are rewritten with
comments beginning with a semicolon (;), so that the original instructions can be identified. However,
note that the replacements of Define names will not subsist as comments.

The comment is added to the first line following the expansion. In case the original statement is accompa-
nied by a comment, that comment is also added.
A macro definition should have a semicolon (;) placed at top of the line.

Example:
» Before expansion
#define Areg %a

#macro ADDX2Y VALUE

Id Areg, VALUE
add Areg, [%X]
Id [%0y], Areg

#endm
ADDX2Y 10h ; MX + 10h -> MY

« After expansion (no debugging information)
#define Areg %a

#macro ADDX2Y VALUE

; Id Areg, VALUE
; add Areg, [%X]
; Id [%y], Areg

ADDX2Y 10h ; MX + 10h -> MY

Id %a, 0x10
add %a, [%0X]
Id [%0y], %a

4.7.16 Priority of Pseudo-Instructions

Some remarks concerning the priority among the preprocessing pseudo-instructions will be given below:

1. The conditional assembly instructions (#ifdef, #ifndef) have the first priority. Nesting cannot be made
of those instructions.

2. Define instruction (#define), include instruction (#include), or macro instruction (#macro) can be
described within a conditional assembly instruction.

3. Define instruction (#define), include instruction (#include), and macro instruction (#macro) cannot be
described within a macro definition.

4. Define name definitions are expanded with priority over macro definitions.

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 81

CHAPTER 4: ASSEMBLER

4.8 Relocatable List File

The relocatable list file is an assembly source file that carries assembled results (offset addresses and
object codes) added to the first half of each line. It is delivered only when the start-up option (-1) is
specified.
Its file format is a text file, and the file name, <File name>.Ist. (The <File name> is the same as that of the
input source file.)

The format of each line of the assembly list file is as follows:

Line No.: Address Code Source statement

Example

Assembler 63 ver x.xx Relocatable List File MAIN.LST Sat Nov 07 12:40:41 1998

1
2:
3:

25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:

0110
0111
0112
0113
0114

0115
0116

0000
0004

; main.s
; AS63 test program (main routine)

’

.org 0x110
BOOT:
0900 Idb %ba,SP1_INIT_ADDR
1fc4 ldb %spl,%ba ; set SP1
0900 Idb %ba,SP2_INIT_ADDR
1fc6 ldb %sp2,%ba ; set SP2
0200 calr INIT_RAM_BLK1 ; initialize RAM block 1
LOOP:
0200 calr INC_RAM_BLK1 ; increment RAM block 1
0000 jr LOOP ; infinity loop
;***** RAM block *kkkk
.org 0x0
.bss
00 .comm RAM_BLKO, 4
00 .comm RAM_BLK1, 4

Content of line No.
The source line number from top of the file will be delivered.

Content of address
In the case of an absolute section, an absolute address will be delivered in hexadecimal number.

In the case of a relocatable section, a relative address will be delivered in hexadecimal number from
top of the file.

Content of code
CODE section: The instruction (machine language) codes are delivered in hexadecimal numbers. One

address corresponds with one instruction. The assembler sets the operand (immediate
data) of the code that refers to unresolved address to 0. The immediate data will be
decided by the linker.

DATA section: The 4-bit data defined by the .word pseudo-instruction are delivered. One address

corresponds with one data.

BSS section: Irrespective of the size of the secured area, 00 is always delivered here.

Only the address defined for a symbol (top address of the secured area) is delivered as
the address of the BSS section.

82

EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

4.9 Sample Executions

CHAPTER 4: ASSEMBLER

Command line

C:\EOC63\bin\as63 -g -e -I main.s

Assembly source file

; main.s

; AS63 test program (main routine)

;% INITIAL SP1 & SP2 ADDRESS DEFINITION *****

#ifdef SMALL_RAM

#else

#endif

.set SP1_INIT_ADDR Oxb

.set SP1_INIT_ADDR 0x4b

.set SP2_INIT_ADDR 0x1f

Jeerrk NMI & BOOT, LOQP *rx*

NMI:

BOOT:

LOOP:

.global INIT_RAM_BLK1
.global INC_RAM_BLK1

.org 0x100

calr INIT_RAM_BLK1
reti

.org 0x110

Idb %ba,SP1_INIT_ADDR
Idb %spl,%ba

Idb %ba,SP2_INIT_ADDR
Idb %sp2,%ba

calr INIT_RAM_BLK1

calr INC_RAM_BLK1
jr LOOP

swkkkx RAM block *xx*

.org 0x0

.bss

.comm RAM_BLKO, 4
.comm RAM_BLK1, 4

;SP1 init addr = 0x2c

;SP1 init addr = 0x12¢

;SP2 init addr = Ox1f

; subroutine in sub.s
; subroutine in sub.s

; initialize RAM block 1
; in NMI(watchdog timer)

; set SP1

; set SP2
; initialize RAM block 1

; increment RAM block 1
; infinity loop

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON

83

CHAPTER 4: ASSEMBLER

Preprocessed file

.stabs "C:\E0OC63\Test\main.s", FileName

; main.s

; AS63 test program (main routine)

;o INITIAL SP1 & SP2 ADDRESS DEFINITION *****

;#ifdef SMALL_RAM

; .set SP1_INIT_ADDR 0xb

#else

.set SP1_INIT_ADDR 0x4b

#endif

.set SP2_INIT_ADDR 0x1f

Jeererk NMI & BOOT, LOQP *rx*

.global INIT_RAM_BLK1
.global INC_RAM_BLK1

.org 0x100
NMI:
.stabn 23, Linelnfo

calr INIT_RAM_BLK1
.stabn 24, Linelnfo

reti

.org 0x110
BOOT:
.stabn 28, Linelnfo

ldo %ba,SP1_INIT_ADDR

.stabn 29, Linelnfo
Idb %spl,%ba
.stabn 30, Linelnfo

Ido %ba,SP2_INIT_ADDR

.stabn 31, Linelnfo

Idb %sp2,%ba
.stabn 32, Linelnfo

calr INIT_RAM_BLK1
LOOP:
.stabn 34, Linelnfo

calr INC_RAM_BLK1
.stabn 35, Linelnfo

jr LOOP

sexkx RAM block **xx*

.org 0x0

.bss

.comm RAM_BLKO, 4

.comm RAM_BLK1, 4
.stabn 0, FileEnd

;SP1 init addr = 0x2c¢

;SP1 init addr = 0x12¢

;SP2 init addr = Ox1f

; subroutine in sub.s
; subroutine in sub.s

; initialize RAM block 1

; in NMI(watchdog timer)

; set SP1

; set SP2

; initialize RAM block 1

; increment RAM block 1

; infinity loop

84

EPSON

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

Assembly list file
Assembler 63 ver x.xx Relocatable List File MAIN.LST Sat Nov 07 12:40:41 1998

1: ; main.s
2: ; ASM63 test program (main routine)
3: ;
4:
5: ;¥% INITIAL SP1 & SP2 ADDRESS DEFINITION ***x*
6:
7: #ifdef SMALL_RAM
8: .set SP1_INIT_ADDR 0xb ;SP1 init addr = 0x2c
9: #else
10: .set SP1_INIT_ADDR 0x4b ;SP1 init addr = 0x12c
11: #endif
12:
13: .set SP2_INIT_ADDR 0x1f ;SP2 init addr = 0x1f
14:
15:
16: jeexrk NMI & BOOT, LOOP *xxx
17:
18: .global INIT_RAM_BLK1 ; subroutine in sub.s
19: .global INC_RAM_BLK1 ; subroutine in sub.s
20:
21: .org 0x100
22: NMI:
23: 0100 0200 calr INIT_RAM_BLK1 ; initialize RAM block 1
24: 0101 1ff9 reti ; in NMI(watchdog timer)
25:
26: .org 0x110
27: BOOT:
28: 0110 0900 ldb %ba,SP1_INIT_ADDR
29: 0111 1fc4 ldb %spl,%ba ; set SP1
30: 0112 0900 ldb %ba,SP2_INIT_ADDR
31: 0113 1fc6 ldb %sp2,%ba ; set SP2
32: 0114 0200 calr INIT_RAM_BLK1 ; initialize RAM block 1
33: LOOP:
34: 0115 0200 calr INC_RAM_BLK1 ; increment RAM block 1
35: 0116 0000 jr LOOP ; infinity loop
36:
37:
38: ek RAM block ***xx
39:
40: .org 0x0
41: .bss
42: 0000 00 .comm RAM_BLKO, 4
43: 0004 00 .comm RAM_BLK1, 4
Error file

Assembler 63 Ver x.xx Error log file MAIN.ERR Sat Nov 07 12:40:41 1998

Assembler 63 Ver x.xx
Copyright (C) SEIKO EPSON CORP. 1998

Created preprocessed source file MAIN.MS

Created relocatable list file MAIN.LST
Created error log file MAIN.ERR
Created relocatable object file MAIN.O

Assembly 0 error(s) 0 warning(s)

CHAPTER 4: ASSEMBLER

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON

85

CHAPTER 4: ASSEMBLER

4.10 Error/Warning Messages

4.10.1 Errors

When an error occurs, no object file will be generated.
The assembler error messages are delivered/displayed in the following format:

<Source file name> (<Line number>) Error : <Error message>

Example: TEST.S(431) Error: lllegal syntax

OSome error messages are displayed without a line number.

The assembler error messages are given below:

Error message

Description

Address out of range

The specified address is out of range.

Cannot open <file kind> file <FILE NAME>

The specified file cannot be opened.

Cannot read <file kind> file <FILE NAME>

The specified file cannot be read.

Cannot write <file kind> file <FILE NAME>

Data cannot be written to the file.

Directory path length limit
<directory path length limit> exceeded

The path name length has exceeded the limit.

Division by zero

The divisor in the expression is 0.

File name length limit <file name length limit>
exceeded

The file name length has exceeded the limit.

Illegal macro label <label>

The internal branch label in macro definition is incorrect.

Illegal macro parameter <parameter>

The macro parameter is illegal.

Illegal syntax

The statement has a syntax error.

Line length limit <line length limit> exceeded

The number of characters in one line has exceeded the limit.

Macro parameter range <macro parameter range>
exceeded

The number of macro parameters has exceeded the limit.

Memory mapping conflict

The address is already used.

Multiple statements on the same line

Two or more statements were described on one line.

Nesting level limit <nesting level limit> exceeded

Nesting of #include has exceeded the limit.

Number of macro labels limit
<number of macro label limit> exceeded

The number of internal branch labels has exceeded the limit.

Out of memory

Cannot secure memaory space.

Second definition of label <label>

The label is already defined.

Second definition of symbol <symbol>

The symbol is already defined.

Symbol name length limit <symbol name length limit>
exceeded

The symbol name length has exceeded the limit.

Token length limit <token length limit> exceeded

The token length has exceeded the limit.

Unexpected character <name>

An invalid character has been used.

Unknown label <label>

Reference was made to an undefined label.

Unknown mnemonic <name>

A nonexistent instruction was used.

Unknown register <name>

A nonexistent register name was used.

Unknown symbol <name>

A reference to an undefined symbol was made.

Unknown symbol mask <name>

The symbol mask has a description error.

Unsupported directive <directive>

A nonexistent pseudo-instruction was used.

86

EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 4: ASSEMBLER

4.10.2 Warning

When a warning occurs, the assembler will keep on processing, and terminates the processing after
displaying a warning message, unless an error is produced.
The warning message is delivered/displayed in the following formats:

<Source file name> (<Line number>) Warning : <Warning message>
Example: TEST.S(41) : Warning : Expression out of range

The warning messages are given below:

Warning message Description
Expression out of range The result of the expression is out of the effective range.
Invalid symbol mask The symbol mask is not defined correctly.
Second definition of define symbol <symbol> The symbol is already defined.
Section activation expected, use <.code/.bss> There is no section definition.

4.11 Precautions

(1) Nesting of the #include pseudo instruction is limited to a maximum 10 levels. If this limit is sur-
passed, an error will result.

(2) A maximum of 64 internal branch labels can be specified per macro and maximum 9999 internal
branch labels can be expanded within one source file. If these limits are exceeded, an error will result.

(3) Other limitations such as the number of sections depend on the free memory space.

EO0C63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 87

CHAPTER 5: LINKER

CHAPTER DS LINKER

This chapter describes the functions of the linker, 1k63.

5.1 Functions

The linker 1k63 is a software that generates executable object files. It provides the following functions:

¢ Puts together multiple object modules to create one executable object file.

e Resolves external reference from one module to another.

e Relocates relative addresses to absolute addresses.

¢ Delivers debugging information, such as line numbers and symbol information, in the object file
created after linking.

e Capable of outputting a link map file, symbol file, absolute list file and a cross reference file.

¢ Automatic page correction function (insertion/removal/ correction of the "ldb %ext, imm8" branch
extension instruction) for branch instructions.

5.2 Input/Output Files

from Assembler

Linker Relocatable ICE
command file object file(s) parameter file

) (o) G

Linker
k63
(fiemap] [flesym | [fieabs | [fiexet | [fieais | [kesen
Link Symbol Absolute Cross Absolute Error file
map file file object file reference file list file

<L

to Debugger
Fig. 5.2.1 Flow chart

5.2.1 Input Files

Relocatable object file OThis file must always be specified in either a command line or a link command file.
File format: Binary file in IEEE-695 format
File name: <File name>.o (A path can also be specified.)
Description: Object file of individual modules created by the assembler.

Linker command file
File format: Text file
File name: <File name>.cm (A path can also be specified.)
Description: File to specify the linker options. This makes it possible to reduce typing in a command
line. This file is dispensable if all start-up options can be input in a command line.

ICE parameter file OThis file must always be specified in either a command line or a link command file.
File format: Binary file
File name: <File name>.par (A path can also be specified.)

Description: File to specify the memory mapping and unsupported instruction information of each
E0C63 Family model. This file is supplied in the development tools for each model and
commonly used with the debugger and HEX converter.

88 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 5: LINKER

5.2.2 Output Files

An output file name can be specified in the command line or command file using the -o start-up option. If

no output file name is specified, the same name as that of the relocatable object file to be linked first is

used.

Absolute object file

File format:

File name:

Output destination:
Description:

Link map file

File format:

File name:

Output destination:
Description:

Symbol file

File format:

File name:

Output destination:
Description:

Cross reference file

File format:

File name:

Output destination:
Description:

Absolute list file

File format:

File name:

Output destination:
Description:

Error file

File format:

File name:

Output destination:
Description:

Binary file in IEEE-695 format

<File name>.abs

Current directory

Object file in executable format that can be input to the debugger. All the modules
comprising one program are linked together in the file, and the absolute addresses
that all the codes will map are determined. It also contains the necessary debugging
information in IEEE-695 format.

Text file

<File name>.map

Current directory

Mapping information file showing from which address of a section each input file
was mapped. This file is output when the -m start-up option is specified.

Text file

<File name>.sym

Current directory

Symbols defined in all the modules and their address information are delivered to
this file. This file is delivered when the -s start-up option is specified.

Text file

<File name>.xrf

Current directory

Labels defined in all the modules and their defined and referred addresses are
delivered in this file. This file is delivered when the -x start-up option is specified.

Text file

<File name>.als

Current directory

File delivered when the -1 start-up option is specified. The file contents are similar to
the relocatable list file output by the assembler except that the location addresses are
absolute and takes the form of an integrated single file.

Text file

1k63.err

Current directory

The file is created if the -e start-up option is specified. It records the information
which the linker outputs to the Standard Output (stdout), such as error messages.
The file name is "lk63.err" by default, but it can be changed using the -o start-up
option.

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

EPSON 89

CHAPTER 5: LINKER

5.3 Starting Method

General form of command line

k63 A [Options] A [<Relocatable object files>] A [<Linker command file>] . <ICE parameter file>

A denotes a space.
[] indicates the possibility to omit.
The order of options and file names can be arbitrary.

File names

Files are identified with their extensions. Therefore, an appropriate extension should be included in
each file name. However, the extension ".0" of the relocatable object file can be omitted.

Relocatable object files: <File name.o>

Linker command file: <File name.cm>

ICE parameter file: <File name.par>

When using a linker command file, options, relocatable object file names, an ICE parameter file name
and an output file name can be described in the linker command file. If all the items to be specified
are entered in a command line, the linker command file is not necessary.

When linking multiple relocatable object files from a command line, one or more spaces should be
placed between the file names.

For the output file name, specify an absolute object file name (.abs). The file name will be used for
other output files. If no absolute object file name is specified, the same name as that of the relocatable
object file to be linked first is used as the output file name.

The ICE parameter file cannot be omitted.

Along file name supported in Windows and a path name can be specified. When including spaces in
the file name, enclose the file name with double quotation marks (").

Options

The linker comes provided with the following options:

-d
Function: Disable full branch optimization
Explanation: Disables automatic insertion/deletion/ correction of the extension codes (Idb
%ext, imm8) for branch instructions (jumps and calls).
Default: If this option is not specified, the branch optimization function will be enabled.

-dr
Function: Disable removal branch optimization
Explanation: Disables extension code deletion only among full branch optimization (insertion/
deletion/ correction). This will be needed when at least the existing extension
codes should not be removed.
Default: If this option is not specified, unnecessary extension codes will be removed when
the full branch optimization function is specified.

Function: Output of error file
Explanation: Creates an .err file which contains the information that the linker outputs to the
Standard Output (stdout), such as error messages.
Default: If this option is not specified, no error file will be created.

90

EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

Function:
Explanation:

Default:

Function:
Explanation:
Default:

Function:
Explanation:
Default:

-0 <file name>

Function:
Explanation:

Default:

-S

Function:
Explanation:
Default:

Function:
Explanation:
Default:

-code <address>

Function:
Explanation:

Default:

Sample description:

-data <address>

Function:
Explanation:

Default:

Sample description:

CHAPTER 5: LINKER

Addition of debugging information

* Creates an absolute object file containing debugging information.

e Always specify this function when you perform source display or use the
symbolic debugging facility of the debugger.

If this option is not specified, no debugging information will be added to the

absolute object file.

Output of absolute list file
Outputs an absolute list file.
If this option is not specified, no absolute list file will be output.

Output of link map file
Outputs a link map file.
If this option is not specified, no link map file will be output.

Specification of output path/file name

Specifies an output path/file name without extension or with an extension ".abs".
If no extension is specified, ".abs" will be supplemented at the end of the specified
output path/file name.

The 1st input file name is used for the output file names.

Output of symbol file
Outputs a symbol file.
If this option is not specified, no symbol file will be output.

Output of cross reference file
Outputs a cross reference file.
If this option is not specified, no cross reference file will be output.

Set up of a relocatable CODE section start address

e Sets the absolute start address of a relocatable CODE section. Absolute sections
remain unaffected.

¢ CODE sections are mapped from this address, unless otherwise specified.

* One or more spaces or tabs are necessary between -code and <address>.

e The address should be described in hexadecimal format (Oxnnnn).

If this option is not specified, the CODE section will begin from the code ROM

physical start address specified with the ICE parameter file.

-code 0x100

Set up of a relocatable DATA section start address

* Sets the absolute start address of a relocatable DATA section. Absolute sections
remain unaffected.

* DATA sections are mapped from this address, unless otherwise specified.

* One or more spaces or tabs are necessary between -data and <address>.

e The address should be described in hexadecimal format (Oxnnnn).

If this option is not specified, the DATA section will begin from the data ROM

physical start address specified with the ICE parameter file.

-data 0x8000

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

EPSON 91

CHAPTER 5: LINKER

-bss <address>
Function: Set up of a relocatable BSS section start address
Explanation: e Sets the absolute start address of a relocatable BSS section. Absolute sections
remain unaffected.
e BSS sections are mapped from this address, unless otherwise specified.
* One or more spaces or tabs are necessary between -bss and <address>.
e The address should be described in hexadecimal format (Oxnnnn).
Default: If this option is not specified, the BSS section will begin from the RAM physical

start address specified with the ICE parameter file.

Sample description: -bss 0x000

-rcode <file name>=<address>
Function: Set up of the file-specific CODE section start address
Explanation: e Sets the absolute address to map the CODE section of the specified module.
This command serves to specify a module having a code to be fixed at a specific
address, such as the interrupt vector. Absolute sections in the specified file
remain unaffected.
* One or more spaces or tabs are necessary between -rcode and <file name>.
e The address should be described in hexadecimal format (Oxnnnn).
Default: If this option is not specified, the CODE section of each module is mapped
continuously from the address that was set by the -code option.
Sample description: -rcode testl.o = 0x0110

-rdata <file name>=<address>
Function: Set up of the file-specific DATA section start address
Explanation: e Sets the absolute address to map the DATA section of the specified module.
This command serves to specify a module having data to be fixed at a specific
address of the data ROM. Absolute sections in the specified file remain unaf-
fected.
* One or more spaces or tabs are necessary between -rdata and <file name>.
e The address should be described in hexadecimal format (Oxnnnn).
Default: If this option is not specified, the DATA section of each module is mapped
continuously from the address that was set by the -data option.
Sample description: -rdata testl.0 = 0x8100

-rbss <file name>=<address>
Function: Set up of the file-specific BSS section start address
Explanation: ® Sets the absolute address to map the BSS section of the specified module. This
command serves to specify a module having a symbol to be fixed at a specific
address of the RAM. Absolute sections in the specified file remain unaffected.
* One or more spaces or tabs are necessary between -rbss and <file name>.
e The address should be described in hexadecimal format (Oxnnnn).
Default: If this option is not specified, the BSS section of each module is mapped continu-
ously from the address that was set by the -bss command.
Sample description: -rbss testl.o0 = 0x100

-defsym <symbol name>=<address>
Function: Specification of a global symbol address
Explanation: ® The absolute address of a global symbol is given for the referencing side.
e The symbols to be specified with this option should not be defined in the
source as an actual address label that can be referred to.
* One or more spaces or tabs are necessary between -defsym and <symbol
name>.
Sample description: -defsym BOOT = 0x100

When inputting an option in the command line, one or more spaces are necessary before and after the
option.
Examples: c¢:\e0c63\Ik63 -defsym INIT=0x200 test.cm par63xxx.par

c:\e0c63\k63 -g -e -s -m testl.o test2.0 -0 test.abs par63xxx.par

92 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 5: LINKER

5.4 Messag es
The linker delivers all its messages to the Standard Output (stdout).

Start-up message
The linker outputs only the following message when it starts up.

Linker 63 Ver x.xx
Copyright (C) SEIKO EPSON CORP. 199x

End message

The linker outputs the following messages to indicate which files has been created when it ends
normally.

Created absolute object file <FILENAME.ABS>

Created absolute list file <FILENAME.ALS>

Created map file <FILENAME.MAP>

Created symbol file <FILENAME.SYM>

Created cross reference file <FILENAME.XRF>

Created error log file <FILENAME.ERR>

Link 0 error(s) 0 warning(s)

Usage output

If no file name was specified or an option was not specified correctly, the linker ends after delivering
the following message concerning the usage:

Usage: k63 [options] <file names>

Options: -d Disable full branch optimization
-dr Disable removal branch optimization
-e Output error log file ((ERR)

-g Add source debug information

-l Output absolute list file (.ALS)

-m Output map file ((MAP)

-0 <file name> Specify output file name

-S Output symbol file (.SYM)

-X Output cross reference file (.XRF)
-code <address> Specify CODE start address
-data <address> Specify DATA start address
-bss <address> Specify BSS start address

-rcode <file name>=<address> Specify CODE start address of the file
-rdata <file name>=<address> Specify DATA start address of the file
-rbss <file name>=<address> Specify BSS start address of the file
-defsym <symbol>=<address> Define symbol address
File names: Relocatable object file (.O)
Command parameter file (.CM)
ICE parameter file (.PAR)

When error/warning occurs

If an error takes place, an error message will appear before the end message shows up.
Example:

Error: Cannot create absolute list file TEST.ABS

Link 1 error(s) 0 warning(s)

In the case of an error, the linker ends without creating an output file.

If a warning is issued, a warning message will appear before the end message shows up.
Example:

Warning: No debug information in TEST.O

Link O error(s) 1 warning(s)

In the case of a warning, the linker ends after creating an output file, but the result cannot be guaran-
teed.

For details on errors and warnings, refer to Section 5.12, "Error/ Warning Messages".

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 93

CHAPTER 5: LINKER

5.5 Linker Command File

To simplify the keystroke in the command line at the time of start up, execute the link processing through
the linker by inputting a linker command file (.cm) that holds the necessary specifications (any options
and file names) described.

Sample linker command file

-e : Generate error file

-g ; Add debug information

-code 0x0100 ; Fix CODE section start address
-rcode test2.0 = 0x0110 ; Fix CODE section start position of test2.0
-data 0x8000 ; Fix DATA section start address

-bss 0x00e0 ; Fix BSS section start address
-defsym 10 = OxFFOO ; Set global symbol

-0 test.abs ; Specify output file name

testl.o ; Specify input file 1

test2.0 ; Specify input file 2

Create the linker command file with the following rules:

File format

The linker command file is a general text format as shown above.
".cm" should be used for the file name extension.

Option description
All options should begin with a hyphen (-). Each individual option needs to be delineated with more

than one space, tab, or line feed. For better visibility, it is recommended to describe each option in a
separate line.

Notes: » A numeric value to specify an address should be described in the hexadecimal format (Oxnnnn).
Decimal and binary notations will not be accepted.

e When an option that is only permitted in single setting is specified in a duplicated manner, the
last entered option will be effective.
Example: -code 0x0000
-code 0x0100 ... -code 0x0100 is effective.

Input file specification

Describe the relocatable object file names at the end of the link command file. The mapping by linking
takes place in described order, unless otherwise specified.
The extension (.0) of the relocatable object files can be omitted.

Comment
A comment can be described in the linker command file.

As in the source file, the character string from a semicolon (;) to the end of the line is regarded as a
comment.

Blank line

Ablank line carrying only blank characters and a line feed will be ignored. It need not be converted to
a comment using a semicolon.

94 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 5: LINKER

5.6 Link Map File

The link map file serves to refer to the mapping information for the modules of each section. It is output

if the -m option is specified.

The file format is a text file, and its file name is "<File name>.map". (<File name> is the same as that of
the output object file.)

Sample link map file

Linker 63 ver x.xx Link map file TEST.MAP Sat Nov 07 12:40:41 1998

CODE section map of TEST.ABS

Index Start End Size Opt Type File SecNbr
0: 0x0000 0x000d 0x000e +0 Rel SUB.S 1
1: 0x000e OxO00ff Ox00f2 --- --- -=---m-mo-em —--
2: 0x0100 0x0102 0x0003 +1 Abs MAIN.S 1
3: 0x0103 0x010f 0x000d --- --- =----------mm —--
4: 0x0110 0x0118 0x0009 +2 Abs MAIN.S 2
5: 0x0119 Ox1fff Oxlee7 --- --- -----mmmem -—-

Total: Ox1a occupied, Ox1fe6 blank

BSS section map of TEST.ABS

Index Start End Size Type File SecNbr
0: 0x0000 0x0007 0x0008 Rel MAIN.S 3
1: 0x0008 Oxf2bf ------ === ==emmememme -
2: Oxf800 OXf8ff -----= === —mcmmmomeem oo
3: Oxff00 OXffff ------ o cmmmmmmmmeem e

Total: 0x8 occupied, 0xf4b8 blank

Contents of link map file

Index Indicates the index number of the section.

Start Indicates the start address of the section.

End Indicates the end address of the section.

Size Indicates the size of the section.

Opt Indicates the number of extension codes that are inserted or removed.

Type Indicates the section type: Rel = relocatable section and Abs = absolute section.
File Indicates the file names of the linked module.

SecNbr Indicates the section number.
Total Indicates the total map size and the unused area size.

"---"in the Size, Opt, Type, File and SecNbr columns indicate that no section is allocated.

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 95

CHAPTER 5: LINKER

5.7 Symbol File

The symbol file serves to refer to the symbols defined in all the modules and their address information. It
is delivered if the -s start-up option is specified.
The file format is a text file, and its file name is "<File name>.sym". (<File name> is the same as that of the
output object file.)

Sample symbol file

Linker 63 ver x.xx Symbol file TEST.SYM Sat Nov 07 12:40:41 1998

CODE section labels of TEST.ABS

Address Type File Symbol

0x0110 Local "MAIN.O" BOOT

0x0007 Global "SUB.O" INC_RAM_BLK1
0x0000 Global "SUB.O" INIT_RAM_BLK1
0x0116 Local "MAIN.QO".... LOOP

0x0100 Local "MAIN.Q" NMI

BSS section labels of TEST.ABS
Address Type File Symbol
0x0000 Global "MAIN.QO" RAM_BLKO
0x0004 Global "MAIN.O" RAM_BLK1

Contents of symbol file

Symbol Indicates all the defined symbols in alphabetical order.
Address Indicates the absolute address defined for the symbol.

Type Indicates the scope of the symbol: Global or Local.

File Indicates the object file in which the symbol has been defined.

96

EPSON

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

5.8 Absolute List File

CHAPTER 5: LINKER

The absolute list file is an assembly source file that carries the absolute addresses and object codes added

to the first half of each line. It is delivered only when the -1 option is specified. Its file format is a text file,

and the file name is <file name>.als. (The <file name> is the same as that of the output object file.) While

a relocatable list file can be made for each assembly source file, the absolute list file is made as a single

file integrating all the linked objects and their according sources.

Sample absolute list file

Linker 63 ver x.xx Absolute list file TEST.ALS Sat Nov 07 12:40:41 1998

A e
REbewnoarane

55:
56:

58:
59:
60:
61:
62:
63:
64:
65:
66:

0000
0001
0002

0110
0111
0112
0113
0114
0115

0116
0117
0118

;sub.s
; AS63 test program (subroutine)

.global RAM_BLK1
+xx RAM block 1 initialize *****

.global INIT_RAM_BLK1
INIT_RAM_BLK:

0800 ldb %ext,RAM_BLK1@h
0a04 ldb %x|,RAM_BLK1@I
1e90 Id [%x]+,0x0
.org 0x110

BOOT:
094b ldb %ba,SP1_INIT_ADDR
1fca ldb %spl,%ba
091f ldb %ba,SP2_INIT_ADDR
1fc6 ldb %sp2,%ba
08fe (+) Idb ext,fe
02ea calr INIT_RAM_BLK1

LOOP:
08fe (+) Idb ext,fe
02ef calr INC_RAM_BLK1

00fd jr LOOP

;set RAM_BLK1 address to x

; set SP1

; set SP2

; initialize RAM block 1

; increment RAM block 1
; infinity loop

Contents of absolute list file

The format of each line of the absolute list file is as follows:

Line No. Code Source statement

Line No.
Address

Code
Source

Results of branch optimization (extension code insertion/deletion/correction)

Absolute address

Indicates the object code.

The contents of the assembly source file are delivered.

Indicates the line number from the top of the file.
Indicates the absolute address after the instruction is allocated.

As the result of branch optimization, extension codes (Idb %ext, imm8) may be coded without accor-
dance to the source part. To show the result of such code optimizations clearly, the following descrip-
tion will be made on an absolute list file.
When an extension code is inserted:
"(+)" is placed to the right of the code part. There is no original source for the code but the disas-

sembled "ldb %exe, imm8" is delivered at the source part.

When an extension code is deleted:
"(-)" is placed to the left of the original source part. The original statement appears at the source
part in the list file but no code is delivered.

When the operand of an extension code is corrected:

"(*)" is placed to the left of the source statement.

Instructions preprocessed in the assembler

The instructions expanded in the assembler (macros and include sources) are listed with a "+".

EO0C63 FAMILY ASSEMBLER PACKAGE MANUAL

EPSON

97

CHAPTER 5: LINKER

5.9 Cross Reference File

The cross reference file enumerates all the address labels with their absolute addresses and all the ad-
dresses where the address labels are referred to. It is delivered only when the -x option is specified. Its file
format is a text file, and the file name is <file name>.xrf. (The <file name> is the same as that of the
output object file.)

Sample cross reference file
Linker 63 ver x.xx Cross reference file TEST.XRF Sat Nov 07 12:40:41 1998

Label "INIT_RAM_BLK1" at 0x0000 SUB.O CODE, Global
0x0101 MAIN.O CODE
0x0115 MAIN.O CODE

Label "RAM_BLKO" at 0x000 MAIN.O BSS, Global
0x0101 MAIN.O CODE
0x0115 MAIN.O CODE

Label "RAM_BLK1" at 0x004 MAIN.O BSS, Global
0x0000 SUB.O CODE
0x0001 SUB.O CODE
0x0007 SUB.O CODE
0x0008 SUB.O CODE

Label "INC_RAM_BLK1" at 0x0007 "SUB.O" CODE, Global
0x0117 MAIN.O CODE

Label "NMI" at 0x0100 MAIN.O CODE, Local
Label "BOOT" at 0x0110 MAIN.O CODE, Local

Label "LOOP" at 0x0116 MAIN.O CODE, Local
0x0118 MAIN.O CODE

Contents of cross reference file
The format of each label information is as follows:
Label information

Address File name Type

Label information
Indicates the following information:
e Label name
e Defined address
¢ Object file in which the label is defined.
e Section type
® Scope

Address Indicates the address where the label is referred.
File Indicates the object file in which the label is referred.

Type Indicates the type of section that contains the address where the label is referred.

98 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 5: LINKER

5.10 Linking

Linking rules

The linking process takes place in conformity with the following rules:

¢ Absolute sections are mapped ahead of relocatable sections, according to the absolute addresses
which were defined at the time of assembling. If an absolute section exceeds the available memory
area, an error will occur.

e The relocatable sections in the file of which the section start address was specified with an option
(-rcode, -rdata, -rbss) are mapped from the specified address. Other relocatable sections are mapped
from top of the relocatable CODE/DATA /BSS section.

e Basically, the relocatable sections except those that are specified with the -rcode, -rdata or -rbss option
are arranged successively in the order of processing. However, if a relocatable section cannot be
mapped subsequent to the previous mapped section, for instance, there is unused area indicated by
the ICE parameter file or an already mapped absolute section, the linker searches another area to map
the section. If there is no available area, an error will occur. A section is not divided into two or more
blocks when it is mapped.

After that, another section may be mapped in the vacant area if it is possible to map there.

Restrictions on linking
Note that all sections may not be mapped depending on each section size or address specifications
even if the relocatable object size is within the available memory size.

Example of linking

A sample case where two relocatable object files, "testl.0" and "test2.0", are linked together under the
following condition is described further below.

Memory configuration of the model

Code ROM: 0x0000 to Ox1fff
Data ROM: 0x8000 to 0x87ff
RAM: 0x0000 to 0x07ff

Display, I/O memory: 0xf000 to Ox£fff

Relocatable object files

testl.o test2.0

CODE1 (relocatable) CODE3 _(relocatable)

CODE2 (absolute 0x0100-)| (.orgis used.) |[CODE4 (relocatable) (-org is used.)
DATAL1 (relocatable) DATA2 (absolute 0x8400-)

BSS1 (relocatable) BSS3 (absolute 0xff00-)

BSS2 (absolute 0xf000-) | (.org is used.) |BSS4 (relocatable)

Fig. 5.10.1 Structure of sample relocatable files

Sample linker command file

-code 0x0000 : Relocatable CODE section start address
-rcode test2.0 = 0x0110 ; CODE section start address of test2.0

-data 0x8000 ; Relocatable DATA section start address
-bss 0x0000 ; Relocatable BSS section start address
-rbss test2.0 = 0x0400 ; BSS section start address of test2.0

-0 test.abs ; Output file name

testl.o ; Input file 1

test2.0 ; Input file 2

When linking is executed with the commands defined above, the linker maps the sections of each
module in the manner graphically presented in Figure 5.10.2.

EO0C63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 99

CHAPTER 5: LINKER

testl.o test.abs B

CODE1 (relocatable) 0x0000 0x00ff

CODE2 (absolute 0x0100-) > gxgmg CODE2 | oxo10f
X011

DATA1 (relocatable) CODE3

BSS1 (relocatable)
BSS2 (absolute 0xf000-)

CODE4 Code ROM area
test2.0
CODE3 (relocatable) CODE1
CODE4 (relocatable)
DATA2 (absolute 0x8400-) Ox21fff _]
BSS3 (absolute 0xff00-) _
BSS4 (relocatable) 0x8000 DATAL

0x83ff
0x8400 DATAZ Data ROM area

ox87ff_|
0x0000 BSS1 T
0x03ff
0x0400 — RAM area
ox07ff_|
Oxfeff Display memory
Oxff00 BSS3 I/O memory area

Oxffff

Fig. 5.10.2 Example of linking

The absolute sections CODE2, BSS2, DATA2 and BSS3 are mapped to the location specified in the
source files.

The start addresses of the CODE and BSS relocatable sections in "test2.0" is specified by the -rcode and
-rbss options, so CODE3 is mapped from address 0x0110 and CODE 4 follows CODE3. BS54 is
mapped from address 0x0400.

Since the start addresses of the relocatable CODE, DATA and BSS sections in "test1.0" have not been
specified, they are mapped from the relocatable section start addresses specified by the -code, -data
and -bss options. First the linker will try to map CODE1 from address 0x0000 to address 0x00ff. If
CODE 1 is smaller than 0x100 words, CODE1 can be mapped from address 0x0000. In this example,
CODEL is mapped behind CODE4 because CODEL is larger than 0x100 words.

DATAL1 is mapped from address 0x8000 and BSS1 is mapped from address 0x0000.

A section cannot be overlapped to other sections, therefore an error will occur if there is no free area
larger than the section size. For example, an error will occur if CODE?2 is larger than 0x10 words.

100 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 5: LINKER

5.11 Branch Optimization Function

The PC relative branch instructions (jz, jrc, jrng, jrz, jrnz and calr) need an address extension instruction
(Idb %ext, imm8) when the relative distance to the destination address exceeds the -127 to 128 range.
Since the location of relocatable sections is not decided until the linking process is completed, the linker
has a function that automatically inserts, removes or corrects the extension codes. This makes it possible
to omit the address extension instruction in the source. However, this function is valid only for the branch
instructions that use a label to specify the destination address.

This function can be disabled by specifying the -d option. The -dr option can also be specified to disable
only the extension code deletion function (in the case of the -d option is not specified).

The linker checks the distance from a PC relative branch instruction code to the branch destination label,
and inserts, removes or corrects the extension codes according to the check results.

(1) When the branch destination is located within the -127 to +128 range from the branch instruction:
If the branch instructon code does not have an extension code, no extension code is inserted.
If the branch instruction has an extension code, it is removed (if the -dr option is specified, existing
expansion code will not be removed).

Examples:

jr LABEL . jr LABEL
Idb %ext,LABEL@rh

calr LABEL@TrI - calr LABEL@rl

(2) When the branch destination is located outside the -127 to +128 range from the branch instruction:
If the branch instructon code does not have an extension code, an appropriate extension code is

inserted.
If the branch instruction has an illegal extension code, it is replaced with a correct extension code.
Examples:
jr LABEL - ldb %ext,LABEL@rh
jr LABEL@rl
Idb %ext,LABEL1@rh N Idb %ext,LABEL2@rh
calr LABEL2@rl calr LABEL2@rl

EO0C63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 101

CHAPTER 5: LINKER

5.12 Error/Warning Messages

5.12.1 Errors

When an error occurs, the linker will immediately terminate the processing after displaying an error
message. No object file will be output. Other files will be delivered only in the part which was processed
prior to the occurrence of the error.

The error messages are given below.

Error message Description
Branch destination too far from <address> The branch destination address is out of range.
CALZ for non zero page at <address> The specified address is out of the range (0x0000—0x00ff).
Cannot create absolute object file <FILE NAME> The absolute object file cannot be created.
Cannot open <file kind> file <FILE NAME> The file cannot be opened.
Cannot read <file kind> file <FILE NAME> The file cannot be read.
Cannot relocate <section kind> section of The relocatable section cannot be allocated.
<FILE NAME>
Cannot write <file kind> file <FILE NAME> Data cannot be written to the file.
lllegal address range <address> for a code at The address specified by TST/SET/CLR is out of the range
<address> (0x0000-0x003f or OxffCO—0xffff).
lllegal file name <FILE NAME> The file name is incorrect.
Illegal file name <FILE NAME> specified with The file name specified with the option is incorrect.
option <option>
Illegal ICE parameter at line <line number> of The ICE parameter file contains an illegal parameter setting.
<FILE NAME>
Illegal object <FILE NAME> The input file is not an object file in IEEE-695 format.
Illegal option <option> An illegal option is specified.
No address specified with option <option> Address is not specified with the option.
No code to locate There is no valid code for mapping.
No ICE parameter file specified ICE parameter file is not specified.
No name and address specified with option <option> | Name and address are not specified with the option.
No object file specified Object files to be linked are not specified.
Out of memory Cannot secure memory space.
<section kind> section <address>-<address> overlaps | The address range of the section overlaps with another
with <section kind> section <address>-<address> section's address range.
<section kind> section <address>-<address> overlaps | The address range of the section overlaps with the
with the unavailable memory unavailable memory.
Unresolved external <label> in <FILE NAME> Reference was made to an undefined symbol.
Unusable instruction code <instruction code> The object contains an instruction invalid for the model.
in <FILE NAME>

5.12.2 Warning

Even when a warning appears, the linker continues with the processing. It completes the processing after
displaying a warning message, unless, in addition, an error takes place. The output files will all be
delivered, but the operation of the program cannot be guaranteed.

The warning messages and their contents are given below.

Warning message Description
Cannot create <file kind> file <FILE NAME> The file cannot be created.
Cannot open <file kind> file <FILE NAME> The file cannot be opened.
No debug information in <FILE NAME> Debugging information is not included in the file.
No symbols found Symbols cannot be found.
Second definition of label <label> in The label has already been defined.
<FILE NAME>
Second ICE parameter file <FILE NAME> ignored Two or more ICE parameter files are specified.

102 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 5: LINKER

5.13 Precautions

(1) Upper limits, such as a maximum section count and the number of objects to be linked, depend on the
free memory space.

(2) To load the absolute object file created by the linker to the debugger, the same ICE parameter file must
be specified when the debugger is invoked.

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 103

CHAPTER 6: HEX CONVERTER

CHAPTERG6 HEx CoONVERTER

This chapter describes the functions of hex converter, hx63.

6.1 Functions

The hex converter hx63 converts an absolute object file in IEEE-695 format output from the linker into a
hex file in Motorola-S format or Intel-HEX format. This conversion is needed when debugging the
program with the ROM or when creating mask data using the mask data checker.

When creating the ROM-image hex data, the hex converter fills the unused area of each model with Oxff.

6.2 Input/Output Files

6.2.1 Input Files

Absolute object file

File format:
File name:
Description:

ICE parameter file

File format:
File name:
Description:

from Linker
G
Absolute — — |CE
object file parameter file
Hex Converter
hx63

Error file

[flet.rex

filec.hex

Intel-HEX

Motorola-S
format files -]

format files

file.csa

ROM or Mask data creation
Fig. 6.2.1 Flow chart

Binary file in IEEE-695 format
<File name>.abs (A path can also be specified.)
Absolute object file created by the linker.

OThis file must always be specified.
Binary file
<File name>.par (A path can also be specified.)
File to specify the memory mapping information of each EOC63 Family model. This
file is supplied in the development tools for each model and is commonly used with
the linker and debugger.

6.2.2 Output Files

Hex file

File format:
File name:

Output destination:

Text file in Motorola-S format or Intel-HEX format

Motorola-S format <File name>.hsa, <File name>.lsa and <File name>.csa
Intel-HEX format <File name>h.hex, <File name>].hex and <File name>c.hex
Current directory

Description: Three hex files are generated: "hsa" or "h.hex" that contains the five high-order bits
of the object codes with 0b000 extended, ".Isa" or "Lhex" that contains the eight low-
order bits and ".csa" or "c.hex" that contains four-bit data for the data ROM.
Motorola-S format files are delivered by default. Intel-HEX format files can be
specified using the -i option.

Error file
File format: Text file
File name: hx63.err
Output destination: Current directory
Description: The file is created if the -e start-up option is specified. It records information that the

hex converter outputs to the Standard Output (stdout), such as error messages. The
file name is "hx63.err" by default, but it can be changed using the -o start-up option.

104

EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 6: HEX CONVERTER

6.3 Starting Method

General form of command line

hx63 A [Options] A <Absolute object file name> , <ICE parameter file name>

A denotes a space.
[] indicates the possibility to omit.
The order of options and file names can be arbitrary.

File names
Absolute object file: <File name>.abs

ICE parameter file: <File name>.par

The extension of an absolute object file can be omitted. The ICE parameter file must be specified with
its extension.

A long file name supported in Windows and a path name can be specified. When including spaces in
the file name, enclose the file name with double quotation marks (").

-0 <file name>

Options
The hex converter comes provided with the following four start-up options:
-b
Function: Conversion of existing codes only
Explanation: Converts and delivers only the object codes that exist in the specified absolute object
file. Data for unused addresses is not delivered.
Default: If this option is not specified, the hex data for the entire available memory range
of the model is delivered to the output file. Unused addresses are filled with Oxf{f.
-e
Function: Output of error files
Explanation: Creates an .err file which contains the information that the hex converter outputs
to the Standard Output (stdout), such as error messages.
Default: If this option is not specified, no error file will be created.
-i
Function: Conversion into Intel-HEX format
Explanation: Generates the hex files ("h.hex", "l.hex" and "c.hex") in Intel-HEX format.
Default: If this option is not specified, Motorola-S format files (".hsa", "1sa" and ".csa") are

generated.

Function: Specification of output path/file name

Explanation: Specifies an output path/file name without extension or with an extension "hsa",
"lsa", ".csa", "h.hex", "Lhex" or "c.hex". By specifying only one file name, three hex
files will be generated.
If no extension is specified, an appropriate extension will be supplemented at the
end of the specified output path/file name. In this case, ".hsa", ".Isa" or ".csa" is
added to the output file name. If Intel-HEX format is specified, "h.hex", "Lhex" or
"c.hex" is added to the output file name. It may change a DOS file name (8
character max.) to a long file name for Windows.

Default: The input file name is used for the output file names.

When entering an option in the command line, one or more spaces are necessary before and after the

option.

Example: c:\e0c63\bin\hx63 -e test.abs par63xxx.par

EO0C63 FAMILY ASSEMBLER PACKAGE MANUAL

EPSON 105

CHAPTER 6: HEX CONVERTER

6.4 Messages

The hex converter delivers all its messages via the Standard Output (stdout).

Start-up message

The hex converter outputs only the following message when it starts up.

Hex converter 63 Ver xX.xx
Copyright (C) SEIKO EPSON CORP. 199x

End message

The hex converter outputs the following messages to indicate which files have been created when it
ends normally.

Created hex file <FILE NAME>.HSA
Created hex file <FILE NAME>.LSA
Created hex file <FILE NAME>.CSA
Created error log file HX63.ERR

Hex conversion O error(s) 0 warning(s)

Usage output

If no file name was specified or an option was not specified correctly, the hex converter ends after
delivering the following message concerning the usage:

Usage: hx63 [options] <file names>
Options: -b Do not fill unused memory with Oxff
-e Output error log file (HX63.ERR)
-i Use Intel Hex format
-0 <file name> Specify output file name
File names: Absolute object file ((ABS)
ICE parameter file (.PAR)

When error/warning occurs
If an error occurs, an error message will appear before the end message shows up.
Example:

Error : No ICE parameter file specified
Hex conversion 1 error(s) 0 warning(s)

In the case of an error, the hex converter ends without creating an output file.

If a warning is issued, a warning message will appear before the end message shows up.
Example:

Warning : Output file name conflict
Hex conversion 0 error(s) 1 warning(s)

In the case of a warning, the hex converter ends after creating the output files, but the result cannot be
guaranteed.

For details on errors and warnings, refer to Section 6.6 "Error/ Warning Messages".

106 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 6: HEX CONVERTER

6.5 Output Hex Files

6.5.1 Hex File Configuration

Since each EOC63000 instruction has a 13-bit code, the hex converter always generates two hex files for
the high-order data and the low-order data of the program code. The low-order data hex file (".Isa" or

"Lhex") contains the low-order bytes (bits 7 to 0) of the object codes. The high-order data hex file (".hsa"

"h.hex") contains the high-order bytes (bits 12 to 8 suffixed by high-order bits 0b000).

4-bit data for the data ROM is output to the ".csa” or "c.hex" file.

By specifying the -i option, the hex converter can convert the absolute object file into Intel-HEX files as
well as Motorola-S format. However, use Motorola-S format format when loading the hex files to the
debugger or creating the mask data by the mask data checker because the debugger and mask data
checker do not support Intel-HEX files.

6.5.2 Motorola-S Format

or

The hex converter converts an absolute object file in the IEEE-695 format into the Motorola-S2 format files

by default.

The files are generated with an extension "hsa" for the high-order program file, ".1sa" for the low-order
program file and ".csa" for the data ROM file.

The following shows a sample data in Motorola-S2 format:

length
address data sum
\

‘ -

[il 1
S224000000FFFB
S224000020FFDB

S22400010008E000F04200420606 FFS9

S804000000FB

S2 (1 bytes): Indicates that the line is a data record.

S8 (1 bytes): Indicates that the line is an end record (end of data).

length (1 byte): Indicates the record length of "address + data + sum". The maximum length of a

data record is 0x24, while the end record is fixed at 0x04.
address (3 bytes): Indicates the address where the head data in a record is placed.
data (36 bytes max.): The object codes are placed here. This is not included in the end record.
sum (1 byte): This is a checksum (1's complement) from "length"” to the last data.

The end records are always "S804000000FB".

EO0C63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON

107

CHAPTER 6: HEX CONVERTER

6.5.3 Intel-HEX Format

The hex converter converts an absolute object file in the IEEE-695 format into the Intel-HEX format files
when the -i option is specified.

The files are generated with a name "<file name>h.hex" for the high-order program file, "<file name>1.hex" for
the low-order program file and "<file name>c.hex" for the data ROM file.

The following shows a sample data in Intel-HEX format:

data volume type
address data sum
\

|
[| [|
: 10000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFO0
: 10001000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFO

: 1001000008E000F04200420606 FFFFFFFFFFFFFFSE

: 100FFO00FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFOL
: 00000001FF

data volume (1 byte): Indicates the data length of each record. The maximum length of a data record is
0x10, while the end record is fixed at 0x00.
address (2 bytes): Indicates the address where the head data in a record is placed.

type (1 byte): Indicates the type of hexadecimal format, currently only "00".
data (16 bytes max.): The object codes are placed here. This is not included in the end record.
sum (1 byte): This is a checksum (2's complement) from "Data volume" to the last data.

The end records are always "00000001FF".

Note: When using hex files for creating the mask data, do not specify Intel-HEX format because the
mask data checker does not support this format.

6.5.4 Conversion Range

By default, the hex converter generates the hex files that include all the codes of the ROM area available
for each model. Data for unused addresses are delivered as Oxff. For example, if the model has a built-in
2KB code ROM and the program uses the area from address 0x0 to address 0x6ff, the hex converter fills
the area from address 0x700 to address Ox7ff with Ox{f. If there are unused addresses in the range from
0x0 to 0x6ff, those data are also delivered as Oxff.

When creating the mask data by the mask data checker, the hex files must be generated in this format.

When the -b option is specified, the hex converter does not deliver data in unused addresses of the
absolute object file. This allows minimization of the output hex files. Note, however that the hex files
generated in this format cannot be used for creating the mask data.

108 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

6.6 Error/Warning Messages

CHAPTER 6: HEX CONVERTER

6.6.1 Errors

When an error occurs, the hex converter immediately terminates the processing after displaying an error

message. It will not output hex files.

The hex converter error messages are given below.

Error message

Description

Cannot create <file kind> file <FILE NAME>

The file cannot be created.

Cannot open <file kind> file <FILE NAME>

The file cannot be opened.

Cannot read <file kind> file <FILE NAME>

The file cannot be read.

Cannot write <file kind> file <FILE NAME>

Data cannot be written to the file.

lllegal file name <FILE NAME> specified with
option <option>

The specified hex file name is incorrect.

lllegal ICE parameter at line <line number> of
<FILE NAME>

The ICE parameter file contains an illegal parameter setting.

lllegal file name <FILE NAME>

The specified input file name is incorrect.

lllegal option <option>

An illegal option is specified.

lllegal absolute object format

The input file is not an object file in IEEE-695 format.

No ICE parameter file specified

ICE parameter file is not specified.

Out of memory

Cannot secure memory space.

6.6.2 Warning

Even if a warning is issued, the hex converter keeps on processing, and completes the processing after
displaying a warning message, unless, in addition, any error occurs.

Warning message

Description

Input file name extension . XXX conflict

Two or more file names with the same extension have been
specified. The last one is used.

6.7 Precautions

(1) When creating the hex files for making the mask data file in the mask data checker, specify Motorola-S
format and convert for the entire available memory range of the model (do not specify the -b and -i
options). Otherwise, an error will occur in the mask data checker. Refer to the "Development Tool
Manual" of each model for details of the mask data checker.

(2) If an 8-character output file name (DOS file name) without extension is specified for the Intel-HEX
files, it will be changed to a long file name because "h.hex", "Lhex" or "c.hex" is added to the file name.

EO0C63 FAMILY ASSEMBLER PACKAGE MANUAL

EPSON 109

CHAPTER 7: DISASSEMBLER

CHAPTER / DISASSEMBLER

This chapter describes the functions of the disassembler, ds63.

7.1 Functions

The disassembler's input is an object in IEEE-695 or Motorola-S format. The code in the object file is
disassembled into mnemonics, and output as a source file. The restored source file can be processed in

the assembler/linker/hex converter to obtain the same object or hex file.

7.2 Input/Output Files

7.2.1 Input Files

Absolute object file

File format:
File name:
Description:

Hex file

File format:
File name:
Description:

from Linker from Hex converter

<t Ik

—
file.hsa

IEEE-695 absolute
object file

Motorola-S file

Disassembler
ds63

Error file

file.ms
Preprocessed source file
Fig. 7.2.1 Flow chart

Binary file in IEEE-695 format
<File name>.abs (A path can also be specified)
Absolute object file created by the linker

Text file in Motorola-S format

<File name>.hsa, <File name>.lsa and <File name>.csa

Hex files created by the hex converter. Three hex files are needed: "hsa" that con-
tains the four high-order bits of the object codes with 0b000 extended, "Isa" that
contains the eight low-order bits and ".csa" that contains four-bit data for the data
ROM. If there is no data ROM, the ".csa" file is not required.

7.2.2 Output Files

Source file

File format:

File name:

Output destination:
Description:

Error file

File format:

File name:

Output destination:
Description:

Text file

<File name>.ms

Current directory

Disassembled contents of the input file are delivered.

Text file
ds63.err
Current directory

The file is created if the -e start-up option is specified. It records the information that

the disassembler outputs to the Standard Output (stdout), such as error messages.
The file name is "ds63.err” by default, but it can be changed using the -o start-up
option.

110

EPSON

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 7: DISASSEMBLER

7.3 Starting Method

General form of command line
ds63 A [Options] A <Absolute object or hex file name>

A denotes a space.
[] indicates the possibility to omit.

File names
Absolute object file: <File name>.abs
Motorola-S files: <File name>.hsa, <File name>.lsa, <File name>.csa

The input file must be specified with its extension.
The Motorola-S file can be specified with either ".hsa", ".Isa" or ".csa" as the extension. The other
unspecified files will be automatically loaded.

Along file name supported in Windows and a path name can be specified. When including spaces in
the file name, enclose the file name with double quotation marks (").

Options
The disassembler comes provided with the following four start-up options:
-cl
Function: Use of lower-case characters
Explanation: Creates all instructions and labels using lower-case characters.
Default: If neither this option nor the -cu option is specified, the source will be made with
all labels in upper-case characters and instructions in lower-case characters.
-cu
Function: Use of upper-case characters
Explanation: Creates all instructions and labels using upper-case characters.
Default: If neither this option nor the -cl option is specified, the source will be made with
all labels in upper-case characters and instructions in lower-case characters.
-e

Function: Output of error file
Explanation: Creates an .err file which contains the information that the disassembler outputs
to the Standard Output (stdout), such as error messages.
Default: If this option is not specified, an error file will not be created.

-0 <file name>
Function: Specification of output path/file name
Explanation: Specify an output path/file name without extension or with the extension ".ms".
If no extension is specified, ".ms" will be supplemented at the end of the specified
output path/file name.
Default: The input file name is used for the output file name.

When entering an option in the command line, one or more spaces are necessary before and after the
option.
Example: c:\e0c63\ds63 -e -0 c:\output.ms

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 111

CHAPTER 7: DISASSEMBLER

7.4 Messages

The disassembler delivers all its messages via the Standard Output (stdout).

Start-up message

The disassembler outputs the following message when it starts up.

Disassembler 63 Ver x.xx
Copyright (C) SEIKO EPSON CORP. 199x

End message

The disassembler outputs the following messages to indicate which files have been created when it
ends normally.

Created preprocessed source file <FILE NAME>.MS
Created error log file DS63.ERR
Disassembly 0 error(s) 0 warning(s)

Usage output

If no file name was specified or an option was not specified correctly, the disassembler ends after
delivering the following message concerning the usage:

Usage: ds63 [options] <file name>

Options: -cl Use lower case characters
-cu Use upper case characters
-e Output error log file (DS63.ERR)

-0 <file name> Specify output file name
File names: Absolute object file ((ABS or .CSA/.LSA/.HSA)

When error/warning occurs

If an error occurs, an error message will appear before the end message shows up.
Example:

Error: Cannot open file TEST.ABS
Disassembly 1 error(s) O warning(s)

In the case of an error, the disassembler ends without creating an output file.

If a warning is issued, a warning message will appear before the end message shows up.
Example:

Warning: Input file name extension .HSA conflict

Disassembly 0 error(s) 1 warning(s)

In the case of a warning, the disassembler ends after creating an output file.

For details on errors and warnings, refer to Section 7.6 "Error/ Warning Messages".

112 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 7: DISASSEMBLER

7.5 Disassembling Output

The data/code mnemonics are restored from the target code. As for the branch instructions, a label will

non

be automatically generated such as "CODEx:" where "x" denotes a hexadecimal number string. Other
reference symbols will also be generated as "LABELx", "IOx" and "RAMXx". The ".org" pseudo-instruction
is used to specify the starting location of each code block.

The following shows examples of disassembled sources:

Sample outputs

Absolute list file "test.als"
Linker 63 ver x.xx Absolute list file "TEST.ALS" Sat Nov 07 12:40:41 1998

1: ;sub.s

2: ; AS63 test program (subroutine)

3:

4: .global RAM_BLK1

5:

6: ek RAM block 1 initialize *****

7

8: .global INIT_RAM_BLK1

9: INIT_RAM_BLK1:

10: 0000 0800 ldb %ext,RAM_BLK1@h

11: 0001 0a04 ldb %xI,RAM_BLK1@I ;set RAM_BLK1 address to x
12: 0002 1e90 Id [%x]+,0x0

13: 0003 1e90 Id [%x]+,0x0

14: 0004 1e90 Id [%x]+,0x0

15: 0005 1e80 Id [%x],0x0 ;set 0x0000 to RAM_BLK1
16: 0006 1ff8 ret

17:

18: ;exkxx RAM block 1 increment *****

19:

20: .global INC_RAM_BLK1

21: INC_RAM_BLK1:

22: 0007 0800 ldb %ext,RAM_BLK1@h

23: 0008 0a04 ldb %xI,RAM_BLK1@lI ;set RAM_BLK1 address to x
24: 0009 1911 add [%x]+,1

25: 000a 1990 adc [%x]+,0

26: 000b 1990 adc [%x]+,0

27: 000c 1980 adc [%x],0 ; increment 16bit value
28: 000d 1ff8 ret

29: ; main.s

30: ; AS63 test program (main routine)

31: |

32:

33: jexxsx INITIAL SP1 & SP2 ADDRESS DEFINITION ****x

34:

35: #ifdef SMALL_RAM

36: .set SP1_INIT_ADDR 0xb ;SP1 init addr = Ox2c

37: #else

38: .set SP1_INIT_ADDR 0x4b ;SP1 init addr = 0x12c
39: #endif

40:

41: .set SP2_INIT_ADDR 0x1f ;SP2 init addr = Ox1f

42:

43:

44;: jerxkk NMI & BOOT, LOQP ***

45:

46: .global INIT_RAM_BLK1 ; subroutine in sub.s

47: .global INC_RAM_BLK1 ; subroutine in sub.s

48:

49: .org 0x100

50: NMI:

51: 0100 08fe (+) ldb ext,fe

52: 0101 O02fe calr INIT_RAM_BLK1 ; initialize RAM block 1
53: 0102 1ff9 reti ; in NMI(watchdog timer)
54:

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 113

CHAPTER 7: DISASSEMBLER

55: .org 0x110

56: BOOT:

57: 0110 094b ldb %ba,SP1_INIT_ADDR
58: 0111 1fc4 Idb %spl,%ba

59: 0112 091f ldb %ba,SP2_INIT_ADDR
60: 0113 1fc6 Idb %sp2,%ba

61: 0114 08fe (+) Idb ext,fe

62: 0115 OZea calr INIT_RAM_BLK1

63: LOOP:

64: 0116 08fe (+) Idb ext,fe

65: 0117 O02ef calr INC_RAM_BLK1

66: 0118 00fd jr LOOP

Output source file "test.ms" (default)

; set SP1

; set SP2

; initialize RAM block 1

; increment
; infinity loop

RAM block 1

;Disassembler 63 Ver x.xx Assembly source file TEST.MS Fri Nov 06 13:10:20 1998

.set LABEL1 Ox4
.set LABEL2 0x4
.set LABEL3 0x4b
.set LABEL4 Ox1f
.code
.org 0x0
CODEL1:
Idb %ext,LABEL1@h
Idb %xI,LABEL1@I
Id [%x]+,0x0
Id [%x]+,0x0
Id [%x]+,0x0
Id [%x],0x0
ret
CODE2:
Idb %ext,LABEL2@h
Idb %xI,LABEL2@I
add [%x]+,0x1
adc [%x]+,0x0
adc [%x]+,0x0
adc [%x],0x0
ret
.code
.org 0x100
Idb %ext, CODE1@rh
calr CODE1@rl
reti
.code
.org 0x110
Idb %ba,LABEL3@I
Idb %sp1,%ba
Idb %ba,LABEL4@I
Idb %sp2,%ba
Idb %ext, CODE1@rh
calr CODE1@rl
CODES3:
Idb %ext, CODE2@rh
calr CODE2@rl
jr CODE3@rl

Output source file "test.ms" (when -cl is specified)

;Disassembler 63 Ver x.xx Assembly source file TEST.MS Fri Nov 06 13:10:20 1998

.set labell 0x4
.set label2 0x4
.set label3 Ox4b
.set label4 Ox1f
.code
.org 0x0
codel:
Idb %ext,labell@h
Idb %xl,label1@]
Id [%x]+,0x0
Id [%x]+,0x0
Id [%x]+,0x0
Id [%x],0x0
ret
code2:
Idb %ext,label2@h
Idb %xl,label2@]
add [%x]+,0x1
adc [%x]+,0x0

114

EPSON

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

adc [%x]+,0x0

adc [%x],0x0

ret

.code

.org 0x100

Idb %ext,codel@rh

calr codel@rl

reti

.code

.org 0x110

Idb %ba,label3@I

Idb %sp1,%ba

Idb %ba,label4@I

Idb %sp2,%ba

Idb %ext,codel@rh

calr codel@rl
code3:

Idb %ext,code2@rh

calr code2@rl

jr code3@rl

Output source file "test.ms" (when -cu is specified)

;Disassembler 63 Ver x.xx Assembly source file TEST.MS Fri Nov 06 13:10:20 1998

.SET LABEL1 0X4
.SET LABEL2 0X4
.SET LABEL3 0X4B
.SET LABEL4 OX1F
.CODE
.ORG 0X0

CODE1:

LDB %EXT,LABEL1@H
LDB %XL,LABEL1@L
LD [%X]+,0X0

LD [%6X]+,0X0

LD [%X]+,0X0

LD [%6X],0X0

RET

CODE2:

LDB %EXT,LABEL2@H
LDB %XL,LABEL2@L
ADD [%X]+,0X1

ADC [%X]+,0X0

ADC [%X]+,0X0

ADC [%X],0X0

RET

.CODE

.ORG 0X100

LDB %EXT,CODE1@RH
CALR CODE1@RL
RETI

.CODE

.ORG 0X110

LDB %BA,LABEL3@L
LDB %SP1,%BA

LDB %BA,LABEL4@L
LDB %SP2,%BA

LDB %EXT,CODE1@RH
CALR CODE1@RL

CODES3:

LDB %EXT,CODE2@RH
CALR CODE2@RL
JR CODE3@RL

CHAPTER 7: DISASSEMBLER

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

EPSON

115

CHAPTER 7: DISASSEMBLER

7.6 Error/Warning Messages

7.6.1 Errors

When an error occurs, the disassembler immediat
message. It will not output a source file.
The disassembler error messages are given below.

ely terminates the processing after displaying an error

Error message

Description

Cannot create <file kind> file <FILE NAME>

The file cannot be created.

Cannot open <file kind> file <FILE NAME>

The file cannot be opened.

Cannot read <file kind> file <FILE NAME>

The file cannot be read.

Cannot write <file kind> file <FILE NAME>

Data cannot be written to the file.

lllegal file name <FILE NAME> specified with
option <option>

The specified output source file name is incorrect.

lllegal file name <FILE NAME>

The specified input file name is incorrect.

Illegal HEX data format

The input file is not a Motorola-S format file.

Illegal option <option>

An illegal option is specified.

Out of memory

Cannot secure memory space.

7.6.2 Warning

Even if a warning is issued, the disassembler keeps on processing, and completes the processing after

displaying a warning message, unless, in addition, an error is produced.

Warning message

Description

Input file name extension . XXX conflict

Two or more file names with the same extension have been
specified. The last one is used.

Cannot open Hex file xxx.csa

The file cannot be opened. It is assumed there is no data
memory.

116

EPSON

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 8: DEBUGGER

CHAPTER 8 DEBUGGER

This chapter describes how to use the Debugger db63.

8.1 Features

The Debugger db63 is used to debug a program after reading an object file in the IEEE-695 format that is
generated by the linker.

It has the following features and functions:

¢ Various data can be referenced at the same time using multiple windows.

¢ Frequently used commands can be executed from tool bars and menus using a mouse.

¢ Also available are source display and symbolic debug functions which correspond to assembly source
codes.

e Consecutive program execution and two types of single-stepping are possible.

e Five break functions are supported.

¢ A real-time display function shows register and memory contents on-the-fly.

¢ A time display function showing execution time by both duration and steps.

* An advanced trace function.

¢ An automatic command execution function using a command file.

8.2 Input/Output Files

from Linker

<L

IEEE-695
object file

Source file(s)

Parameter file Command file

ﬁ ﬁ

Debugger .
ICE63 db63 i file.Isa
file.csa file.msa
Program/data Option
f|Ie cmd file. Iog f|Ie trc HEX files HEX files
Record file Log file Trace file
Fig. 8.2.1 Flow chart
8.2.1 Input Files
Parameter file
File format: Binary file
File name: <file name>.par
Description: This file contains memory information on each microcomputer model and is indispensable

for starting the debugger. This file is included with the development tool package for each

microcomputer model.

The following files are read by the debugger according to command specification.

Object file
File format:
File name:
Description:

Binary file in the IEEE-695 format
<file name>.abs (An extension other than ".abs" can also be used.)
This is an object file generated by the linker. This file is read into the debugger by the If

command. By reading a file in the IEEE-695 format that contains debug information, source

display and symbolic debugging can be performed.

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

EPSON

117

CHAPTER 8: DEBUGGER

Source file
File format:
File name:
Description:

Program file
File format:
File name:
Description:

Text file

<file name>.s

This is the source file of the above object file. It is read when the debugger performs source
display.

HEX file in Motorola-S format

<file name> hsa, <file name>.lsa

This is a load image file of the program ROM, and is read into the debugger by the lo
command. The file "hsa" corresponds to the 5 high-order bits of the program code and the
file "Isa" corresponds to the 8 low-order bits of the program code. These files are generated
for the purpose of creating mask data from an object file in the IEEE-695 format by the Hex
convertor. Unlike files in the IEEE-695 format, these files cannot be used for source display
or symbolic debugging, but can be used to check the operation of final program data.

Data file for data ROM

File format:
File name:
Description:

HEX file in Motorola-S format

<file name>.csa

This is a load image file of the data ROM, and is read into the debugger by the lo com-
mand. This file is generated for the purpose of creating mask data from an object file in the
IEEE-695 format by the Hex convertor. When an absolute object file in the IEEE-695 format
is loaded, it is not necessary to load this file.

Option data file

File format:
File name:
Description:

Command file

File format:
File name:
Description:

HEX file in Motorola-S format

<file name>.fsa, <file name>.ssa, <file name>.msa (Varies with the type of microcomputer)
These data files are used to set up hardware options for each microcomputer model and is
read by the lo command. These files are generated by a development tool available for each
microcomputer model.

Text file

<file name>.cmd (An extension other than ".cmd" can also be used.)

This file contains a description of debug commands to be executed successively. By writing
a series of frequently used commands in this file, the time and labor required for entering
commands from the keyboard can be saved. The command described in the file are read
and executed using the com or cmw command.

8.2.2 Output Files

Log file
File format:
File name:
Description:

Record file
File format:
File name:
Description:

Trace file
File format:
File name:
Description:

Text file

<file name>.log (An extension other than ".log" can also be used.)

This file contains the information of executed commands and execution results that are
output to a file. Output of this file can be controlled by the log command.

Text file

<file name>.cmmd (An extension other than ".cmd" can also be used.)

This file contains the information of executed commands that are output to a file. Output of
this file can be controlled by the rec command.

Text file

<file name>.trc (An extension other than ".trc" can also be used.)

This file contains the specified range of trace information. Output of this file can be con-
trolled by the #f command.

118

EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 8: DEBUGGER

8.3 Starting Method

8.3.1 Start-up Format

General form of command line
db63 , <parameter file name> , [start-up option]

A denotes a space.
[] indicates the possibility to omit.

Note: The parameter file will be recognized by its extension ".par", so ".par" must be included in the
parameter file name to be specified.

8.3.2 Start-up Options
The debugger has three start up options available.

<command file name>
Function: Specifies a command file.

Explanation: For a series of commands to be executed immediately after the debugger starts

up, specify a command file that describes those commands.
-comX
Function: Specifies a communication port.

Explanation: This option specifies the communication port through which a personal com-
puter is communicated with by the ICE63. Specify a port number in the X part of
this option. The port that can be used for this purpose varies among different
personal computers.

Unless this option is specified, the com1 port is used to communicate with the
ICE63.
-b <baud rate>
Function: Specifies a communication transmission rate.

Explanation: This option specifies the baud rate on the personal computer. For <baud rate>,
select one from 2400, 4800, 9600, 19200, or 38400.

Unless specified otherwise, the baud rate is set to 9600 bps. This value is the
same as the initial setting of the ICE63.
The baud rate on the ICE63 is set using the DIP switch mounted on the ICE63.

When entering an option in a command line, make sure that there is at least one space before and after
the option.
Example: c:\e0c63\bin\db63 par63xxx.par startup.cmd -com2 -b 19200

The default start-up options are set as: -com1 & -b 9600
If no parameter file name was specified or the option was not specified correctly, the debugger ends after
delivering the following message concerning the usage:

-Usage-
db63.exe parameter file name <startup options>
Options:
command file: ... specifies a command file
-comX(X:1-4) ... com port, default com1
-b ... baud rate, 2400, 4800, 9600(default), 19200, 38400

EO0C63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 119

CHAPTER 8: DEBUGGER

8.3.3 Start-up Messages

When the debugger starts up, it outputs the following message in the [Command] window. (Refer to the
next section for details about windows.)

Debugger63 Ver x.xx Copyright SEIKO EPSON CORP. 199x

Connecting COMx with xxxxx baud rate ... done
Parameter file name : XXXXXxxx.par

Version : xx

Chip name : 63xxx

CPU version D XX

PRC board version D XX
LCD board version TXX
EXT board version TXX

ICE hardware version : X.X
ICE software version : X.x

DIAG test . omitted
MaP..ciiiiiiiiiii done
Initialize............cccevvene done
>

8.3.4 Hardware Check at Start-up

When the debugger is invoked, it first performs the tests and initializing operations described below.

(1) Testing connection of ICE63

Debugger db63 first checks to see that the ICE63 is connected to your system and that communication
is possible without any problems. The following message is displayed in the [Command] window.

During test
Connecting COMx with xxxxx baud rate ...

When terminated normally
Connecting COMx with xxxxx baud rate ... done

When an error is encountered
Connecting COMx with xxxxx baud rate ... failure
<error message>

The error message indicates that communication between the personal computer and ICE63 is not
functioning properly. In this case, to verify the following:

e A standard RS-232C cable is used

e The COM port is correct

¢ The baud rates on both sides are matched
¢ The PRC board is correctly fitted in place
¢ The ICE63's power is turned on

e The ICE63 remains reset

For the causes of errors, refer to Section 8.10, "Status/Error / Warning Messages".

120 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 8: DEBUGGER

If this test indicates that ICE63 is not in ready state, the debugger performs the following;:

When the ICE63 is executing the target program:
In this case, the debugger sends a forcible break command to the ICE63; it then retests the connection
of the ICE63 several seconds later.

When the ICEG3 is in the BUSY state:
In this case, the debugger will try to retest the connection with the ICE63 several seconds later.

When the ICEG3 is in a free-run state:
In this case, the debugger displays the following message:

Connecting COMx with xxxxx baud rate ... failure
Error : ICE is free run mode

Temporarily quit the debugger and set the ICE63 to the ICE mode (by turning the ICE/RUN switch to
the ICE position), then restart up the debugger.

When the ICE63 is performing self-diagnosis:

In this case, the debugger waits until the ICE63's self-diagnosis is completed before it starts testing the
connection of the ICE63. Note that the ICE63's self-diagnosis is executed simultaneously if it is
activated when its DIP switch SW8 is in the up position. If the SW8 switch is in the down position,
self-diagnosis is not executed. Self-diagnosis from start to finish requires about 5 minutes. Wait until it
is completed.

You will then see the following message:

Connecting COMx with xxxxx baud rate ...
DIAG test, please wait 5 min. .. done

If an error is found in self-diagnosis, an error message will be displayed on the screen instead of
"done" above.

(2) Version check

When the connection test terminates normally, the debugger checks the contents of the parameter file,
the version of the ICE63, and the versions of the boards inserted in the ICE63.

Parameter file name : XXXXXXxx.par
Version : xx
Chip name : 63xxx

CPU version D XX

PRC board version D XX
LCD board version TXX
EXT board version TXX

ICE hardware version : X.X
ICE software version : X.x
DIAG test : omitted

Here, the debugger checks to see if the ICE's system configuration (including the PRC and LCD
extension boards) and their versions are matched to the setup contents of the parameter file.

If the ICE63 does not have a necessary board, or contains an unnecessary board or a board of different
version, a warning message appears on the screen.

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 121

CHAPTER 8: DEBUGGER

(3) ICE initialization
When the above tests are finished, the debugger initializes the ICE as follows:
¢ Mapping (memory configuration is set according to the parameter file)
¢ Initializing mapped memory (RAM: Oxa; code ROM: 0x1fff; data ROM: 0xf)
e Initializing option data (cleared to 0)
e Initializing break conditions (all break conditions are cleared)
e Initializing trace conditions (normal trace is set and the trace trigger point is set to 0)
e Setting execution cycles counter to 0.
e Initial setting of watch data addresses (addresses 0, 4, 8, and C)
e Initializing CPU registers

When initialization is terminated normally:

MaP..ciiiiiiiiiii done
Initialize........ccoeevvvvnnnennns done
>

Please quit db63 and restart!
>

If an error occurs in the above initialization process, temporarily quit the debugger. Check the cause
of the error and repair it before restarting the debugger.

After initialization, the state of the screen including the position and size of the windows will return the
same as the last time the debugger was terminated. The contents displayed in each window if it is opened
are as follows:

Window Display contents

[Command] window Initialization information (and waits for command input)

[Data] window Data memory contents starting from data memory address 0

[Register] window Current register values

[Source] window Program memory contents starting from program memory address 0x0100

The previously set display mode (Unassemble, Source or Mix) is used.
[Trace] window Blank

8.3.5 Method of Termination

To terminate the debugger, select [Exit] from the [File] menu.

You can also input the g command in the [Command] window to terminate the debugger.

>q

122 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 8: DEBUGGER

8.4 Windows

This section describes the types of windows used by the debugger.

8.4.1 Basic Structure of Window

The diagram below shows the window structure of the debugger.

[Source] window [Trace] window [Register] window

= Db63 - Data

File Run Break Trace Yiew Option \Window Help

H9|€§|E|——\otﬁo|@? / \

Search Label: I 'l il :C :EBBB =
[Addy] Code | Unasssmble Sourc«||| B =1
<> 23 0668 BaBs ldb =x1,% %%1,RAM_BLK1E1 b :[8667] = @
24 8889 1911 add [x]+,1 [%2x]+,1 ¥ :[AARAR] = =
25 Adda [%]+,0 [%x]+.0 EICZ :18681
26 0886b [x]+,8 [%x]+,0 SP1 :uA
27 000c SP2 :1F
28 poed EXT :88
29 r data QUEUE: 8118
ap code disasm AB addr data SP in BBABAYACFE cycle
1 | - - F 1 8887 AnAA 000G 0606 rF [@B88] = AAAA o
39 1980 adc [%x],0x00 F 1 0067 AAAR 8060 0006 uF [0664] - 1DFO
2 | —- - F 1 0807 AARA 6081 0867 O reees] - AnAA T
d| 1FF8 ret F 1 8887 ARAA 0081 0087 wBd d| | Mo
(s | GBFD jr 8xfd F 1 =
B8FE idh %ext,0xfe F 1 =] E3
Frogram area B2EF calr Bxef F1 ADDR: 01 2 34567 89ABCDEF AI
Data ram area 6800 1db %ext,0x88 F 1 0067 AAAA 0081 o000 A A A A1 DF B AAAAAARAAA-]
Data rom area 8ABy 1db %x1,8x04 F 1 8087 ARAA 1881 0010 A AAAAAAARA AAAAAADA
LCD area 1911 add [%%]+,0x61 F 1 9864 AAAA B0B1 (0020 A AAAAAAA AAAAAAAA
External memory| ———— -——————---- F 1 00685 ARAAR BBBO 0030 AAAAAAARA AAAAAAAR
I0 area o040 AAAAAAAARA AAAARAAARAN
SIZEDFFI]aI‘E('iI | 0os0 AAAAAAAARA AAAAAAAAR
Size of 301 area H | 0060 AAAAAAAARA AAAARNAAARAAR
Size of 302 area : 256 o070 AAAAAAAARA AAAARAAAAR
Size of MLA area 1296 0og0 AAAAAAAA AAAAAAAN
> o090 AAAAAARAAARA AAAARAAAA
4 AN | Ml
Ready [|NUM
[Command] window [Data] window

Depending on the computer used, the windows may differ from the above display depending on the
screen resolution, the number of dots in system font, etc. Adjust the size of each window to suit needs.

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 123

CHAPTER 8: DEBUGGER

Features common to all windows

(1) Open/close and activating a window
All windows except [Command] can be closed or opened.
To open a window, select the window name from the [View] menu. To close a window, click the
[Close] box on the window. After initialization, the state of the screen including the position and size
of the windows will return to the same as the last time the debugger was terminated.
The opened windows are listed in the [Window] menu. Selecting one from the list activates the
selected window. It can also be done by simply clicking on an inactive window. Furthermore, pressing
[Ctr]]+[Tab] switches the active window to the next open window.

(2) Resizing and moving a window
Each window can be resized as needed by dragging the boundary of the window with the mouse. The
[Minimize] and [Maximize] buttons work in the same way as in general Windows applications. Each
window can be moved to the desired display position by dragging the window's title bar with the
mouse. However, windows can only be resized and moved within the range of the application
window.

(3) Scrolling a window
All windows can be scrolled. (The [Register] window can be scrolled only when its size is reduced.)
Use one of the following three methods to scroll a window:

1. Click on an arrow button or enter an arrow key (cursor movement) to scroll a window one line at a
time.

2. Click on the scroll bar of a window to scroll it one page (current window size) at a time.

3. Drag the scroll bar handle of a window to move it to the desired area.

(4) Other
The opened windows can be cascaded or tiled using the [Window] menu.

Note for display
The windows may display incorrect contents caused by incompatibility between the OS and the video
card or driver. If there is any problem try the following methods to fix it.
e Update the driver to the latest version if an older version has been installed.
Please inquire about the version to the distributor.
e [f the driver allows selection of extended function such as acceleration, turn the functions off.
e If the problem is not fixed using the above, try the standard driver supplied with Windows95 (NT).

124 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

8.4.2 [Command] Window

Program area

Data ram area

Data rom area

LCD area

External memory area

Parameter file version :

8z

1L
1L
: Boea
: Foaea
: F8an
: FFB@
32

1FFF
67FF
SFFF
F2BF
F&FF
FFFF

=1 2

d P

The [Command] window is used to do the following:

(1) Entering debug commands
When the prompt ">" appears in the [Command] window, the system will accept a command entered

from the keyboard.

CHAPTER 8: DEBUGGER

If some other window is selected, click on the [Command] window. A cursor will blink at the prompt,

indicating that readiness to input a command. (Refer to Section 8.7.1, "Entering Commands from

Keyboard".)

(2) Displaying debug commands selected from menus or tool bar

When a command is executed by selecting the menu item or tool bar button, the executed command

line is displayed in the [Command] window.

(3) Displaying command execution results

The [Command] window displays command execution results. However, some command execution
results are displayed in the [Source], [Data], [Register], or [Trace] windows. The contents of these
execution results are displayed when their corresponding windows are open. If the corresponding
window is closed, the execution result is displayed in the [Command] window.

When writing to a log file, the content of the write data is displayed in the window. (Refer to the

description for log command.)

Note: The [Command] window cannot be closed.

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

EPSON

125

CHAPTER 8: DEBUGGER

8.4.3 [Source] Window

i Min BEE
Search Label: I 'I EI
[Addy Code | Unassenble | Sourc 4 |

L=y 57 8118 894b 1db ba,4b 1db %ba,SP1_INIT_ADDR

58 @111 1fcd 1db sp1,ba 1db %sp1.%ba

50 @112 891f 1db ba,1f 1db %ba,SP2_INIT_ADDR

68 8113 1fch 1db sp2,ba 1db %sp2,%ba

61 8114 B08fe 1db ext,fe (+) 1db ext,fe

T 62 811% B2ea calr ea calr IHNIT_RAM_BLEKA1

63 LOOP:

64 @116 B8fe 1db ext,fe (+) 1db ext,fe
L] 65 8117 82ef calr ef calr INC_RAHM_BLK1 J

66 0118 aafd jr fd jr LooP

A7 ~
4] | 2

The [Source] window displays the contents of (1) to (4) listed below. This window also allows breakpoints
to be set and words or labels to be found.

(1) Unassembled codes and source codes
You can choose one of the following three display modes:

1. Mix mode
(selected by the [Mix] button or entering the m command)
In this mode, the window displays the addresses, codes, unassembled contents,
[Mix] button and corresponding source line numbers and source statements. (See the dia-

gram above.)

2. Source mode
(selected by the [Source] button or entering the sc command)
In this mode, the window displays the source line numbers and source state-

[Source] button
ments.

3. Unassemble mode
= (selected by the [Unassemble] button or entering the # command)
In this mode, the window displays the addresses, codes, and unassembled

Unassemble] button
[] contents. This format is selected when the debugger starts up.

Note: The m, sc and u commands can update the [Source] window if the window is already opened. If
the [Source] window is closed, the program code is displayed in the [Command] window.
The [Mix], [Source] and [Unassemble] buttons open the [Source] window if the window is closed.

All program code in the 64K address space can be referenced by scrolling the window. When a break
occurs, the display content is updated so that the address line to be executed next is displayed, with
an arrow mark at the beginning of the line for identification.

Use the scroll bar or arrow keys to scroll the window. Or enter a command to display the program
code beginning with a specified position.

[JDisplay of source line numbers and source statements
The source line numbers and source statements can only be displayed when the IEEE-695 absolute
object file including debugging information for the source display is loaded. Furthermore, the source
statements that are actually displayed from this file are those which have had the -g option specified
by the assembler.

126 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 8: DEBUGGER

[JUpdating of display
When a program is loaded and executed (g, gr, s, #, or st command), or the memory contents are
changed (a (as), pe, pf, or pm command), the display contents are updated. In this case the [Source]
window updates its display contents so that the current PC address can always be displayed. The
display contents are also updated when the display mode is changed.

(2) Current PC
The current PC (program counter) address line is indicated by an arrow mark at the beginning of the
line. (Address 0x0110 in the diagram)

(3) PC breakpoint
The address line where a breakpoint is set is indicated by a red ® mark at the beginning of the line.
(Address 0x0117 in the diagram)

(4) Trace trigger point

The address line where a trace trigger point is set is indicated by the letter "T" at the beginning of the
line. (Address 0x0115 in the diagram)

(5) Break setting at the cursor position
Place the cursor at an address line where a breakpoint is to be set (not available for a source-only line).

{n] Then click on the [Break] button. A PC breakpoint will be set at that address. If
the same is done at the address line where a PC breakpoint has been set, the

[Break] button breakpoint will be cleared.

-| If the [Go to Cursor] button is clicked, the program will execute beginning

with the current PC position, and program execution breaks at the line where
[Go to Cursor] button

the cursor is located.

(6) Finding labels and words
Any labels and words can be found using the [Search Label] pull-down list box or the [Find] button
on the [Source] window.

Search Label: j
—————B0OOT:
IMNC_RAM_BLE1:
INIT_Rat_BLE1: [Search Label] pull-down list box
LOOP:
RILIR

il [Find] button

EO0C63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 127

CHAPTER 8: DEBUGGER

8.4.4 [Data] Window

i Data [_ofx]| (1) Displaying data memory contents
ADDR 0 1 2 3 4 5 6 7 8 9 ABCDETF | The [Data] window displays the memory dump
gggg 803=0002 0010280x=x results in hexadecimal numbers.
¥ O ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ O ¥ ¥ ¥

FF20 B F F % B F F % % % % % % % % = The display area is the entire 64K-word data memory
FF30 OF BF BF BF BF == %= xx space (RAM, data ROM, I/0O). The contents of all
FF40 OF F=BFF* BFF=0FF = .
FFS0 B F F z .k % % woEoE X E XN E addresses from 0x0000 to Oxffff can be displayed by
FFED B 4D = = = x % 2 08 0 % xx = scrolling the window. The contents of unmapped
FF70 B8 8 8 8 = = = 0008 =800 = . . T
e E FFFFFFF FEFEFFEF addreise's in each microcomputer model are indicated
FF90 FFFFFFFF FFFFFFFF by an "0

b
| | _'I:J

* Updating of display
The display contents of the [Data] window are updated automatically when memory contents are
modified with a command (de, df, or dm command), or by direct modification. After executing the
program (g, gt, s, n, or rst command), the display contents are also updated. To refresh the [Data]
window manually, execute the dd command or click the vertical scroll bar.

(2) Direct modification of data memory contents
The [Data] window allows direct modification of data memory contents. To modify data on the [Data]
window, place the cursor at the front of the data to be modified or double click the data, and then type
a hexadecimal character (0-9, a—f). Data in the address will be modified with the entered number and
the cursor will move to the next address. This allows successive modification of a series of addresses.

8.4.5 [Register] Window

ili Reg [_[o]=]| (1) Displaying register contents
PC @110 The [Register] window displays the contents of the PC, A register, B register,
g fg X register and its memory, Y register and its memory and flags (E, I, C, Z),
X ;[nnnn] = = stack pointers (SP1, SP2), EXT register, and QUEUE register.
¥ :[AAAAT = =
EILZ -68680 (2) Execution cycle counter
g::; ;:: This counter calculates and indicates the number of executed cycles or
EXT :AA execution time since the CPU was reset.
QUEUE :ARAA
panaansas cycle (3) Monitor data
{[m[ju} = 983 The debugger allows you to specify four addresses in RAM and monitor the
[gggg] = 2::: memory contents at these addresses. The [Register] window displays the
‘[l |] »] contents of these four watch data addresses (4 words each beginning from

the specified address). When the debugger starts up, addresses 0, 4, 8, and
C are initially set as the watch data addresses. The contents are arranged
sequentially from left to right in order of their addresses as they are dis-
played on the screen.
[JUpdating the display
The display is updated when registers are dumped (rd command), when watch data addresses are set
(dw command), when register data is modified (rs command), when the CPU is reset (rst command),
or after program execution (g, gr, s, or n command) is completed.
When the on-the-fly function is enabled, the PC, flag and watch data are updated in real time at 0.5
second intervals while the program is being executed. Other contents are left blank until the program
is stopped by a break.

(4) Direct modification of register contents
The [Register] window allows direct modification of register contents. To modify data on the [Regis-
ter] window, select (highlight) the data to be modified and type a hexadecimal number (0-9, a—f), then
press [Enter]. The register data will be modified with the entered number.

128 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

8.4.6 [Trace] Window

trace fetch fetch register flag data trace
cycle addr code disasm AB X ¥ EICZ addr data SP in
aae11 e@8a 1998 adc [%x]+,8<088 F 1 66605 AARA 6068 BAB4 we

aeg1B —-—-- -—---- ———————— F 1 80886 AAAA BOBA BBBS r?

aaeea? 6@8B 1998 adc [%x]+,B<088 F 1 6606 AARA BBBA BAOS w9

@e@p8 —--- -—-—-—- —————————- F 1 80887 AAAA 0081 868686 rB

aaea7 e@ac 1988 adc [%=],8xz88 F 1 688607 AARA 6061 8086 we

aaaps —--- ---- —————————- F 1 80887 AAAA BOBA BBB7 r3

808ps 888D 1FFB ret F 1 80887 AAAA BOBA BBB7 w3

gaeay 6118 A@6BFD jr Bxfd F 1 8887 AAAA BBBA B12C rAAAA 1

80083 8116 B8FE 1ldb %ext,Oxfe F 1 808087 AAAA 880 ——— —-

80082 8117 B2EF calr Bxef F 1 808087 AAAA 1808 ——— —-

go@e1 06887 68688 1ldb %ext,08x80 F 1 06007 AAAA 0008 6128 we118 1

4| | vl

CHAPTER 8: DEBUGGER

The [Trace] window displays the trace result up to 8,192 cycles by reading it from the ICE63's trace
memory.

The following lists the trace contents:

e Traced cycle number
e Fetched address

¢ Fetched code and disassembled contents

¢ Register contents (A, B, X, Y, and flags)

e Memory access status (address, R/W, data, and SP1/SP2)

® TRCIN pin input status

This window also displays the trace data search results by the ts command.

[JUpdating of display:
The contents of the [Trace] window are cleared when the target program is being executed. During
this period, the [Trace] window does not accept scrolling and resizing operations.

After an program execution is terminated, this window displays the latest data traced during the
execution. To specify a display start cycle, execute the td command.

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

EPSON

129

CHAPTER 8: DEBUGGER

8.5 Tool Bar

This section outlines the tool bar available with the debugger.

8.5.1 Tool Bar Structure

The tool bar has 14 buttons, each one assigned to a frequently used command.

Oz BaE ~lonr2 89

The specified function is executed when you click on the corresponding button.

8.5.2 [Key Break] Button

This button forcibly breaks execution of the target program. This function can be used to cause the
program to break when the program has fallen into an endless loop.

8.5.3 [Load File] and [Load Option] Buttons

= [Load File] button
This button reads an object file in the IEEE-695 format into the debugger. It performs the same
function when the If command is executed.

= [Load Option] button
== This button reads a program file, data file for the data ROM or an optional HEX file in Motorola-S
format into the debugger. It performs the same function when the lo command is executed.

8.5.4 [Source], [Mix], and [Unassemble] Buttons

These buttons open the [Source] window or switch over the display modes.

[Source] button
This button switches the display of the [Source] window to the source mode. The [Source] window
opens if it is closed. This button performs the same function when the sc command is executed.

= [Unassemble] button
This button switches the display of the [Source] window to the unassemble mode. The [Source]
window opens if it is closed. This button performs the same function when the # command is
executed.

[Mix] button
This button switches the display of the [Source] window to the mix mode (unassemble & source).
The [Source] window opens if it is closed. This button performs the same function when the m
command is executed.

8.5.5 [Go], [Go to Cursor], [Go from Reset], [Step], [Next], and [Reset] Buttons

— [GO] button
This button executes the target program from the address indicated by the current PC. It performs the
same function when the g command is executed.

[Go to Cursor] button

This button executes the target program from the address indicated by the current PC to the cursor
position in the [Source] window (the address of that line). It performs the same function when the
g <address> command is executed.

Before this button can be selected, the [Source] window must be open and the address line where
the program is to break must be clicked. Selecting a break address by clicking on the address line
is valid for only the lines that have actual code, and is invalid for the source-only lines.

=

130 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 8: DEBUGGER

*3 [Go from Reset] button
This button resets the CPU and then executes the target program from the program start address
(0x110). It performs the same function when the gr command is executed.

-+ [Step] button
This button executes one instruction step at the address indicated by the current PC. It performs
the same function when the s command is executed.

LR [Next] button
This button executes one instruction step at the address indicated by the current PC. If the instruc-
tion to be executed is calr, calz or int, it is assumed that a program section until control returns to
the next address constitutes one step and all steps of their subroutines are executed. This button
performs the same function when the n command is executed.

< [Reset] button
This button resets the CPU. It performs the same function when the rst command is executed.

8.5.6 [Break] Button

My Use this button to set and clear a breakpoint at the address where the cursor is located in the
[Source] window. This function is valid only when the [Source] window is open. Note that select-
ing a break address by clicking on the address line is valid for only the lines that have actual code
and is invalid for the source-only lines.

8.5.7 [Help] Button
@ By clicking on this button, a help window appears on the screen, displaying the contents of help topics.

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 131

CHAPTER 8: DEBUGGER

8.6 Menu

This section outlines the menu bar available with the debugger.

8.6.1 Menu Structure

The menu bar has eight menus, each including frequently-used commands.

File Run Break Trace Yiew Option ‘Window Help

8.6.2 [File] Menu

[Load File...]
Load File... This menu item reads an object file in the IEEE-695 format into the debugger.
Load Ophior,..

It performs the same function when the If command is executed.

[Load Option...]

This menu item reads a program file, data file for the data ROM or an optional
HEX file in Motorola-S format into the debugger. It performs the same
function when the lIo command is executed.

Flash Memary Operation. ..

Exit

[Flash Memory Operation...]

This menu item reads/writes data from/to the Flash memory or erases the
Flash memory contents. It performs the same function when the Ifl, sfl or efl
command is executed.

[Exit]

This menu item quits the debugger. It performs the same function when the g4
command is executed.

8.6.3 [Run] Menu
[Go]

Go This menu item executes the target program from the address indicated by the

gz :[Dorgnu::sret current PC. It performs the same function when the g command is executed.

Step [Go to Cursor]

hest This menu item executes the target program from the address indicated by the

E———— current PC to the cursor position in the [Source] window (the address of that

Reset CPU line). It performs the same function when the g <address> command is
executed.

Before this menu item can be selected, the [Source] window must be open and
the address line where the program is to break must be clicked. Selecting a
break address by clicking on the address line is valid for only the lines that
have actual code, and is invalid for the source-only lines.

[Go from Reset]

This menu item resets the CPU and then executes the target program from the
program start address (0x0110). It performs the same function when the gr
command is executed.

[Step]
This menu item executes one instruction step at the address indicated by the
current PC. It performs the same function when the s command is executed.

[Next]

This menu item executes one instruction step at the address indicated by the
current PC. If the instruction to be executed is calr, calz or int, it is assumed
that a program section until control returns to the next address constitutes one
step and all steps of their subroutines are executed. This menu item performs
the same function when the n command is executed.

132 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

Go
Go to Cursor
Go from Beset

Step
Hext

Command File...
Beset CPU

CHAPTER 8: DEBUGGER

[Command File...]

This menu item reads a command file and executes the debug commands written
in that file. It performs the same function when the com or emw command is
executed.

[Reset CPU]
This menu item resets the CPU. It performs the same function when the rst com-
mand is executed.

8.6.4 [Break] Menu

Breakpoint Set...

Diata Break. ..
Begister Break...
Sequential Break...
Stack Break...

Break List
Break All Clear

[Breakpoint Set...]
This menu item displays, sets or clears PC breakpoints using a dialog box. It
performs the same function as executing the bp command.

[Data Break...]
This menu item displays, sets or clears data break conditions using a dialog box. It
performs the same function as executing the bd command.

[Register Break...]
This menu item displays, sets or clears register break conditions using a dialog
box. It performs the same function as executing the br command.

[Sequential Break...]
This menu item displays, sets or clears sequential break conditions using a dialog
box. It performs the same function as executing the bs command.

[Stack Break...]
This menu item displays or sets stack break conditions using a dialog box. It
performs the same function as executing the bsp command.

[Break List]
This menu item displays the all break conditions that have been set. It performs the
same function as executing the bl command.

[Break All Clear]
This menu item clears all break conditions. It performs the same function as
executing the bac command.

8.6.5 [Trace] Menu

Trace Mode Set...
Trace Search...

Trace File...

[Trace Mode Set...]
This menu item sets a trace mode and trace conditions using a dialog box. It
performs the same function as executing the tm command.

[Trace Search...]

This menu item searches trace information from the trace memory under the
condition specified using a dialog box. It performs the same function as executing
the ts command.

[Trace File...]

This menu item saves the specified range of the trace information displayed in the
[Trace] window to a file. It performs the same function as executing the f com-
mand.

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 133

CHAPTER 8: DEBUGGER

8.6.6 [View] Menu

[view | [Command]
Commatd This menu item activates the [Command] window.
PBrogram 4
Dlata Dump [Program]
Begister Unassembls This menu item opens or activates the [Source]
Lrace Data Durp Simes Dl window and displays the program from the current
v Tooba Lolete! Alillaes PC address in the display mode selected from the
v Status Bar sub menu items. These sub menu items perform the

same functions as executing the u, sc, and m com-
mand, respectively.

[Data Dump]

This menu item opens or activates the [Data] window and displays the data memory
contents from the memory start address.

[Register]

This menu item opens or activates the [Register] window and displays the current
values of the registers.

[Trace]
This menu item opens or activates the [Trace] window and displays the trace data
sampled in the ICE trace memory.

[Toolbar]
This menu item shows or hides the toolbar.

[Status Bar]
This menu item shows or hides the status bar.

8.6.7 [Option] Menu
[Log...]

Log... This menu item starts or stops logging using a dialog box. It performs the same
e function as executing the log command.
tMode Setting... [RECOI'd]

This menu item starts or stops recording of a command execution using a dialog
box. It performs the same function as executing the rec command.

[Mode Setting...]
This menu item sets the on-the-fly display, break and execution counter modes using
a dialog box. It performs the same functions as executing the md command.

8.6.8 [Windows] Menu

Windaw [Cascade]
Caseade This menu item cascades the opened windows.
Tile
Til
v 1 Command [_e] . . .
- Data This menu item tiles the opened windows.
3FReg
AT This menu shows the currently opened window names. Selecting one activates the
5 his window.

8.6.9 [Help] Menu

Help [Contents...]
Contents... This menu item displays the contents of help topics.
About DHE3..

[About Db63...]
This menu item displays an About dialog box for the debugger.

134 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 8: DEBUGGER

8.7 Method for Executing Commands

All debug functions can be performed by executing debug commands. This section describes how to
execute these commands. Refer to the description of each command for command parameters and other
details.

To execute a debug command, activate the [Command] window and input the command from the
keyboard. The menu and tool bar can be used to execute frequently-used commands.

8.7.1 Entering Commands from Keyboard

Select the [Command] window (by clicking somewhere on the [Command] window). When the prompt
">" appears on the last line in this window and a cursor is blinking behind it, the system is ready to
accept a command from the keyboard.

Input a debug command at the prompt position. The commands are not case-sensitive; they can be input

in either uppercase or lowercase.
General command input format
>command [parameter [parameter ... parameter]] O

® A space is required between a command and parameter.
® A space is required between parameters.

Use the arrow keys, [Back Space] key, or [Delete] key to correct erroneous input.

When you press the [Enter] key after entering a command, the system executes that command. (If the
command entered is accompanied by guidance, the command is executed when the necessary data is
input according to the displayed guidance.)

Input example:
>g0 (Only a command is input.)
>com test.cmd O (A command and parameter are input.)

Command input accompanied by guidance
For commands that cannot be executed unless a parameter or the commands that modify the existing
data are specified, a guidance mode is entered when only a command is input. In this mode, the
system brings up a guidance field, so input a parameter there.

Input example:

>if 0
File name ? testabs [... Inputdata according to the guidance (underlined part).
>

Commands requiring parameter input as a precondition

The If command shown in the above example reads an absolute object file into the debugger. Com-
mands like this that require an entered parameter as a precondition are not executed until the param-
eter is input and the [Enter] key pressed. If a command has multiple parameters to be input, the
system brings up the next guidance, so be sure to input all necessary parameters sequentially. If the
[Enter] key is pressed without entering a parameter in some guidance session of a command, the
system assumes the command is canceled and does not execute it.

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 135

CHAPTER 8: DEBUGGER

« Commands that replace existing data after confirmation
The commands that rewrite memory or register contents one by one provide the option of skipping
guidance (do not modify the contents), returning to the immediately preceding guidance, or terminat-
ing during the input session.

[Enter] key Skips input.
[MTKeY e, Returns to the immediately preceding guidance.
[al key..cccenunnnen Terminates the input session.

Input example:

>del ... Command to modify data memory.

Data enter address ? : 00 ... Inputs the start address.

0000 A: 10O ... Modifies address 0x0000 to 1.

0001 A: 7O ... Returns to the immediately preceding address.
0000 1: 0O ... Inputs address 0x0000 back again.

0001 A: O ... Skips address 0x0001 by pressing [Enter] alone.
0002 A: O

0001 A: gO ... Terminates the input session.

>

Numeric data format of parameter

For numeric values to be accepted as a parameter, they must be input in hexadecimal numbers for
almost all commands. However, some parameters accept decimal or binary numbers.

The following characters are valid for specifying numeric data:
Hexadecimal:0-9, a—f, A-F, O

Decimal: 0-9

Binary: 0,1, 0

("D is used to mask bits when specifying a data pattern.)

Specification with a symbol
For address specifications, symbols defined in the source can also be used. However, it is necessary to
load an absolute object file that contains debug information.
Symbols should be used as follows:

Global symbol ~ @<symbol name> e.g. @QRAM_BLK1
Local symbol @<symbol name>@<source file name> e.g. @LOOP@main.s

Successive execution using the [Enter] key
The commands listed below can be executed successively by using only the [Enter] key after execut-

ing once. Successive execution here means repeating the previous operation or continuous display of
the previous contents.

Execution commands: g (go), s (step), n (next), com (execute command file)

Display commands: sc (source), m (mix), u (unassemble), dd (data memory dump),
od (option data dump), td (trace data display), cv (coverage), sy (symbol list),
ma (map information)

The successive execution function is terminated when some other command is executed.

136 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 8: DEBUGGER

8.7.2 Executing from Menu or Tool Bar

The menu and tool bar are assigned frequently-used commands as described in Sections 8.5 and 8.6. A
command can be executed simply by selecting desired menu command or clicking on the tool bar button.
Table 8.7.2.1 lists the commands assigned to the menu and tool bar.

Table 8.7.2.1 Commands that can be specified from menu or tool bar

Command Function Menu Button
If Load IEEE-695 absolute object file [File | Load File...] ﬁ
lo Load Motorola-S file [File | Load Option...] =
g Execute program successively [Run | Go] —
g <address> |Execute program to <address> successively [Run | Go to Cursor] -r|
gr Reset CPU and execute program successively [Run | Go from Reset] i+
s Step into [Run | Step] =z,
n Step over [Run | Next] P
com, cmw Load and execute command file [Run | Command File...] -
rst Reset CPU [Run | Reset CPU] <*
bp, bc (bpc) | Set/clear PC breakpoint [Break | Breakpoint Set...] @
bd, bdc Set/clear data break [Break | Data Break...] -
br, brc Set/clear register break [Break | Register Break...] -
bs, bsc Set/clear sequential break [Break | Sequential Break...] -
bsp Set stack break [Break | Stack Break...] -
bl Break list [Break | Break List...] -
bac Clear all break conditions [Break | Break All Clear] -
tm Set trace mode [Trace | Trace Mode Set...] -
ts Search trace information [Trace | Trace Search...] -
tf Save trace information to a file [Trace | Trace File...] -
u Unassemble display [View | Program | Unassemble] E|
sc Source display [View | Program | Source Display]
m Mix display [View | Program | Mix Mode]
Ifl Load from flash memory [File | Flash Memory Operation...] -
sfl Save to flash memory [File | Flash Memory Operation...] -
efl Erase flash memory [File | Flash Memory Operation...] -
dd Dump data memory [View | Data Dump] -
rd Display register values [View | Register] -
td Display trace information [View | Trace] -
log Turn log output on or off [Option | Log...] -
rec Record commands to a command file [Option | Record...] -
md Set modes [Option | Mode Setting...] -

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 137

CHAPTER 8: DEBUGGER

8.7.3 Executing from a Command File

Another method for executing commands is to use a command file that contains descriptions of a series
of debug commands. By reading a command file into the debugger the commands written in it can be
executed.

Creating a command file
Create a command file as a text file using an editor.
Although there are no specific restrictions on the extension of a file name, Seiko Epson recommends
using ".cmd".

Command files can also be created using the rec command. The rec command creates a command file
and saves the executed commands to the file.

Example of a command file

The example below shows a command group necessary to read an object file and an option file.
Example: File name = startup.cmd

If test.abs
lo test.fsa
lo test.ssa

A command file to write the commands that come with a guidance mode can be executed. In this case,
be sure to break the line for each guidance input item as a command is written.

Reading in and executing a command file

There are two methods to read a command file into the debugger and to execute it, as described
below.

(1) Execution by the start-up option
By specifying a command file in the debugger start-up command, one command file can be executed
when the debugger starts up.
If the above example of a command file is specified, for example, the necessary files are read into the
debugger immediately after the debugger starts up, so everything is ready to debug the program.

Example: Startup command of the debugger
db63 startup.cmd par63xxx.par
(2) Execution by a command
The debugger has the com and cmw commands available that can be used to execute a command file.
The com command reads in a specified file and executes the commands in that file sequentially in the
order they are written.

The ecmw command performs the same function as the com command except that each command is
executed at intervals specified by the md command (1 to 256 seconds).

Examples: com startup.cmd
cmw test.cmd
The commands written in the command file are displayed in the [Command] window.

Restrictions

Another command file can be read from within a command file. However, nesting of these command
files is limited to a maximum of five levels. An error is assumed and the subsequent execution is
halted when the com or cmw command at the sixth level is encountered.

138 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 8: DEBUGGER

8.7.4 Log File

The executed commands and the execution results can be saved to a file in text format that is called a "log
file". This file allows verification of the debug procedures and contents.
The contents displayed in the [Command] window are saved to this file.

Command example

>log tst.log

After the debugger is set to the log mode by the log command (after it starts outputting to a log file),
the log command toggles (output turned on in log mode ~ output turned off in normal mode).
Therefore, you can output only the portions needed can be output to the log file.

Display of [Command] window in log mode

The contents displayed in the [Command] window during log mode differ from those appearing in
normal mode.

(1) When executing a command when each window is open
(When the window that displays the command execution result is opened)
Normal mode: The contents of the relevant display window are updated. The execution results are
not displayed in the [Command] window.
Log mode: The same contents as those displayed in the relevant window are also displayed in the
[Command] window. However, changes made to the relevant window by scrolling or
opening it are not reflected in the [Command] window.

(2) When executing a command while each window is closed
When the relevant display window is closed, the execution results are always displayed in the
[Command] window regardless of whether operation is in log mode or normal mode.

For the display format in the [Command] window, refer to each command description.

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 139

CHAPTER 8: DEBUGGER

8.8 Debug Functions

This section outlines the debug features of the debugger, classified by function.
Refer to Section 8.9, "Command Reference" for details about each debug command.

8.8.1 Loading Program and Data Files

Loading files

The debugger can read a file in IEEE-695 format or Motorola-S format in the debugging process.
Table 8.8.1.1 lists the files that can be read by the debugger and the load commands.

Table 8.8.1.1 Files and load commands

File type Data type Ext. Generation tool Com. Menu Button
IEEE-695 | Program/data .abs |Linker If [File | Load File...] ﬁ-”
Motorola-S| Program (5 high-order bits)| .hsa |HEX convertor lo [File | Load Option...] @

Program (8 low-order bits)| .Isa |HEX convertor

Function option fsa |Function option generator
Segment option .ssa | Segment option generator
Melody data .msa |Melody assembler

(Ext. = Extension, Com. = Command)
Debugging a program with source display

To debug a program using the source display and symbols, the object file must be in IEEE-695 format
read into the debugger. If any other program file is read, only the unassemble display is produced.

140 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 8: DEBUGGER

8.8.2 Source Display and Symbolic Debugging Function

The debugger allows program debugging while displaying the assembly source statements. Address
specification using a symbol name is also possible.

Displaying program code

The [Source] window displays the program in the specified display mode. The display mode can be
selected from among the three modes: Unassemble mode, Source mode, Mix mode.

Table 8.8.2.1 Commands/tool bar buttons to switch display mode

Display mode | Command Menu Button
Unassemble u [View | Program | Unassemble] =]
Source sc [View | Program | Source Display]
Mix m [View | Program | Mix Mode]

(1) Unassemble mode

il Source Display M=l E3
Search Label: I j Eﬂl
| Source [a]
=3 28 1db %ba,SP1_INIT_ADDR
20 1db %=p1,%ba ; set SP1
38 1db %ba,SP2_IHIT_ADDR
31 1db %sp2,%ba ; set 5p2
T 32 calr IHIT_RAHM BLK1 ; initialize RAM block 1
33 LOOP:
L a4 calr INGC_RAH_BLKA1 ; increment RAM block 1
35 jr LoOP . infinity loop J
36
37 ;xxxxx RAM block %%xx
as |
39 -nrn A=A ﬂ

In this mode, the debugger displays the program codes after unassembling into mnemonics.

(2) Source mode

il Source Dizplay M=l E3
Search Label: I j Eﬂl
| Source [a]
=43 28 1db %ba,SP1_IHIT_ADDR
20 1db %sp1,%ba ; set SP1
38 1db %ba,SP2_IHIT_ADDR
31 1db %sp2,%ba ; set SP2
T 32 calr IHIT_RAH_BLK1 ; initialize RAM block 1
33 LOOP:
» 34 calr IMNGC_RAM_BLEKA1 ; increment RAM block 1
35 jr LOOP : infinity loop J
36
37 ;xxxxx HAM bhlock *%xxx
as |
39 _nrn AxA j

In this mode, the source that contains the code at the current PC address is displayed like an editor
screen. This mode is available only when an absolute object file that contains source debugging
information has been loaded.

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 141

CHAPTER 8: DEBUGGER

(3) Mix mode
W Mix M= E3
Search Label: I j ﬂl
|&ddx] Code | Tnassenble | Sourc « |
o 57 @118 a94b 1db ba,4b 1db %ba,SP1_INIT_ADDR
58 8111 1fch 1db spi,ba 1db %spl,%ba
59 @112 a91F 1db ba,i1f 1db %ba,SP2_INIT_ADDR
68 68113 1fch 1db sp2,ba 1db %sp2,%ba
61 8114 agfe 1db ext,fe (+) 1db ext,fe
T 62 8115 82ea calr ea calr INIT_RAM_BLKA1
63 LOOP:
64 0116 ggfe 1db ext,fe (+) 1db ext,fe
[] 65 8117 82ef calr ef calr IHNC_RAM_BLKA J
66 0118 aofd jr fd jr LOOP
fi7 i
4| | v

In this mode, both unassembled codes and sources are displayed like an absolute list. This mode is
available only when an absolute object file that contains source debugging information has been
loaded.

Refer to Section 8.4.3, "[Source] Window" for details about the display contents.

Symbol reference
When debugging a program after reading an object file in IEEE-695 format, the symbols defined in the
source file can be used to specify an address. This feature can be used when entering a command
having <address> in its parameter from the [Command] window or a dialog box.

(1) Referencing global symbols
Follow the method below to specify a symbol that is declared to be a global symbol/label by the
.global or .comm pseudo-instruction.

@<symbol>

Example of specification:
>m @BOOT
>de @RAM_BLK1

(2) Referencing local symbols
Follow the method below to specify a local symbol/label that is used in only the defined source file.
@<symbol>@<file name>
The file name here is the source file name (.s) in which the symbol is defined.
Example of specification:

>bp @SUBl1@test.s

(3) Displaying symbol list
All symbols used in the program and the defined addresses can be displayed in the [Command]
window.

Table 8.8.2.2 Command to display symbol list
Function Command
Displaying symbol list sy

142 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 8: DEBUGGER

8.8.3 Displaying and Modifying Program, Data, Option Data and Register

The debugger has functions to operate on the program memory, data memory, and registers, as well as
option data. Each memory area is set to the debugger according to the map information that is given in a
parameter file.

Operating on program memory area
The following operations can be performed on the program memory area:

Table 8.8.3.1 Commands to operate on program memory

Function Command
Entering/modifying program code pe
In-line assemble a (as)
Rewriting specified area pf
Copying specified area pm

(1) Entering/modifying program code
The program code at a specified address is modified by entering hexadecimal data.

(2) In-line assemble

The program code at a specified address is modified by entering a mnemonic code.
(3) Rewriting specified area

An entire specified area is rewritten with specified code.
(4) Copying specified area

The content of a specified area is copied to another area.

Operating on data memory area
The following operations can be performed on the data memory areas (RAM, data ROM, display
memory, I/O memory):

Table 8.8.3.2 Commands/menu item to operate on data memory

Function Command Menu
Dumping data memory dd [View | Data Dump]
Entering/modifying data de -
Rewriting specified area df -
Copying specified area dm -

il Data =] E3

ADDRE: 01 2 3 458 7 SQABCDEFAI

FFOD B8 8 32 =0 8082 0010280 x=x

FE10 3 3 3 3 3% % 3% 3% % % ¥ % ¥ ¥ ¥ *

FEZ0 B F F * BF F * = % % % * x % %

FE3D B F BF BF BF B F * * = x x =

FFA0 B FF = BFF * B8BFF = 8FF =

FEL BFF * % % * * ¥ ¥ O K ¥ X X ¥

FFED B 4 D = * % % * 2 B B B = = = =

FE70 B 8 8 8 = = = 008 =008 =

FF80 FFFFFFFF FFFFFFFF

FF90 FFFFFFFF FFFFFFFF

b

< I_'I:J

(1) Dumping data memory
The contents of the data memory are displayed in hexadecimal dump format. If the [Data] window is
opened, the contents of the [Data] window are updated; if not, the contents of the data memory are
displayed in the [Command] window.

(2) Entering/modifying data
Data at a specified address is rewritten by entering hexadecimal data. Data can be directly modified
on the [Data] window.

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 143

CHAPTER 8: DEBUGGER

(3) Rewriting specified area
An entire specified area is rewritten with specified data.

(4) Copying specified area

The content of a specified area is copied to another area.

(5) Monitoring memory

i) il Reg H= E3 _
Four memory locations, each with area to store4 [Fpe .g118 | |he memory content displayed
consecutive words, can be registered as watch A A at th(?:-f.le;t |r(1j((ji|cates da(tjtathat a
. B A specified address, and the one
dat'fa .add.resses. The. reglste.red watch data canbe | » :[ARRA] = x displayed at the right indicates
verified in the [Register] window. The content of | ¥ :[ARAR] = x 4-word data at the high-order
this window is updated in real time at 0.5-second 5;22 :2:“ address.

intervals by the on-the-fly function. Addresses 0, SP2? :AA
4,8, and C are made the watch data addresses by | EXT :AA

default.

Operating registers

QUEUE :AAAA

000062A898 cycle

[80668] = AAARA

[B064] = C903 ;

[0008] - nanA Monitor data
[B06C] = AAARA

[« 1

The following operations can be performed on registers:

il Reg [_[O]x]
PC :0110

A A

B A

X :[AARA] = =

y :[AARA] = =
EICZ :0800

SP1 AR

SP2 :AR

EXT :AA

QUEUE :AAAA
#00AA2A898 cycle
[98B8] = AAAA
[@BB4] = C9A3
[9888] = AAAA
[@BBC] = AAAA

KN i

Table 8.8.3.3 Commands/menu items to operate registers

Function Command Menu
Displaying registers rd [View | Register]
Modifying register values rs -

(1) Displaying registers
Register contents can be displayed in the [Register] or [Command]
window.
Registers: PC, A, B, X and [X], Y and [Y], E, SP1, SP2, EXT, and QUEUE

While the program is being executed, the PC address and F register are
updated in real time every 0.5 seconds by the on-the-fly function.

(2) Modifying register values
The contents of the above registers can be set to any desired value.
The register values can be directly modified on the [Register] window.

Displaying option data
Option data in the ICE63's option areas (function option data, segment option data, or melody data).
Data is displayed in the [Command] window in hexadecimal dump format.

Table 8.8.3.4 Command to display option data
Function Command
Displaying option data od

144

EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 8: DEBUGGER

8.8.4 Executing Program

The debugger can execute the target program successively or execute instructions one step at a time
(single-stepping).

Successive execution

(1) Types of successive execution
There are two types of successive execution available:
¢ Successive execution from the current PC
* Successive execution from the program start address (0x0110) after resetting the CPU

Table 8.8.4.1 Commands/menu items/tool bar buttons for successive execution

Function Command Menu Button
Successive execution from current PC g [Run | Go] —
[Run | Go to Cursor] =
Successive execution after resetting CPU ar [Run | Go from Reset] *1

(2) Stopping successive execution
Using the successive execution command (g), can specify up to two temporary break addresses that
are only effective during program execution.
The temporary break address can also be specified from the [Source] window (one location only).
If the cursor is placed on an address line in the [Source] window and the [Go to Cursor] button
clicked, the program starts executing from the current PC address and breaks before executing the
instruction at the address the cursor is placed.

Except being stopped by this temporary break, the program continues execution until it is stopped by
one of the following causes:

* Break conditions set by a break set up command are met.

¢ The [Key Break] button is clicked or the [Esc] key is pressed.

* A map break, etc. occurs.

9 [Key Break] button OWhen the program does not stop, use this button to forcibly stop it.

(3) On-the-fly function
The ICE63 and debugger provide the on-the-fly function to display the PC address, F register and
watch data values every 0.5 seconds (default) during successive execution. These contents are dis-
played in the relevant positions of the [Register] window. If the [Register] window is closed, they are
displayed in the [Command] window. In the initial debugger settings, the display update interval of
the on-the-fly function is set to twice per second. It can be modified to 0 (OFF)-5 (times) per second
using the md command. This function provides a complete real-time display that is implemented
using the ICE63 hardware.

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 145

CHAPTER 8: DEBUGGER

Single-stepping

(1) Types of single-stepping
There are two types of single-stepping available:
e Stepping through all instructions (STEP)

All instructions are executed one step at a time according to the PC, regardless of the type of
instruction.

e Stepping through instructions except subroutines (NEXT)
The calr, calz and int instructions are executed under the assumption that one step constitutes the
range of statements until control is returned to the next step by a return instruction. Other instruc-
tions are executed in the same way as in ordinary single-stepping.

In either case, the program starts executing from the current PC.

Table 8.8.4.2 Commands/menu items/tool bar buttons for single-stepping

Function Command Menu Button
Stepping through all instructions s [Run | Step] -+,
Stepping through all instructions except subroutines n [Run | Next] L

When executing single-stepping by command input, the number of steps to be executed can be
specified, up to 65,535 steps. When using menu commands or tool bar buttons, the program is ex-
ecuted one step at a time.

In the following cases, single-stepping is terminated before a specified number of steps is executed:
¢ When the [Key Break] button is clicked or the [Esc] key is pressed.

¢ When a map break or similar break occurs.

Single-stepping is not suspended by breaks set by the user such as a PC break or data break.

9 [Key Break] button OWhen the program does not stop, use this button to forcibly stop it.

(2) Display during single-stepping
In the initial debugger settings, the display is updated as follows:
The display contents of the [Register] window are updated every step. If the [Register] window is
closed, its contents are displayed in the [Command] window. This default display mode can be
switched over by the md command so that the display contents are updated at only the last step in a
specified number of steps.
The display of the [Source] and [Data] windows are updated after the specified number of step
executions are completed.

(3) HALT and SLEEP states and interrupts
The CPU is placed in a standby mode when the halt or slp instruction is executed. An interrupt is
required to cancel this mode.
The debugger has a mode to enable or disable an external interrupt for use in single-step operation.

Table 8.8.4.3 External interrupt modes

Enable mode Disable mode
External interrupt Interrupt is processed. Interrupt is not processed.
halt and slp instructions | Executed as the halt instruction. | The halt and slp instructions are
Processing is continued by an replaced with a nop instruction as
external interrupt or clicking on the instruction is executed.
the [Key Break] button.

In the initial settings, the debugger is set to the interrupt disable mode. The interrupt enable mode can
also be set by using the md command.

146 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 8: DEBUGGER

Measuring execution cycles/execution time

(1) Execution cycle counter and measurement mode
The ICE63 contains a 31-bit execution cycle counter allowing you to measure the program execution
time or the number of bus cycles executed. The measurement mode (time or bus cycle) can be selected
using the md command. In the initial debugger settings, the bus cycle mode is selected.
The following lists the maximum values that can be measured by the execution cycle counter:

Execution time mode: 2,147,483,647 psec = approx. 36 min. (error = +1 psec)
Bus cycle mode: 2,147,483,647 cycles (error = +0)

(2) Displaying measurement results
The measurement result is displayed in the [Register] window. This display is cleared during program
execution and is updated after completion of execution. If the [Register] window is closed, the
measurement result can be displayed in the [Command] window using the rd command. The execu-
tion results of single-stepping are also displayed here.
If the counter's maximum count is exceeded, the system indicates "over flow".

(3) Hold mode and reset mode
In the initial debugger settings, the execution cycle counter is set to hold mode. In this mode, the
measured values are combined until the counter is reset.
The reset mode can be set by the md command. In this mode, the counter is reset each time the
program is executed. In successive execution, the counter is reset when the program is made to start
executing by entering the g command and measurement is taken until the execution is terminated
(beak occurs). (The same applies for the gr command except that the counter is reset simultaneously when
the CPU is reset. Consequently, the counter operates the same way in both hold and reset modes.)
In single-stepping, the counter is reset when the program is made to start executing by entering the s
or n command and measurement is taken until execution of a specified number of steps is completed.
The counter is reset every step if execution of only one step is specified or execution is initiated by a
tool bar button or menu command.

(4) Resetting execution cycle counter
The execution cycle counter is reset in the following cases:
e When the CPU is reset with the rst command, [Reset] in the [Run] menu, or the [Reset] button
e When the gr command or [Go from Reset] in the [Run] menu is executed
¢ When the execution cycle counter mode is switched over by the md command (between execution
time and bus cycle modes or between hold and reset modes)
* When program execution is started in reset mode

Resetting the CPU

The CPU is reset when the gr command is executed, or by executing the rst command.
When the CPU is reset, the internal circuits are initialized as follows:

(1) Internal registers of the CPU

PC ... 0x0110
A, B ... Oxa

X, Y, QUEUE ... Oxaaaa
F ... 0b0000

SP1, SP2, EXT ... Oxaa
(2) The execution cycle counter is reset to 0.

(3) The [Source] and [Register] windows are redisplayed.
Because the PC is set to 0x0110, the [Source] window is redisplayed beginning with that address.
The [Register] window is redisplayed with the internal circuits initialized as described above.

The data memory contents are not modified.

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 147

CHAPTER 8: DEBUGGER

8.8.5 Break Functions

The target program is made to stop executing by one of the following causes:
® Break command conditions are satisfied.

¢ The [Key Break] button is activated.

¢ The ICE63's BRKIN pin is pulled low.

* A map break or similar break occurs.

Break by command
The debugger has five types of break functions that allow the break conditions to be set by a com-
mand. When the set conditions in one of these break functions are met, the program under execution
is made to break.

(1) Break by PC
This function causes the program to break when the PC matches the set address. The program is made
to break before executing the instruction at that address. The PC breakpoints can be set for multiple
addresses.

Table 8.8.5.1 Commands/menu items/tool bar button to set breakpoints
Function Command Menu Button

Set breakpoints bp [Break | Breakpoint Set...] {T_"]

Clear breakpoints | bc (bpc) |[Break | Breakpoint Set...] {T_"]

The addresses that are set as PC breakpoints are marked with a @ as they are displayed in the [Source]
window.

Using the [Break] button easily allows the setting and canceling of breakpoints.

Click on the address line in the [Source] window at where the program break is desired (after moving
the cursor to that position) and then click on the [Break] button. A ® mark will be placed at the
beginning of the line indicating that a breakpoint has been set there, and the address is registered in
the breakpoint list. Clicking on the line that begins with a @ and then the [Break] button cancels the
breakpoint you have set, in which case the address is deleted from the breakpoint list.

OThe temporary break addresses that can be specified by the successive execution commands (g) do not
affect the set addresses in the breakpoint list.

(2) Data break
This break function allows a break to be executed when a location in the specified data memory area
is accessed. In addition to specifying a memory area in which to watch accesses, specification as to
whether the break is to be caused by a read or write, as well as specification of the content of the data
read or written. The read /write condition can be masked, so that a break will be generated for
whichever operation, read or write, is attempted. Similarly, the data condition can also be masked in
bit units. A break occurs after completing the cycle in which an operation to satisfy the above speci-
fied condition is performed.

Table 8.8.5.2 Commands/menu item to set data break

Function Command Menu
Set data break condition bd [Break | Data Break...]
Clear data break condition bdc [Break | Data Break...]

For example, if the program is executed after setting the data break condition as Address = 0x10, Data
pattern = O(mask) and R/W = W, the program breaks after writing any data to the data memory
address 0x10.

148 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 8: DEBUGGER

(3) Register break
This break function causes a break when the A, B, F, X, and Y register reach a specified value. Each
register can be masked (so they are not included in break conditions). The F register can be masked in
bit units. A break occurs when the above registers are modified to satisfy all set conditions.

Table 8.8.5.3 Commands/menu item to set register break

Function Command Menu
Set register break conditions br [Break | Register Break...]
Clear register break conditions brc [Break | Register Break...]

For example, if the program is executed after setting 0 for the data of the A register and "[T1)' for the
data of the F register (C flag = 1) and masking all others, the program breaks when the A register is
cleared to 0 and the C flag is set to 1.

(4) Sequential break
This break function allows settings of up to three break addresses and the number of times the
instructions of the last address to be executed. While passing through all addresses sequentially in the
order set, the program executes instructions at the final specified address the directed number of
times, and then fetches the instruction at that address one more time before it breaks.

Table 8.8.5.4 Commands/menu item to set sequential break

Function Command Menu
Set sequential break conditions bs [Break | Sequential Break...]
Clear sequential break conditions bsc [Break | Sequential Break...]

For example, if you execute the program after first setting a break address in two locations at ad-
dresses 0x1000 and 0x2000 and specifying 3 for the execution count using the bs command, the
program executes address 0x2000 three times after executing address 0x1000 more than one time, and
when the PC reaches 0x2000, it breaks before performing the 4th execution.

The execution count can be set up to 4,095.

(5) Accessing outside stack area
In this case, a break occurs when a location outside the stack area is accessed by stack pointer SP1 or
SP2.
Before this function can be used, the SP1 and SP2 areas must be set by the bsp command. The initial
value is 0x0 to 0x3ff for SP1, and 0x0 to Oxff for SP2. The address of SP1 must be specified in units of 4
words.

Table 8.8.5.5 Command/menu item to set stack break
Function Command Menu
Set stack break conditions bsp [Break | Stack Break...]

Forced break by the [Key Break] button or the [Esc] key
The [Key Break] button or the [Esc] key can be used to forcibly terminate the program under execu-
tion when the program has fallen into an endless loop or cannot exit a standby (HALT or SLEEP)
state.

M [Key Break] button

Pulling ICE63's BRKIN pin low
The program is made to break by pulling the ICE63's BRKIN pin low (by applying a low-level pulse
for more than 20 ns).

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 149

CHAPTER 8: DEBUGGER

Map break and illegal instruction break
The program also breaks when one of the following errors is encountered during program execution:

(1) Access to undefined program area
A break occurs when an undefined area of the program memory map is accessed.

(2) Access to undefined data area
A break occurs when an undefined area of the data memory map is accessed.

(3) Write to data ROM area
A break occurs when a write to the data ROM area is attempted.

Notes: « If the return address is popped from the stack by a ret or reti instruction in an area with prohib-
ited 16-bit access, invalid data is read out from a 16-bit data bus that does not have any memory
connected. In the ICE63, because the bus is pulled up, Oxffff is read out, causing control to
return to that address. This could result in generating a map break.

» A break caused by an undefined program area access occurs before execution of such opera-
tion. On the other hand, a map break caused by access to an undefined data area or a write to
the data ROM area occurs one or two instructions after execution of such operation.

« In user breaks based on command settings also, a PC break and sequential break occur before
execution of operation. However, other breaks such as a data break, register break, and stack
break occur one or two instructions after execution of operation.

150 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 8: DEBUGGER

8.8.6 Trace Functions

The debugger has a function to trace program execution.

Trace memory and trace information
The ICE63 contains a trace memory. When the program executes instructions in the trace range
according to the trace mode, the trace information on each cycle is taken into this memory. The trace
memory has the capacity to store information for 8,192 cycles, making it possible to trace up to 4,096
instructions (for two-clock instructions only). When the trace information exceeds this capacity, the
data is overwritten, the oldest data first unless operating in single-delay trigger mode. Consequently,
the trace information stored in the trace memory is always within 8,192 cycles. The trace memory is
cleared when a program is executed, starting to trace the new execution data.

trace fetch fetch register flag data trace a
cycle addr code disasm AB X ¥ EICZ addr data SP in
80611 0688A 1998 adc [%x]+,8x688 F 1 80605 AAAA 0088 8884 wC
gem1g - - - F 1 8085 AAAA 0088 085 r9
80089 06888 1998 adc [%x]+,8x688 F 1 8005 AAAA 0088 8805 w9
ge@@g -—-—- --— - F 1 8087 AARA 0081 0885 r@
90007 BOBC 1988 adc [%x],0x00 F 1 @887 AAnA 66001 0806 wl
ga@ds ---- --——- —————————- F 1 @887 AAAA G008 BBO7 r3
@@aas 8oeDd 1FFE ret F 1 @887 AAAA G008 BBO7 w3l
g0aps 8118 0BOFD jr Bxfd F 1 @887 AAnA 86888 B12C rAAAA 1
00883 6116 O8FE 1db %ext,dxfe F 1 @887 AAnA 6608 -—— -
gaaa? 8117 @2EF calr @8xef F 1 @887 aAnA 1608 - —— —-
00861 6087 0800 1db %ext,0x00 F 1 @887 AAnA 686008 8128 wBi18 1
b
1] | H oz

The following lists the trace information that is taken into the trace memory in every cycle. This list is
corresponded to display in the [Trace] window.

trace cycle: Trace cycle (decimal). The last information taken into the trace memory becomes
00001.

fetch addr: Fetch address (hexadecimal).

fetch code disasm:Fetch code (hexadecimal) and disassembled content.

register: Values of A, B, X, and Y registers after cycle execution (hexadecimal).

flag: States of E, I, C, and Z flags after cycle execution (binary).

data: Accessed data memory address (hexadecimal), read / write (denoted by r or w at

the beginning of data), and data (1-digit hexadecimal for 4-bit access; 4-digit
hexadecimal for 16-bit access).

SP: Stack access (1 for SP1 access; 2 for SP2 access).

trace in: Input to TRCIN pin (denoted by L when low-level signal is input).

Notes: The EOC63000 CPU uses two-stage pipelined instruction processing, one for fetch and one for
execution. Therefore, please pay attention to the following:

e The CPU fetches the next instruction in the last execution cycle of an instruction. Because the
instruction is executed beginning from the cycle which is after the fetch, the displayed states of
the registers, etc. are not the execution results of the fetch instruction that is displayed on the
same line.

e For reasons of the ICE63's operation timing, the trace data at the boundary of operations, such
as in the fetch cycle at which trace starts or the execution cycle at which trace ends, will not
always be stored in memory.

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 151

CHAPTER 8: DEBUGGER

Trace modes
Three trace modes are available, depending on the method for sampling trace information.

Table 8.8.6.1 Trace mode setup command

Function Command Menu
Set trace mode tm [Trace | Trace Mode Set...]

(1) Normal trace mode
In this mode, the trace information on all bus cycles is taken into the trace memory during program
execution. Therefore, until a break occurs, the trace memory always contains the latest information on
bus cycles up to the one that is executed immediately beforehand.

(2) Single delay trigger trace mode
In this mode as in other modes, trace is initiated by a start of program execution. When the address
(trace trigger point) that is set by the #m command is executed, trace is performed beginning from that
point before being halted according to the next setting, which is also set by the command.

« If the trace trigger point is set to "start"
Trance is halted after sampling trace information for 8,192 cycles beginning from the trace trigger
point. In this case, the trace information at the trace trigger point is the oldest information stored
in the trace memory.
If the program stops before tracing all 8,192 cycles, trace information on some cycles preceding the
trace trigger point may be left in the trace memory within its capacity.

Trace trigger point
Execution started goere

v

8,192 cycles
Trace sampling range

Fig. 8.8.6.1 Trace range when "start" is selected

If the trace trigger point is set to "middle"

Trace is halted after sampling trace information for 4,096 cycles beginning from the trace trigger
point. In this case, the trace information of 4,096 cycles before and after the trace trigger point are
sampled into the trace memory.

If the program stops before tracing all 4,096 cycles, trace information for the location 4,096 cycles
before the trace trigger point may be left in the trace memory, according to its capacity.

Trace trigger point
Execution started qoerp

v

‘ (4,096 cycles)‘ 4,096 cycles |
‘ Trace sampling range ‘

Fig. 8.8.6.2 Trace range when "middle" is selected

If the trace trigger point is set to "end"

Trace is halted after sampling trace information at the trace trigger point. In this case, the trace
information at the trace trigger point is the latest information stored in the trace memory.

If the program stops before tracing the trace trigger point, the system operates in the same way as
in normal mode.

Trace trigger point
Execution started qoerp

8,192 cycles “
Trace sampling range ‘

Fig. 8.8.6.3 Trace range when "end" is selected

If the program is halted in the middle of single delay trigger trace, bus cycles are traced from the
beginning when trace is executed next.

152 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 8: DEBUGGER

(3) Address-area trace
In this mode, trace information is taken into the trace memory only when instructions within (or
outside) a specified address range are executed. This address range can be set in up to four locations
by the tm command. Whether you want trace to be performed within or outside that address range
can also be specified by a command.

[JTrace trigger address
The tm command sets a trace trigger address regardless of the trace mode specified. When the
[Source] window is open, the address thus set is marked by a "T" at the beginning of the address.
When the program executes that address, the ICE63 outputs a low-level pulse from its TRGOUT pin.

Displaying and searching trace information
The sampled trace information can be displayed in the [Trace] window by a command. If the [Trace]
window is closed, the information is displayed in the [Command] window. In the [Trace] window, the
entire trace memory data can be seen by scrolling the window. The trace information can be displayed
beginning from a specified cycle.
The display contents are as described above.

Table 8.8.6.2 Command/menu item to display trace information
Function Command Menu
Display trace information td [View | Trace]

It is possible to specify a search condition and display the trace information that matches a specified
condition.

The search condition can be selected from the following three:

1. Program's execution address

2. Address from which data is read

3. Address to which data is written

When the above condition and one address are specified, the system starts searching. When the trace
information that matches the specified condition is found, the system displays the found data in the
[Trace] window (or in the [Command] window if the [Trace] window is closed).

Table 8.8.6.3 Command/menu item to search trace information
Function Command Menu
Search trace information ts [Trace | Trace Search...]

Saving trace information
After the trace information is displayed in the [Trace] window using the td or s commands, the trace
information within the specified range can be saved to a file.

Table 8.8.6.4 Command/menu item to save trace information

Function Command Menu
Save trace information tf [Trace | Trace File...]

EO0C63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 153

CHAPTER 8: DEBUGGER

8.8.7 Operation of Flash Memory

The ICE63 in-circuit emulator contains flash memory. This memory is designed to allow data to be
transferred to and from the ICE63's emulation memory and the target memory by a command.

The flash memory retains data even when the ICE63 is turned off. By writing the program and/or data
under debug into the flash memory before turning off the power, you can call it up and continue debug-
ging next time. Also, even when operating the ICE63 in free-run mode (in which a program is executed
using only the ICE63), you may need to write the program into the flash memory.

The following operations can be performed on the flash memory:

(1) Read from flash memory
Data is loaded from the flash memory into the emulation and/or target memory.

(2) Write to flash memory
Data in the emulation and/or target memory is saved to the flash memory. Also, the contents of the
parameter file can be written to the flash memory as necessary. After writing to the flash memory in
this way, you can protect it against read and write.

(3) Erasing flash memory
All contents of the flash memory are erased.

Table 8.8.7.1 Commands to operate on flash memory

Function Command Menu
Read from flash memory Ifl [File | Flash Memory Operation...]
Write to flash memory sfl [File | Flash Memory Operation...]
Erase flash memory efl [File | Flash Memory Operation...]

Note: Unless the contents of the parameter file that is specified when invoking Debugger db63 match the
contents of parameters in the flash memory, neither write (sfl) nor read (Ifl) to and from the flash
memory can be performed. After you have received the shipment of the ICE63, erased the flash
memory, or used a different parameter file (designed for some other microcomputer model in the
EO0C63 Family), be sure to write the contents of your parameter file along with other data into the
flash memory using the sfl command.

[JFree-run of ICE63

When operating the ICE63 in free-run mode (with the program executed using only the ICE63), the
ICE63 uses the data written in the flash memory. Therefore, before the ICE63 can be used in free-run
mode, the entire program, data, and option data must be written into the flash memory.

To operate the ICE63 in free-run mode, set the ICE/RUN switch to the RUN position and turn on the
power. During free-run, map breaks caused by operation in the program and data areas set by a
parameter file are effective. When a map break occurs, the PC LED on the ICE63 stops and the EMU
LED turns off. All other break settings are invalid because they cannot be written into the flash
memory.

154 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 8: DEBUGGER

8.8.8 Coverage

The ICE63 retains coverage information (i.e., information on addresses at which a program is executed)
and it can be displayed in the [Command] window.
Because the executed address range is displayed as shown below, it is possible to know which areas have

not been executed.

Coverage Information:

0: 0110..0118
1: 0200..020f
Table 8.8.8.1 Coverage commands
Function Command
Display coverage information cv
Clear coverage information cve

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 155

CHAPTER 8: DEBUGGER

8.9 Command Reference

8.9.1 Command List
Table 8.9.1.1 lists the debug commands available with the debugger.

Table 8.9.1.1 Command list

Classification Command Function Page
Program memory alas (assemble) Assemble mnemonic 158
operation pe (program memory enter) Input program code 160

pf (program memory fill) Fill program area 161
pm (program memory move) Copy program memory 162
Data memory dd (data memory dump) Dump data memory 163
operation de (data memory enter) Input data 165
df (data memory fill) Fill data area 167
dm (data memory move) Copy data area 168
dw (data memory watch) Set watch data address 169
Option information | od (option data dump) Dump option data 171
Register operation | rd (register display) Display register values 173
s (register set) Modify register values 174
Program execution |g (go) Execute successively 176
gr (go after reset CPU) Reset CPU and execute successively 178
S (step) Step into 179
n (next) Step over 181
CPU reset rst (reset CPU) Reset CPU 182
Break bp (breakpoint set) Set breakpoint 183
bc / bpc (breakpoint clear) Clear breakpoint 185
bd (data break) Set data break 186
bdc (data break clear) Clear data break 188
br (register break) Set register break 189
brc (register break clear) Clear register break 191
bs (sequential break) Set sequential break 192
bsc (sequential break clear) Clear sequential break 194
bsp (break stack pointer) Specify stack area (for illegal stack access detection) 195
bl (breakpoint list) Display all break conditions 197
bac (break all clear) Clear all break conditions 198
Program display u (unassemble) Unassemble display 199
sc (source code) Source display 201
m (mix) Mix display 203
Symbol information | sy (symbol list) List symbols 205
Load file If (load file) Load IEEE-695 format absolute object file 206
lo (load option) Load Motorola-S format file 207
Flash memory Ifl (load from flash memory) Read from flash memory 208
operation sfl (save to flash memory) Write to flash memory 210
efl (erase flash memory) Erase flash memory 212
Trace tm (trace mode) Set trace mode 213
td (trace data display) Display trace information 215
ts (trace search) Search trace information 218
tf (trace file) Save trace information into a file 220
Coverage cv (coverage) Display coverage information 221
cve (coverage clear) Clear coverage information 222
Command file com (execute command file) Load & execute command file 223
cmw (execute command file with wait) | Load/execute command file with execution intervals 224
rec (record commands to file) Record commands to a command file 225
Log log (log) Turn log output on or off 226
Map information ma (map information) Display map information 227
Mode setting md (mode) Set mode 228
Quit q (quit) Quit debugger 231
Help ? (help) Display command usage 232

156

EPSON

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

8.9.2 Reference for Each Command
The following sections explain all the commands by functions.

The explanations contain the following items.

I Function

Indicates the functions of the command.

I Format

Indicates the keyboard input format and parameters required for execution.

Example
Indicates a sample execution of the command.

I Note

Shows notes on using.

I GUI utility

CHAPTER 8: DEBUGGER

Indicates a menu item or tool bar button if they are available for the command.

Notes: « In the command format description, the parameters enclosed by < > indicate they are necessary
parameters that must be input by the user; while the ones enclosed by [] indicate they are

optional parameters.

e The input commands are case-insensitive, you can use either upper case or lower case letters

or even mixed.

e An error results if the number of parameters is not correct when you input a command using

direct input mode.
Error : Incorrect number of parameters

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON

157

CHAPTER 8: DEBUGGER

8.9.3 Program Memory Operation

alas (assemble mnemonic)

I Function

This command assembles the input mnemonic and rewrites the corresponding code to the program
memory at the specified address.

I Format

(1) >a <address> <mnemonic> [<file name>] O (direct input mode)
(2) >a [<address>] O (guidance mode)
Start address ? : <address> [... Displayed only when <address> is omitted.

Address Original code Original mnemonic : <mnemonic> 0

>
<address>: Start address from which to write code; hexadecimal or symbol (IEEE-695 format only)
<mnemonic>: Input mnemonic; valid mnemonic of EOC63000 (expression and symbols are supported)
<file name>: File in which the symbol used in the operand was defined.
Condition: O< addresx last program memory address
I Examples
Format (1)
>a 200 "Id %a,f" O ... Assembles "LD %A,0xF" and rewrites the code at address 0x200.
Format (2)
>a[
Start address ? 200 ad ... Address is input.
0200 1ff6 Id %a,%f : add %a,%b d ... Mnemonic is input.
Source file name (enter to ignore) ? ad ... lgnoredd
0201 1fff *nop : " O ... Returned to previous address.
0200 1972 add %a,%b : O ... Input is skipped.
0201 1fff *nop : q O ... Command is terminated.
>

OSource file name should be entered when a symbol/label is used as the operand. Specify the source
file name in which the symbol was defined.

0200 1972 add %a,%b : jr LOOP ad ... Symbol is used.
Source file name (enter to ignore) ? main.s ad ... Source file name is input.

158 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 8: DEBUGGER

I Notes

e The a and as commands have the same function.

e The start address you specified must be within the range of the program memory area available with
each microcomputer model.
An error results if the input one is not a hexadecimal number or not a valid symbol.
Error : invalid value (no such symbol / symbol type error)
An error results if the limit is exceeded.
Error : Address out of range, use 0-OxXXXX

¢ An error results if the input mnemonic is invalid for EOC63000.
Error : illegal mnemonic

¢ In guidance mode, the following keyboard inputs have special meaning:

"qO" ... Command is terminated. (finish inputting and start execution)
A ... Return to previous address.
"o ... Input is skipped. (keep current value)

If the maximum address of program memory is reached and gets a valid input other than "[0", the
command is terminated.

¢ When the contents of the program memory are modified using the a (as) command, the unassemble
contents of the [Source] window are updated immediately.

¢ Although the contents of the unassemble display are modified by rewriting code, those of source
display remain unchanged.

B Gt utility

None

EO0C63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 159

CHAPTER 8: DEBUGGER

P€ (program memory enter)

I Function

This command rewrites the contents of the specified address in the program memory with the input
hexadecimal code.

I Format

(1) >pe <address> <codel> [<code2> [...<code8>]] O (direct input mode)
(2) >pe [<address>] O (guidance mode)
Program enter address ? <address> [... Displayed only when <address> is omitted.

Address Original code : <code> [

<address>: Start address from which to write code; hexadecimal or symbol (IEEE-695 format only)
<code(1-8)>: Write code; hexadecimal (valid operation code of EOC63000)
Condition: 0< addresx last program memory addresss thput code< Ox1fff

I Examples

Format (1)

>pe 200 1972 O ... Rewrites the code at address 0x200 with 0x1972 (add %a, %b).
Format (2)

>pe

Program enter address ? 200 O ... Address is input.

0200 1fff :1972 O ... Code is input.

0201 1fff : ad ... Address 0x201 is skipped.

0202 1fff :q ad ... Command is terminated.

>

I Notes

¢ The start address you specified must be within the range of the program memory area available with
each microcomputer model.
An error results if the input one is not hexadecimal number or not a valid symbol.
Error : invalid value (no such symbol / symbol type error)
An error results if the limit is exceeded.
Error : Address out of range, use 0-OxXXXX

¢ Code must be input using a hexadecimal number in the range of 13 bits (0 to Ox1£ff).
An error results if the input one is not a hexadecimal number.
Error : invalid value
An error results if the input code exceeds the limit or it is invalidated in the .PAR file.
Error : illegal code

e In guidance mode, the following keyboard inputs have special meaning:

"q" ... Command is terminated. (finish inputting and start execution)
A ... Return to previous address.
"o ... Input is skipped. (keep current value)

If the maximum address of program memory is reached and gets a valid input other than "[0", the
command is terminated.

¢ When the contents of the program memory are modified using the pe command, the unassemble
contents of the [Source] window are updated immediately.

¢ Although the contents of the unassemble display are modified by rewriting code, those of source
display remain unchanged.

IGUI utility

None

160 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 8: DEBUGGER

pf (program memory fill)

I Function

This command rewrites the contents of the specified program memory area with the specified code.

I Format

(1) >pf <address1> <address2> <code> [(direct input mode)
(2) >pfO (guidance mode)

Start address ? <address1> [
End address ? <address2> 0
Fill code ? <code> [

>

<addressl>: Start address of specified range; hexadecimal or symbol (IEEE-695 format only)

<address2>: End address of specified range; hexadecimal or symbol (IEEE-695 format only)
<code>: Write code; hexadecimal (valid operation code of EOC63000)
Condition: O< addressk addressZ last program memory addresss @ode< Ox1fff

I Examples

Format (1)

>pf 200 20f 1ffe O ... Fills the area from address 0x200 to address 0x20f with Ox1ffe (nop).
Format (2)

>pf O

Start address ? 200 ad ... Start address is input.

End address ? 20f O ... End address is input.

Fill code ? 1fff O ... Code is input.

>

OCommand execution can be canceled by entering only the [Enter] key and nothing else.

I Notes

The addresses specified here must be within the range of the program memory area available with
each microcomputer model.
An error results if the input one is not a hexadecimal number or not a valid symbol.
Error : invalid value (no such symbol / symbol type error)
An error results if the limit is exceeded.
Error : Address out of range, use 0-OxXXXX

An error results if the start address is larger than the end address.
Error : end address < start address

When the contents of the program memory is modified using the pf command, the contents of the
[Source] window are updated automatically.

Although the contents of the unassemble display are modified by rewriting code, those of source
display remain unchanged.

B Gt utility

None

EO0C63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON

161

CHAPTER 8: DEBUGGER

PmM (program memory move)

I Function

This command copies the content of a specified program memory area to another area.

I Format

(1) >pm <address1> <address2> <address3> [(direct input mode)

(2) >pm0O (guidance mode)

Start address ? <address1> [

End address ? <address2> O

Destination address ? <address3> [

>
<address1>: Start address of source area to be copied from; hexadecimal or symbol (IEEE-695 format only)
<address2>: End address of source area to be copied from; hexadecimal or symbol (IEEE-695 format only)
<address3>: Address of destination area to be copied to; hexadecimal or symbol (IEEE-695 format only)
Condition: 0< addressk addressZ last program memory address

0 < addressX last program memory address

I Examples

Format (1)

>pm 200 2ff 280 O ... Copies the codes within the range from address 0x200 to address Ox2ff
to the area from address 0x280.

Format (2)

>pn]

Start address ? 200 ad ... Source area start address is input.

End address ? 2ff O ... Source area end address is input.

Destination address ? 280 O ... Destination area start address is input.

>

OCommand execution can be canceled by entering only the [Enter] key and nothing else.

I Notes

¢ The addresses you specified must be within the range of the program memory area available with
each microcomputer model.
An error results if the input one is not a hexadecimal number or not a valid symbol.
Error : invalid value (no such symbol / symbol type error)
An error results if the limit is exceeded.
Error : Address out of range, use 0-OxXXXX

¢ An error results if the start address is larger than the end address.
Error : end address < start address

¢ When the contents of the program memory is modified using the pm command, the contents of the
[Source] window are updated automatically.

¢ Although the contents of the unassemble display are modified by rewriting code, those of source
display remain unchanged.

B Gut utility

None

162 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 8: DEBUGGER

8.9.4 Data Memory Operation

dd (data memory dump)

I Function

This command displays the content of the data memory in a 16 words/line hexadecimal dump format.

I Format

>dd [<address1> [<address2>]] O (direct input mode)
<address1>: Start address to display; hexadecimal or symbol (IEEE-695 format only)
<address2>: End address to display; hexadecimal or symbol (IEEE-695 format only)
Condition: 0< addressk addressZ Oxffff

I Display

(1) When [data] window is opened

If both <address1> and <address2> are not defined,
BDDR: 0 1 2 345 67 89 ABCDEEF the [Data] window is redisplayed beginning with
FFO0 0 03 *0 002 06018020 %*x address 0x0000.
FE10 2 % 2% % % % ¥ % ¥ ¥ ¥ ¥ % ¥ ¥ * . . .
FF20 B FF * BF F * % % % % % % % If <address1> is defined , or even <address2> is
FE30 OF BF OF OF OF * * = %%« defined, the [Data] window is redisplayed in such a
FF40 O FF = 9FF * OFF = 8FF = . o1.
FEE0 B EF * % % % * % % % % % % % way that <address1> is displayed at the uppermost
FFG0 B 4D *x % x xx 2008 %% x=x line.
FF70 B A 88 *x=x=x2x A00=000= Lo :
e - F FFFFFF FEFFFFFF Even when .<address.1> s.pec1f1es somgwhere in 16
FF30 FFFFFFFF FFFFFFFF addresses/line, data is displayed beginning with

= the top of that line. For example, even though you
| | & .

may have specified address 0xff08 for <address1>,

data is displayed beginning with address 0x£f00.
However, if an address near the uppermost part of data memory (e.g. maximum address is Oxffff),
such as 0xffc0, is specified as <address1>, the last line displayed in the window in this case is Ox{ff0,
the specified address is not at the top of the window.
Since the [Data] window can be scrolled to show the entire data memory, defining <address2> does
not have any specific effect. Only defining <address1> and both defining <address1> and <address2>
has same display result.

(2) When [data] window is closed
If both <address1> and <address2> are not defined, the debugger displays data for 256 words from

address 0x000 in the [Command] window.
>dd O

01234567 89ABCDEF
0000: AAAADCO3 AAAAAAAA
0010: AAAAAAAA AAAAAAAA

00E0: AAAAAAAA AAAAAAAA
00FO: AAAAAAAA AAAAAAAA
>

If only <address1> is defined, the debugger displays data for 256 words from <address1>.
>dd ff00 O
FF00:003*0002 001020**

FFlO-******** *k kkkkk*k

F.FEO:0.00000(')O KKKk ok ok kK
FEFFO: 00000000 ***%%*xx
>

"' indicates an unused address.

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 163

CHAPTER 8: DEBUGGER

If both <address1> and <address2> are defined, the debugger displays data from <address1> to
<address2>.
>dd 008 017 O

01234567 89ABCDEF

0000: 000000O0O
0010:00000000
>

(3) During log output

If a command execution is being output to a log file by the log command when you dump the data
memory, data is displayed in the [Command] window even if the [Data] window is opened and are
also output to the log file.

If the [Data] window is closed, data is displayed in the [Command] window in the same way as in (2)
above.

If the [Data] window is open, it is redisplayed to show data in the same way as in (1) above. In this
case, the same number of lines is displayed in the [Command] window as are displayed in the [Data]
window.

(4) Successive display

Once you execute the dd command, data can be displayed successively with the [Enter] key only until
some other command is executed.
When you hit the [Enter] key, the [Data] window is scrolled one full screen.
When displaying data in the [Command] window, data is displayed for the 16 lines following the
previously displayed address (same number of lines as displayed in the [Data] window during log
output).
>dd O

01234567 89ABCDEF
0000: AAAAAAAA AAAAAAAA
0010: AAAAAAAA AAAAAAAA

00FO: AAAAAAAA AAAAAAAA
>0

01234567 89ABCDEF
0100: AAAAAAAA AAAAAAAA
0110: AAAAAAAA AAAAAAAA

01FO: AAAAAAAA AAAAAAAA
>

When the line at address 0xfff0 is displayed, the system stands by waiting for command input. If you
hit the [Enter] key here, data is displayed beginning with address 0x0000.

I Notes

Both the start and end addresses specified here must be within the range of the data memory area
available with each microcomputer model.
An error results if the input one is not a hexadecimal number or not a valid symbol.
Error : invalid value (no such symbol / symbol type error)
An error results if the limit is exceeded.
Error : Address out of range, use 0-OxFFFF

An error results if the start address is larger than the end address.
Error : end address < start address

B Gut utility

[View | Data Dump] menu item
When this menu item is selected, the [Data] window opens or becomes active and displays the current
data memory contents.

164

EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 8: DEBUGGER

de (data memory enter)

I Function

This command rewrites the contents of the data memory with the input hexadecimal data. Data can

be written to continuous memory locations beginning with a specified address.

I Format

(1) >de <address> <datal> [<data2> [...<datal6>]] O (direct input mode)

(2) >ded (guidance mode)
Data enter address ? : <address> [
Address Original data : <data>0

<address>: Start address from which to write data; hexadecimal or symbol (IEEE-695 format only)
<data(1-16)>: Write data; hexadecimal
Condition: 0< address Oxffff, 0 < data< Oxf

I Examples

Format (1)

>de 1000 O ... Rewrites data at address 0x100 with O.
Format (2)

>de

Data enter address ? :100 O ...Address is input.

0100 O:a O ... Data is input.

0101 O: g ... Skipped.

0102 0:q O ... Command is terminated.
>

I Notes

¢ The start address specified here must be within the range of the data memory area available with each
microcomputer model.
An error results if the input one is not a hexadecimal number or a valid symbol.
Error : invalid value (no such symbol / symbol type error)
An error results if the limit is exceeded.
Error : Address out of range, use 0-OXFFFF

¢ The contents of the unused area will be marked as "0'. If you encounter any address marked by "0/,
press [Enter] key to skip that address or terminate the command.

¢ Data must be input using a hexadecimal number in the range of 4 bits (0 to 0xf). An error results if the
limit is exceeded.
Error : Data out of range, use 0-OxF

¢ When the contents of the data memory is modified using the de command, the displayed contents of
the [Data] window are updated automatically.

¢ In guidance mode, the following keyboard inputs have special meaning:

"qO" ... Command is terminated. (finish inputting and start execution)
A ... Return to previous address.
"o ... Input is skipped. (keep current value)

If the maximum address of data memory is reached and gets a valid input other than "A0", the
command is terminated.

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 165

CHAPTER 8: DEBUGGER

B Gut utility

[Data] window

The [Data] window allows direct modification of

ADDR data. Click the [Data] window and select the

gggg displayed data to be modified then enter a hexadeci-
aonz2o0
3o
on4don
onso
o0e0
onzo
ango
anaon

‘E
B

LI»

mal number.

T >>>>> > > EA
== = = = = == - = - = ==
=== == == == == == == == | ¥
T D|W
== = = = = == - = = -
E === == == == == == == = |
E-—— - =
== = = = = = = - = LY S |
== = = = = == - = == == = =
=== == == == = = = = = = = = [V
E-—-— -
b= = = = = = = = = == s |
>IN0
E-—— - |
== = = = = = = = == Y 5 |
b= = = i = i = i = = = = = i = = == Lp s |

4

4| |

R

166 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 8: DEBUGGER

df (data memory fill)

I Function

This command rewrites the contents of the specified data memory area with the specified data.

I Format

(1) >df <address1> <address2> <data> 0 (direct input mode)

(2) >df0 (guidance mode)
Start address ? <address1> 0
End address ? <address2> 0
Data pattern ? <data> [
>

<address1>: Start address of specified range; hexadecimal or symbol (IEEE-695 format only)
<address2>: End address of specified range; hexadecimal or symbol (IEEE-695 format only)
<data>: Write data; hexadecimal

Condition: 0< addressk addressZ 0xffff, 0 < data< Oxf

I Examples

Format (1)

>df 200 2ff O O ... Fills the data memory area from address 0x200 to address Ox2ff with 0x0.
Format (2)

>df O

Start address ? 200 ad ... Start address is input.

End address ? 2ff O ... End address is input.

Data pattern ? 0 O ... Data is input.

>

OCommand execution can be canceled by entering only the [Enter] key and nothing else.

I Notes

¢ Both the start and end addresses specified here must be within the range of the data memory area
available with each microcomputer model.
An error results if the input one is not a hexadecimal number or a valid symbol.
Error : invalid value (no such symbol / symbol type error)
An error results if the limit is exceeded.
Error : Address out of range, use 0-OXFFFF

e An error results if the start address is larger than the end address.
Error : end address < start address

¢ Data must be input using a hexadecimal number in the range of 4 bits (0 to 0xf). An error results if the
limit is exceeded.
Error : Data out of range, use 0-OxF

e Write operation is not performed to the read only address of the I/O area.

¢ When there is an unused area in the specified address range, no error occurs. The area other than the
unused area will be filled with the specified data.

¢ When the contents of the data memory is modified using the df command, the displayed contents of
the [Data] window are updated automatically.

I GUI utility

None

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 167

CHAPTER 8: DEBUGGER

dm (data memory move)

I Function

This command copies the contents of the specified data memory area to another area.

I Format

(1) >dm <address1> <address2> <address3> [(direct input mode)

(2) >dmDO (guidance mode)

Start address ? <address1> [

End address ? <address2> [

Destination address ? <address3> [

>
<address1>: Start address of source area to be copied from; hexadecimal or symbol (IEEE-695 format only)
<address2>: End address of source area to be copied from; hexadecimal or symbol (IEEE-695 format only)
<address3>: Address of destination area to be copied to; hexadecimal or symbol (IEEE-695 format only)
Condition: 0< addressk addressZ 0xffff, 0 < address3 Oxffff

I Examples

Format (1)

>dm 200 2ff 280 O ... Copies data within the range from address 0x200 to address Ox2ff
to the area from address 0x280.

Format (2)

>dm]

Start address ? 200 ad ... Source area start address is input.

End address ? 2ff O ... Source area end address is input.

Destination address 280 O ... Destination area start address is input.

>

OCommand execution can be canceled by entering only the [Enter] key and nothing else.

I Notes

¢ All the addresses specified here must be within the range of the data memory area available with each
microcomputer model.
An error results if the input one is not a hexadecimal number or a valid symbol.
Error : invalid value (no such symbol / symbol type error)
An error results if the limit is exceeded.
Error : Address out of range, use 0-OXFFFF

e Write operation is not performed to the read-only address of the I/O area.

¢ Data in the write-only area cannot be read. If the source area contains write-only address, 0 is written
to the corresponding destination. If the destination area contains read-only address, the data of that
address can not be rewritten. If the source and destination areas contain I/ O address of mixed read-
only bits and write-only bits, either read or write operation can be executed for the corresponding
bits.

¢ When the contents of the data memory is modified using the dm command, the displayed contents of
the [Data] window are updated automatically.

B Gut utility

None

168 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 8: DEBUGGER

dw (data memory watch)

I Function

This command registers four data memory locations as the watch data addresses. Memory contents
equivalent to 4 words at each watch address are displayed in the [Register] window.

I Format

(1) >dw <address1> [... <address4>] 0O (direct input mode)

(2) >dw (guidance mode)

Address 1 = Old value : <addressl1> [

Address 2 = Old value : <address2> [

Address 3 = Old value : <address3> [

Address 4 = Old value : <address4> [

>
<address1-4>: Watch address; hexadecimal or symbol (IEEE-695 format only)
Condition: O< addressk addressZ Oxffff

I Examples

Format (1)
>dw 1014 181C O ... Sets watch addresses to 0x10, 0x14, 0x18, and Ox1c.

Format (2)

>dwl]

Address1 = 0010 :0
Address2 = 0014 :4
Address3 = 0018 :8
Address4 = 001c :c
>

I Notes

¢ When the debugger starts up, four locations at addresses 0, 4, 8, and Oxc are initially set as the watch
data addresses.

oooOodg

¢ The address specified here must be within the range of the data memory area available with each
microcomputer model.
An error results if the input one is not a hexadecimal number or a valid symbol.
Error : invalid value (no such symbol / symbol type error)
An error results if the limit is exceeded.
Error : Address out of range, use 0-OXFFFF

¢ The watch data addresses are set in units of 4 words. A warning results if you specify an address that
is outside the 4-word boundary, with your specified address rounded down to a multiple of 4.
Example: >dw(
Address1 = 0000 :0 0
Address2 = 0004 :10 0

Address3 = 0008 :15 O ... lllegal address
Address4 = 000c :19 O ... lllegal address
Warning : round down to multiple of 4

Addressl = 0

Address2 = 10
Address3 = 14
>

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 169

CHAPTER 8: DEBUGGER

¢ Be aware that a value is displayed as the watch data even if the invalid address, which is displayed as
an "' in the dd command, is registered. The value in this case is indeterminate.

¢ The value displayed to the left shows the content of the start address, and that displayed to the right
is the content of an address that is equal to the start address + 3.

IGUI utility

None

170 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 8: DEBUGGER

8.9.5 Command to Display Option Information

od (option data dump)

I Function

This command displays option data in the [Command] window in a hexadecimal dump format after
reading it from the ICE63.

Option data Target memory address range
Function option data (fog) 0 to Oxef
Segment option data (sog) 0 to Ox1fff
Melody data (mla) 0 to Oxfff

I Format

(1) >od <type> [<address1> [<address2>]] O (direct input mode)

(2) >0d0O (guidance mode)

1.fog 2.sog 3. mla ...?<type> 0O

Start address ? <address1> [

End address ? <address2> [

Option data display

>
<type>: Option type; fog, sog, or mla
<address1>: Start address of specified range; hexadecimal
<address2>: End address of specified range; hexadecimal
Condition: 0< addressk address Oxef (fog), Ox1fff (sog) or Oxfff (mla)

I Examples

Format (1)

>od fog O f ad ... Displays function option data within the range of 0 to Oxf.
01234567 89ABCDETF

0000: 00 00 00 00 00 00 00 OO 00 00 00 00 00 00 00 00

Format (2)

>od

1.fog 2.sog 3.mla ...? 1 ad ... Function option is selected.
Start address ? 10 O ... Start address is input.

End address ? 1f O ... End address is input.

01234567 89 ABCDEFTF
0010: 00 00 00 00 00 00 00 OO 00 00 00 00 00 00 00 00
>

I Notes

¢ The start and end addresses can be omitted by entering the [Enter] key only.
If the start address is omitted, data is displayed beginning with address 0.
If the end address is omitted, data is displayed for up to 16 lines within the range of the option area.

¢ Data in unused areas is marked by an "' as it is displayed in the window.

¢ The maximum number of lines that can be displayed at once is 16 (fog data is limited to 15 lines).
Even if you specify the end address in an attempt to display more than 16 lines, the system will only
display data for 16 lines and then stand by waiting for a command input. As with the dd command,
this command allows you to display data for the following addresses by entering the [Enter] key only.
(The maximam number of lines is 16.)

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 171

CHAPTER 8: DEBUGGER

¢ Both the start and end addresses must be specified within the setup range of each option. An error
results if this limit is exceeded.
Error : FO address out of range, use 0-OxEF

... Specified address for the function option is outside the range.
Error : SO address out of range, use 0-Ox1FFF

... Specified address for the segment option is outside the range.
Error : MLA address out of range, use 0-OxFFF

... Specified address for the melody data is outside the range.

¢ An error results if the start address is larger than the end address.
Error : end address < start address

¢ The default value of option data is 0.

B Gut utility

None

172 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 8: DEBUGGER

8.9.6 Register Operation

rd (register display)

I Function

This command displays the contents of the registers, execution cycle counter, and watch data.

I Format

>rd [0 (direct input mode)

I Display

(1) Contents of display

i Reg [_[o]=]| The following lists the contents displayed by this command.
PC :@118@ PC: Program counter
g ;2 A: A reg'ister
X :[AARA] = = B: B register
Emz fgﬁﬂﬂag"] = * X: Contents of X register and indirectly addressed data memory
SP1 -AA Y: Contents of Y register and indirectly addressed data memory
P2 :AR EICZ: Flags
EXT :AA .
QUEUE :AAAA SP1: Stack pointer SP1
@80082A898 cycle SP2: Stack pointer SP2
[8008] = AAAR . .
[6064] - COB3 EXT: EXT reglstelt
[BBAB] = AAAA QUEUE: QUEUE register
[BOBC] = AAAA bus cycle: Execution cycle counter
[« | [xxxx]: Watch data at four locations

O If the memory locations indicated by the X and Y registers are in an unused area, the data in that area
is marked by an "' as it is displayed.
Note that watch data is always displayed even if it resides in an unused area (indeterminate).

(2) When [Register] window is opened
When the [Register] window is opened, all the above contents are displayed in the [Register] window
according to the program execution. When you use the rd command, the displayed contents of the
[Register] window is updated.

(3) When [Register] window is closed

Data is displayed in the [Command] window in the following manner:

>rd O

PC:0110 A:A B:A X:[AAAA] = * Y:[AAAA] = * EICZ:0000 SP1:AA SP2:AA EXT:AA
QUEUE:AAAA bus cycle:000002AB3D cycle

[0000] = 0000 [0010] = AAAA [0014] = AAAA [0018] = AAAA

>

(4) During log output
If a command execution result is being output to a log file by the log command, the register values are

displayed in the [Command] window even if the [Register] window is opened and are also output to
the log file.

B Gut utility

[View | Register] menu item
When this menu item is selected, the [Register] window opens or becomes active and displays the
current register contents.

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 173

CHAPTER 8: DEBUGGER

IS (register set)

I Function

This command modifies the register values.

I Format

(1) >rs <register> <value> [<register> <value> [...<register> <value>]] O (direct input mode)

(2) >rsO (guidance mode)
PC = Old value : <value> [
A = Old value : <value> [
B = Old value : <value>[]
X = Old value : <value>[]
Y = Old value : <value> [
FE = Old value : <value> [0
F | = Old value : <value> [
FC = Old value : <value>[J
FZ = Old value : <value>[J
SP1 = Old value : <value> []
SP2 = Old value : <value> []
EXT = Old value : <value> [
Q = Old value : <value>0
>
<register>: Register name (PC, A, B, X, Y, F, SP1, SP2, EXT, Q)
<value>: Value to be set to the register; hexadecimal

I Examples

Format (1)
>rspc 110f0 ad ... Sets PC to 0x0110 and resets all the flags.

Format (2)

>rs [
PC=116:110 O
A= O:f O
B= 0: O

X= 0:100 O
Y= 0:100 O

FE= O: t
FI= O: t
FC= 1:0 g
Fz= 1:0 a

SP1= aa: ff O
SP2= aa: ff O
EXT= 0: O
Q= 0: O
When a register is modified, the [Register] window is updated to show the contents you have input. If
you input "q" to stop entering in the middle, the contents input up to that time are updated.

174 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 8: DEBUGGER

I Notes

* An error results if you input a value exceeding the register's bit width.
Error : invalid value

¢ An error results if you input a register name other than PC, A, B, X, Y, E, SP1, SP2, EXT or Q in direct
input mode.
Error : Incorrect register name, use PC/A/B/X/YIFISP1/SP2/EXT/Q

¢ In guidance mode, the following keyboard inputs have special meaning:

"qO" ... Command is terminated. (finish inputting and start execution)
A ... Return to previous register.
"o ... Input is skipped. (keep current value)

I GUI utility

[Register] window
The [Register] window allows direct modification of data. Click the [Register] window, select the
displayed data to be modified and enter a value then press [Enter].

EO0C63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 175

CHAPTER 8: DEBUGGER
8.9.7 Program Execution

g (go)

I Function

This command executes the target program from the current PC position.

I Format

>g [<address1> [<address2>]] O (direct input mode)

<address1-2>: Temporary break addresses; hexadecimal or symbol (IEEE-695 format only)
Condition: 0< address1(2X last program memory address

I Operation

(1) Program execution
The target program is executed from the address indicated by the PC. Program execution is continued
until it is made to break for one of the following causes:
¢ The set break condition is met
¢ The [Key Break] button is clicked or the [Esc] key is pressed
* A map break, etc., occurs

If a temporary break is specified, the program execution will be suspended before executing the

instruction at the specified address. Up to two temporary break addresses can be specified.
>g la0 O ... Executes the program from the current PC address to address 0x1a0.

When program execution breaks, the system stands by waiting for a command input after displaying
a break status message. When you hit the [Enter] key here, program execution is resumed beginning
with a PC address next to the break address. Temporary break address settings are also valid.

(2) wWindow display by program execution
In the initial debugger settings, the on-the-fly function is turned on.
During program execution, the PC, flags and watch data contents in the [Register] window are
updated in real time every 0.5 seconds (default) by the on-the-fly function. If the [Register] window is
closed, the above contents are displayed in the [Command] window. The on-the-fly function can be
turned off by the otf command. In this case, the [Register] window is updated after a break.

The [Source] window is updated after a break in such a way that the break address is displayed
within the window.

If the [Trace] window is opened, the display contents are cleared as the program is executed. It is
updated with the new trace information after a break.

If the [Data] window is opened, the display contents are updated after a break.
(3) Display during log mode

If the program is executed after turning on the log mode, an on-the-fly display appears in the [Com-
mand] window as well as the [Register] window.

Example:

>g

PC:0007 EICZ:0001 [0000] = AAAA [0004] = 3D30 [0008] = AAAA [000C] = AAAA
PC:000C EICZ:0000 [0000] = AAAA [0004] = 5250 [0008] = AAAA [000C] = AAAA
PC:0117 EICZ:1001 [0000] = AAAA [0004] = 6760 [0008] = AAAA [000C] = AAAA
PC:000B EICZ:0000 [0000] = AAAA [0004] = 8C70 [0008] = AAAA [000C] = AAAA

Key Break

PC:0008 A:F B:1 X:[0007] = 0 Y:[AAAA] = * EICZ:1001 SP1:4A(128) SP2:1F EXT:00
QUEUE:0118 bus cycle:0000029332 cycle [0000] = AAAA [0004] = E280 [0008] = AAAA

[000C] = AAAA
>

When a break occurs, the same display appears as when data is displayed by the rd command.

176 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 8: DEBUGGER

(4) Execution cycle counter
The execution cycle counter displayed in the [Register] window indicates the number of cycles
executed or the execution time of the target program. (Refer to Section 8.8.4 for details.)
In the initial debugger settings, the execution cycle counter is set to hold mode so that execution time
is added up until the CPU is reset. If this mode is changed to reset mode by the md command, the
execution cycle counter is cleared to 0 each time the g command is executed. The counter is also reset
simultaneously when execution is restarted by hitting the [Enter] key.

I Notes

e If a break condition is met, program execution is suspended and the PC will be set to the program
address at the breakpoint.

¢ The address you specified must be within the range of the program memory area available with each
microcomputer model.
An error results if the input one is not a hexadecimal number or a valid symbol.
Error : invalid value (no such symbol / symbol type error)
An error results if the limit is exceeded.
Error : Address out of range, use 0-OxXXXX

I GUI utility

[Run | Go] menu item, [Go] button
When this menu item or button is selected, the g command without temporary break is executed.

=+ [GO] button

[Run | Go to Cursor] menu item, [Go to Cursor] button

When this menu item or button is selected after placing the cursor to the temporary break address line
in the [Source] window, the g command with a temporary break is executed. The program execution
will be suspended after executing the address at the cursor position.

=+| [Go to Cursor] button

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 177

CHAPTER 8: DEBUGGER

gr (go after reset CPU)

I Function

This command executes the target program from the boot address after resetting the CPU.

I Format

>gr [<address1> [<address2>]] O (direct input mode)

<address1-2>: Temporary break addresses; hexadecimal or symbol (IEEE-695 format only)
Condition: O< address1(2X last program memory address

I Operation

This command resets the CPU before executing the program. This causes the PC to be set at address
0x0110, from which the command starts executing the program.

Once the program starts executing, the command operates in the same way as the g command, except
that the gr command does not support the function for restarting execution by hitting the [Enter] key.
Refer to the explanation of the g command for more information.

I Notes

e If a break condition is met, program execution is suspended and the PC will be set to the program
address at the breakpoint.

¢ The address you specified must be within the range of the program memory area available with each
microcomputer model.
An error results if the input one is not a hexadecimal number or a valid symbol.
Error : invalid value (no such symbol / symbol type error)
An error results if the limit is exceeded.
Error : Address out of range, use 0-OxXXXX

B Gut utility

[Run | Go from Reset] menu item, [Go from Reset] button
When this menu item or button is selected, the gr command is executed.

i*3 [Go from Reset] button

178 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 8: DEBUGGER

S (step)

I Function

This command single-steps the target program from the current PC position by executing one instruc-

tion at a time.

I Format

>s [<step>] O (direct input mode)

<step>: Number of steps to be executed; decimal (default is 1)
Condition: 0< step< 65,535

I Operation

(1) Step execution
If the <step> is omitted, only the program step at the address indicated by the PC is executed, other-
wise the specified number of program steps is executed from the address indicated by the PC.

>s[] ...Executes one step at the current PC address.
>s20 O ...Executes 20 steps from the current PC address.

The program execution is suspended by the following cause even before the specified number of steps
is completed.

e The [Key Break] button is clicked or the [Esc] key is pressed

* A map break, etc. occurs

After each step is completed, the register contents in the [Register] window are updated. If the
[Register] window is closed, the register contents are displayed in the [Command] window same as
executing the rd command.

When program execution is completed by stepping through instructions, the system stands by
waiting for command input. If you hit the [Enter] key here, the system single-steps the program in the
same way again.

(2) HALT and SLEEP states and interrupts
When the halt or slp instruction is executed, the CPU is placed in standby mode. An interrupt is
required to clear this mode. The debugger has a mode to enable or disable an external interrupt for
use in a single-step operation.

Enable mode Disable mode

External interrupt Interrupt is processed. Interrupt is not processed.

halt and slp instructions | Executed as the halt instruction. | The halt and slp instructions are
Processing is continued by an replaced with a nop instruction as

external interrupt or clicking on the instruction is executed.
the [Key Break] button.

In the initial settings, the debugger is set to the interrupt disable mode.
The interrupt enable mode can also be set by using the md command.

(3) Execution cycle counter
The execution cycle counter displayed in the [Register] window indicates the number of cycles
executed or the execution time of the target program.
In the initial debugger settings, the execution cycle counter is set to hold mode so that execution time
is added up until the CPU is reset. If this mode is changed to reset mode by the md command, the
execution cycle counter is cleared to 0 each time the s command is executed. The counter is also reset
simultaneously when execution is restarted by hitting the [Enter] key.

EO0C63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 179

CHAPTER 8: DEBUGGER

(4) During log mode
If the program is single-stepped after turning on the log mode, the same contents as when executing
the rd command are displayed in the [Command] window after each step is completed.

I Notes

¢ The step count must be specified within the range of 0 to 65,535. An error results if the limit is ex-

ceeded.
Error : Number of steps out of range, use 0-65535

e If the [Data] window is opened, its display contents are updated after the execution.

¢ During a single-step operation, the program will not break even if the break condition set by a
command is met.

¢ Unlike in successive executions (g or gr command), the [Register] window is updated every time a
step is executed.

IGUI utility

[Run | Step] menu item, [Step] button
When this menu item or button is selected, the s command without step count is executed.

—+, [Step] button

180 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 8: DEBUGGER

N (next)

I Function

This command single-steps the target program from the current PC position by executing one instruc-
tion at a time.

I Format

>n [<step>] O (direct input mode)

<step>: Number of steps to be executed; decimal (default is 1)
Condition: 0< step< 65,535

I Operation

This command basically operates in the same way as the s command.
However, the calr, calz and int instructions, including all subroutines until control returns to the next
address, are executed as one step.

Notes
e The step count must be specified within the range of 0 to 65,535. An error results if the limit is ex-

ceeded.
Error : Number of steps out of range, use 0-65535

e If the [Data] window is opened, its display contents are updated after the execution.

¢ During a single-step operation, the program will not break even if the break condition set by a
command is met.

¢ Unlike in successive executions (g or gr command), the [Register] window is updated every time a
step is executed.

I GUI utility

[Run | Next] menu item, [Next] button
When this menu item or button is selected, the n command without step count is executed.

4* [Next] button

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 181

CHAPTER 8: DEBUGGER

8.9.8 CPU Reset

rst (reset CPU)

I Function

This command resets the CPU.

I Format

>rstd (direct input mode)

I Notes

¢ The registers and flags are set as follows:

PC: 0110
A: A

B: A

X: AAAA
Y: AAAA
EICZ: 0000
SP1: AA
SP2: AA
EXT: AA

QUEUE: AAAA
¢ The execution cycle counter is cleared to 0.

e If the [Source] window is open, the window is redisplayed beginning with address 0x0110. If the
[Register] window is open, the window is redisplayed with the above contents.

¢ The debug status, such as memory contents, breaks, and trace, is not reset.

IGUI utility

[Run | Reset CPU] menu item, [Reset] button
When this menu item or button is selected, the rst command is executed.

=¥ [Reset] button

182 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 8: DEBUGGER

8.9.9 Break

bp (break point set)

I Function

This command sets or clears breakpoints using a program's execution address.

I Format

(1) >bp <breakl> [<break2> [... <break16>]] O (direct input mode)
(2) >bpO (guidance mode)
PC break set status
l.set 2.clear 3.clearall ..?<1|2|3> 0O
.......... (guidance depends on the above selection, see examples)
>
<breakl-16>: Break address; hexadecimal or symbol (IEEE-695 format only)
Condition: 0< addresx last program memory address
I Examples
Format (1)
>pbp 116 200 0O ... Sets break points at addresses 0x0116 and 0x0200.
* The direct input mode cannot clear the set break points.
Format (2)
>pbp O (Set)
No PC break is set.
1.set 2.clear 3.clearall...?1 ad ... "1. set" is selected.
Set break address ? : 116 ad ... Address 0x0116 is set as a breakpoint.
Set break address ? : 200 ad ... Address 0x0200 is set as a breakpoint.
Set break address ? : O ... Terminated by [Enter] key.
>pp O (Clear)
1: 0116
2: 0200
1.set 2.clear 3.clearall...?2 ad ... "2. clear" is selected.
Clear break address ? : 200 O ... Break address 0x0200 is cleared.
Clear break address ? : ad ... Terminated by [Enter] key.
>pbp O (Clear all)
1: 0116
1.set 2.clear 3.clearall...? 3 ad ... "3. clear all" is selected.
>pp O
No PC break is set.
1.set 2.clear 3.clearall...? g ... Terminated by [Enter] key.
>

I Notes

¢ The addresses must be specified within the range of the program memory area available for each
microcomputer model.
An error results if the input one is not a hexadecimal number or a valid symbol.
Error : invalid value (no such symbol / symbol type error)
An error results if the limit is exceeded.
Error : Address out of range, use 0-OxXXXX

¢ An error results if you attempt to clear an address that has not been set.
Error : Input address does not exist

e For direct input mode, an error results if you attempt to set breakpoints at more than 16 locations at a
time. But for guidance mode, there is no such limitation, so you can specify more than 16 breakpoints
before terminating the command by the [Enter] key.

* You can use this command for multiple times to set new breakpoints.

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 183

CHAPTER 8: DEBUGGER

B Gut utility

[Break | Breakpoint Set...] menu item
When this menu item is selected, a dialog box appears for setting breakpoints.

Breakpoint Set

Set Clear
o .
i *
. g
i *

ADDR1:
ADDR 2:
ADDR 3:
ADDR 4:

o]

il;

Cancel |

Erevious |
[z |

Clear Al Breakpaint |

[Break] button

To set a breakpoint, select a [Set] button and
enter an address in the text box corresponding
to the selected button.

When setting more than four breakpoints, click
the [Next] button to continue settings.

The [Previous] and [Next] buttons are used to
view previous and subsequent four
breakpoints.

To clear a breakpoint, select the [Clear] button
of the address to be cleared.

The [Clear All Breakpoint] button clears all the
set breakpoints

When this button is clicked after placing the cursor to a line in the [Source] window, the address at the
cursor position is set as a breakpoint. If the address has been set as a breakpoint, this button clears the

breakpoint.

4 [Break] button

The set breakpoints are marked with a @ at the beginning of the address lines in the [Source] window.

Search Label: I 'I ﬂl
|addx Code | Mnassenble | Sourc |
o> 57 8118 B94b 1db ba,ub 1db %ba,SP1_INIT_ADDR
58 8111 1fch 1db sp1,ba 1db %spl,%ba
59 9112 B91f ldb ba,1f 1db %ba,SP2_INIT_ADDR
68 8113 1fcé 1db sp2,ba 1db %sp2,%ba
61 6114 B8fe 1db ext,fe (+) 1db ext,fe
T 62 8115 B2ea calr ea calr INIT_RAM_BLK1
63 LOOP:
64 8116 B8fe 1ldb ext,fe (+) ldb ext,fe
:.> 65 8117 B2ef calr ef calr INC_RAM_BLKA1 J
66 8118 aefd jr fd jr LOoOP
A7 ~
1] | 2
184 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 8: DEBUGGER

bc/ pr (break point clear)

I Function

This command clears the specified breakpoints that have been set.

I Format

>bc [<breakl>[.. .<break16>]] O (direct input mode)

<breakl-16>: Break address; hexadecimal or symbol (IEEE-695 format only)

I Examples

>pp O
1: 0116 ... Breakpoints that have been set.
2: 0200
3: 0260
1.set 2.clear 3.clearall...? ad
>bc 200 O ... Clears breakpoints at address 0x0200.
>pp O
1: 0116
2: 0260
1.set 2.clear 3.clearall...? ad
>pc O ... Clears all breakpoints.
>bpO
No PC break is set.
1.set 2.clear 3.clearall...? ad
>

I Notes

¢ The bc and bpc commands have the same functions.
¢ If no address parameter is specified, all the breakpoints that have been set are cleared.

¢ The format of parameters is same as the bp command. You can also use the guidance input mode of bp
command to do the same operation.

¢ You can use this command for multiple times to clear breakpoints.

e An error results if an address that is not set at a breakpoint is specified.
Error : Input address does not exist

I GUI utility

[Break | Breakpoint Set ...] menu item

When this menu item is selected, a dialog box appears for clearing breakpoints. (See the bp com-
mand.)

[Break] button

When this button is clicked after placing the cursor to a break address line in the [Source] window, the
breakpoint is cleared. If the address has not been set as a breakpoint, this button sets a new breakpoint
at the address.

M [Break] button

EO0C63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 185

CHAPTER 8: DEBUGGER

bd (data break)

I Function

This command sets or clears data break. This command allows you to specify the following break
conditions:

1. Memory address range to be read or written (one area)

2. Data pattern to be read or written (bit mask possible)

3. Memory read/write (three conditions: read, write, or read or write)

The program breaks after completing a memory access that satisfies the above conditions.

I Format

(1) >bd <data> <option> <address1> <address2> [(direct input mode)

(2) >bdO (guidance mode)
Data break set status
1.set 2.clear L2 <1|2>0 (Command is completed when "2" is selected.)
data Old data : <data>0

R/W (R,W,0) Old option : <option> [
Start address Old address : <address1> [0
End address Old address : <address2> [J
>
<data>: Data pattern; binaril¢an be input for the bits to be masked)
<option>: Memory read/write option; r, w, ar
<address1-2>: The specified address; hexadecimal or symbol (IEEE-695 format only)
Condition: 0< addressk addressz 0xffff, O < data< 0b1111

I Examples

Format (1)
>pd 1000WOf O ... Sets a data break condition so that the program breaks when 0x8 is written
to the address range from 0x0 to Oxf.
* The direct input mode cannot clear the set condition.
Format (2)
>pbd O
data: - R/W:- area: -
1l.set 2.clear..?1 d ... "1, set" is selected.
data i Rl ad ... Data pattern is set to Ob1***.
RW RW* - :w O ... RIW condition is set for write access.
Start address ---- : 0 O ... Break address range is set to 0x0—0xf.
End address ----:f
>bd O
data: 1*** R/W: W area: 0000 - 000F ... Currently set condition.
1.set 2.clear..?2 ad ... "2. clear" is selected.
>bd O
data: - R/W:- area: -
1.set 2.clear...? O ...Terminated by [Enter] key.
>

"0 in the binary data pattern specifies that the bit will not be compared with the actual read / write
data.

186 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 8: DEBUGGER

I Notes

For the first time this command is executed, no item can be skipped because no default value is set.

In guidance mode, the following keyboard inputs have special meaning:

"qO" ... Command is terminated. (finish inputting and start execution)
"AO" ... Return to previous item.
"o ... Input is skipped. (keep current value)

When the command is terminated in the middle of guidance by "q0", the contents that have been
input up to that time will be modified. However, these contents will not be modified if some cleared
settings are left intact.

e The addresses must be specified within the range of the data memory area available for each micro-

computer model.

An error results if the input one is not a hexadecimal number or a valid symbol.
Error : invalid value (no such symbol / symbol type error)

An error results if the limit is exceeded.
Error : Address out of range, use 0-OXFFFF

An error results if the start address in the address range is larger than the end address.
Error : end address < start address

Address and R/W specifications are effective even for 16-bit access (push/pop to and from SP1 stack).
However, the data specification will not have any effect because data is compared with a 4-bit bus. In
this case, specify data with "[TT1). When setting a break for 4-bit access, be careful not to specify an
address that overlaps the 16-bit access area, because such specification can cause the system to operate
erratically.

The data value can be input as a binary number with or without mask bits in the range of 4 bits (0 to
0xf). An error results if the limit is exceeded.
Error : invalid data pattern

An error results if you input the R/W option other than "t", "w" or "0'.
Error : Incorrect r/w option, use r/w/*

The program stops one to two instructions after the break condition has been met.

B Gut utility

[Break | Data Break ...] menu item
When this menu item is selected, a dialog box appears for setting a data break condition.

Data Break To set a data break condition, enter an
address and a data pattern in the text

Hes or Bin: Break Optior: box, and select R/W condition from
Data: [171°8 Bd:tsakBBitit-: - © Read Address the radio buttons. Then click [OK].
Address: ' € Wiite Addiese To clear the set data break condition,
click [Clear].
[0+0000 — o000 £

(1]4 I Cancel Clear

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 187

CHAPTER 8: DEBUGGER

bdc (data break clear)

I Function

This command clears the data break condition that has been set.

I Format

>bdc O (direct input mode)

B Gut utility

[Break | Data Break ...] menu item
When this menu item is selected, a dialog box appears for clearing the set data break condition. (See

the bd command.)

188 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 8: DEBUGGER

br (register break)

I Function

This command sets or clears register break. This command allows you to specify data or a mask that
constitutes a break condition for each register (A, B, F, X, and Y). The program will break when all
setting conditions are met.

I Format

(1) >br <register> <value> [<register> <value> [...<register> <value>]] O (direct input mode)
(2) >brd (guidance mode)
Register break set status
1. set 2. clear ..?2<1]2>0 (Command is completed when "2" is selected.)

A Old value : <value>[

B Old value : <value>[

FE Old value : <value> [

FI Old value : <value>[

FC Old value : <value>[

FZ Old value : <value>[

X Old value : <value>[0

Y Oldvalue: <value>[

>
<register>: Register name; A, B, F, X or Y
<value>: Data pattern for the register; hexadecimal or binary (F register) (* can be used for the bits to be

masked)
I Examples
Format (1)
>pr f **1* ad ... Sets a register break condition so that the program breaks when the C flag is set.
Format (2)
>br O
A:- B:- X:- Y:- EICZ -
1.set 2.clear..?1 ad ... "1. set" is selected.
A -:a O ... Data Oxa is set for A register condition.
B - F O .. ™" 'masks the register condition.
FE - O
FI - O
FC -1 O
Fz - O
X -:20 0
Y -iN O .. "I" returns guidance to previous setting.
X 20:60 O
Y - O
>br O
Axa B:* X:60 Y:* EICZ:**1*
1.set 2.clear..?2 ad ... "2. clear" is selected.
>br O
A:- B:- Xt- Y:- EICZ -
1.set 2.clear..? O ...Terminated by [Enter] key.
>

EO0C63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 189

CHAPTER 8: DEBUGGER

I Notes

e For the first time this command is executed, no item can be skipped because no default value is set.

e In guidance mode, the following keyboard inputs have special meaning:

"q" ... Command is terminated. (finish inputting and start execution)
A" ... Return to previous address.
"o ... Input is skipped. (keep current value)

When the command is terminated in the middle of guidance by "q0", the contents that have been
input up to that time will be modified. However, these contents will not be modified if some cleared
settings are left intact.

¢ An error results if you input the register name other than A, B, X, Y or F when using the direct input
mode.
Error : Incorrect register name, use A/B/X/Y/F
* You can use the direct input mode to set register break condition at a time, or change one or several
items for register break setting.

¢ The register value can be input as a binary number with or without mask bits or a hexadecimal
number in the range of the bit width of each register. An error results if the limit is exceeded.
Error : invalid data pattern

¢ The program stops one to two instructions after the break condition has been met.

B Gut utility

[Break | Register Break ...] menu item
When this menu item is selected, a dialog box appears for setting register break conditions.

Register Break [%] To set a register condition, select the radio

button for the register and enter a value in
the [Enter Value:] box, then click [Modify].

Register
i__ 4 . P All the register condition must be set. Enter
an "0 to exclude the register from the break
£R e LA condition.
0oa1e When the [Apply] button is clicked, the
dialog box closes and the register break is

set with the specified conditions. However,
ErterValue: if there is a register of which the condition
Ii has not been set (indicated with "---"), no
0oo1e = I 4

b odif Appl C | Cl . R .

- | i i | = | register break condition is set.

To clear the register break conditions, click
[Clear].

Maote: Set Hexadecimal walue for the register: "= means ighare

190 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 8: DEBUGGER

brc (register break clear)

I Function

This command clears the register break conditions that have been set.

I Format

>brc 0 (direct input mode)

B Gut utility

[Break | Register Break ...] menu item
When this menu item is selected, a dialog box appears for clearing the register break conditions. (See

the br command.)

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 191

CHAPTER 8: DEBUGGER

bs (sequential break)

I Function

This command sets and clears sequential break and displays the sequential break condition that have
been set.

This command allows you to set break addresses in up to three locations and the number of times you
want the program to be executed at the last of the three addresses. While passing through all ad-
dresses sequentially in the order they are set, the program executes the last-specified address a
specified number of times, then breaks after fetching the instruction from that address again.

I Format

(1) >bs <pass> <address1> [<address2> [<address3>]] O (direct input mode)

(2) >bsO (guidance mode)
Sequential break set status
1.set 2.clear L2 <l|2>0 (Command is completed when "2" is selected.)

Number of sequential address (1-3) ?:<1]2|3> 0O

Set address ? Old address : <address1> [

Set address ? Old address : <address2> [0

Set address ? Old address : <address3> [

Pass count? Old count : <pass>[0

>
<pass>: Pass count; decimal
<address1-3>: Program execution address; hexadecimal or symbol (IEEE-695 format only)
Condition: O< address1-8 last program memory addresss Pass< 4095

I Examples

Format (1)
>ps 3116120 O
... Sets two sequential addresses and the pass count. In this case, a break will occur when the
CPU fetches the instruction at address 0x0120 after the instruction at address 0x0116 is executed
and the instruction at address 0x0120 is executed three times.

Format (2)

>ps O

1.- 2:- 3:- pass:-

1l.set 2.clear..?1 ad ... "1. set" is selected.
Number of seqgential address (1-3) ? : 2 O ... Number of addresses is input.
Set address ?: 116 d ... 1st address is input.

Set address ? : 120 ad ... 2nd address is input.
Pass count ?:3 O ... Pass count is input.

>bs O

1: 0116 2: 0120 3:- pass:3

1.set 2.clear..?2 d ... "2. clear" is selected.

>ps O

1:- 2:- 3:- pass:-

1.set 2.clear..? O ...Terminated by [Enter] key.
>

O If you press [Enter] in the middle of a guidance, the command is canceled.

192 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

I Notes

CHAPTER 8: DEBUGGER

¢ The maximum number of times a program can be executed is 4,095. Specifying a pass count exceeding

this limit will result in an error.

Error : Number of passes out of range, use 0-4095

¢ The addresses must be specified within the range of the program memory area available for each

microcomputer model.

An error results if the input one is not a hexadecimal number or a valid symbol.
Error : invalid value (no such symbol / symbol type error)

An error results if the limit is exceeded.

Error : Address out of range, use 0-OxXXXX

I GUI utility

[Break | Sequential Break ...] menu item

When this menu item is selected, a dialog box appears for setting sequential break conditions.

Sequential Break. .. E

Address 1 : IDHHE—
Address 2 : Ii
Address 3 : I—
Pazs Count : |2—

Set Clear I Cancel I

To set a sequential break, enter sequential addresses and a
pass count in the text boxes, then click [OK]. At least one
address (Address 1) and the pass count must be set.

To clear the sequential break condition, click [Clear].

EO0C63 FAMILY ASSEMBLER PACKAGE MANUAL

EPSON

193

CHAPTER 8: DEBUGGER

bsc (sequential break clear)

I Function

This command clears the sequential break condition that has been set.

I Format

>hbsc (direct input mode)

B Gut utility

[Break | Sequential Break ...] menu item
When this menu item is selected, a dialog box appears for clearing sequential break conditions. (See
the bs command.)

194 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 8: DEBUGGER

bsp (break stack pointer)

I Function

This command allows you to specify a stack area to generate a break for illegal stack access.
A break occurs when stack operation is performed in locations other than the area specified by this

command.
I Format
(1) >bsp <address1> <address2> <address3> <address4> [(direct input mode)
(2) >bsp O (guidance mode)

Stack area set status

SP1 start address ? : <address1>
SP1 end address ?: <address2>
SP2 start address ? : <address3>
SP2 end address ?: <address4>
>

I o o

<address1>: SP1 start address; hexadecimal or symbol (IEEE-695 format only)
<address2>: SP1 end address; hexadecimal or symbol (IEEE-695 format only)
<address3>: SP2 start address; hexadecimal or symbol (IEEE-695 format only)
<address4>: SP2 end address; hexadecimal or symbol (IEEE-695 format only)
Condition: 0< address1(2¥ 0x03ff, 0< address3(4¥ Ox00ff

I Examples

Format (1)

>psp 0 3ff O ff ad ... Sets SP1 area to 0x0—0x3FF and SP2 area to 0xO—0xFF.
Format (2)

>hsp O

SP1:0000 - 03FF SP2: 0000 - O0FF

SP1 start address ? : 0 O ... Address is input.

SPlend address ?: 1ff ad

SP2 start address ? : 0 O

SP2 end address ?: ff O

>hsp O

SP1:0000 - 01FF SP2: 0000 - O0FF

SP1 start address ? : O ... Terminated by [Enter] key.
>

O If you press only [Enter] in the middle of a guidance, the command is canceled.

I Notes

¢ The stack area that is set by this command will not affect the stack operation performed in the pro-
gram.

¢ Specify the SP1 address in the range of 0 to 0x3ff and the SP2 address in the range of 0 to Ox{f. Entering an
address exceeding this limit will result in an error.

Error : SP1 address out of range, use 0-Ox3FF
Error : SP2 address out of range, use 0-OxFF

e Specify the SP1 address in units of 4 words (start address = multiple of 4; end address = multiple of 4
+ 3).

¢ Due to the EOC63000 CPU's prefetch function, SP1 can access the top end of the actually used stack + 4
words. Depending on your system configuration, add 4 to the end address when you set it.

¢ The program stops one to two instructions after the break condition has been met.

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 195

CHAPTER 8: DEBUGGER

B Gut utility

[Break | Stack Break ...] menu item
When this menu item is selected, a dialog box appears for setting stack areas.

Stack Break. . [X] To set stack areas, enter start and end addresses in the text
boxes, then click [OK].
5P |nnnn - IDBFF
spz: [0000 - [ooFF

Cancel |

196 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

bl (break point list)

CHAPTER 8: DEBUGGER

I Function

This command lists the current setting of all break conditions.

I Format

>bl0 (direct input mode)

I Example

>bl O
PC break:
1: 0116
2: 0200
Sequential break:
1: 0116 2: 0120 3:- pass:3
Data break:
data: 1*** R/W: W area: 0000 - 000F
Register break:
A* B:* X:* Y* EICZ:**1*
Stack break:
SP1:0000 - 03FF SP2:0000 - 00FF
>

B Gut utility

[Break | Break List] menu item

When this menu item is selected, the bl command is executed.

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON

197

CHAPTER 8: DEBUGGER

bac (break all clear)

I Function

This command clears all break conditions set by the bp, bd, br and /or bs commands.

I Format

>bacl (direct input mode)

B Gut utility

[Break | Break All Clear] menu item
When this menu item is selected, the bac command is executed.

198 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 8: DEBUGGER

8.9.10 Program Display

U (unassemble)

I Function

This command displays a program in the [Source] window after unassembling it. The display con-
tents are as follows:

® Program memory address
® Object code
¢ Unassembled contents of the program

I Format
>u [<address>] O (direct input mode)

<address>: Start address for display; hexadecimal or symbol (IEEE-695 format only)
Condition: 0< addresx last program memory address

I Display

(1) When [Source] window is opened

i Unasm [_ (O] x|
Search Label I ‘I %l

| addr | Code | UTnassenble [[[=]
o> 68118 B894B 1db %ba,Bxhb =

8111 1FCh 1db %sp1,%ba
112 891F 1db %ba,8x1f
8113 A1FCé 1db %sp2,%ba
8114 B8FE 1db %ext,0xfe
T 8115 B2EnA calr Bxea
8116 BBFE 1db Zext,Bxfe
® 0117 B2EF calr Bxef
8118 @arD jr Bxfd
8119 AFFF *nop
811a AFFF *nNop

| |

If <address> is not specified, display in the [Source] window is changed to the unassemble display
mode. If <address> is specified, display in the [Source] window is changed to the unassemble display
mode. At the same time, code is displayed beginning with <address>.

(2) When [Source] window is closed

The 16 lines of unassembled result are displayed in the [Command] window. The system then waits
for a command input.

If <address> is not specified, this display begins with the current PC (displayed in the [Register]
window). If <address> is specified, the display begins with <address>.

>ull

ADDR CODE UNASSEMBLE

0110 094B |db %ba,0x4b

0111 1FC4 Idb %spl,%ba

0112 091F Idb %ba,0x1f

0113 1FC6 Idb %sp2,%ba

011E 1FFF *nop
011F 1FFF *nop
>

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 199

CHAPTER 8: DEBUGGER

®3)

(4)

During log output

If the command execution result is being output to a log file as specified by the log command, code is
displayed in the [Command] window and its contents are also output to the log file.

If the [Source] window is closed, the result is displayed in the same way as in (2) above.

If the [Source] window is opened, the window is redisplayed. In this case, the same number of lines is
displayed in the [Command] window as displayed in the [Source] window.

Successive display

If you execute the # command after entering it from the keyboard, code can be displayed successively
by entering the [Enter] key only until some other command is executed.

When you press the [Enter] key, the [Source] window is scrolled forward one screen.

When displaying code in the [Command] window, 16 lines of code following the previously displayed
address are displayed (the same number of lines as displayed in the [Source] window if the # com-
mand is executed during log output).

I Note

The display start address you specified must be within the range of the program memory area
available with each microcomputer model.
An error results if the input one is not a hexadecimal number or not a valid symbol.
Error : invalid value (no such symbol / symbol type error)
An error results if the limit is exceeded.
Error : Address out of range, use 0-OxXXXX

IGUI utility

[View | Program | Unassemble] menu item, [Unassemble] button
When this menu item or button is selected, the [Source] window opens or activates and displays the
program from the current PC address.

[E] [Unassemble] button

200

EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 8: DEBUGGER

SC (source code)

I Function

This command displays the contents of the program source file in the [Source] window. The display
contents are as follows:

¢ Line number in the source file

® Source code

I Format

>sc [<address>] O (direct input mode)
<address>: Start address for display; hexadecimal or symbol (IEEE-695 format only)
Condition: 0< addresx last program memory address

I Display

(1) When [Source] window is opened

il Source Display M=
Search Label: I 'I Eﬂl
[Source [=]
=3 28 1db %ba,SP1_INHIT_ADDR
29 1dh %spl,%ba ; set SP1
ae 1db %ba,SP2_INIT_ADDR
a1 1db %sp2,%ba ; set SP2?
T 32 calr INIT_RAHM_BLK1 ; initialize RAM block 1
33 LOOP:
] a4 calr IHC_RAM_BLKA ; increment RAM block 1
35 jr LooP : infinity loop J
36
37 ;exxxx RAM block xxxx
ag |
a9 -nrn_ AxA LI

If <address> is not specified, display in the [Source] window is changed to the source display mode.
If <address> is specified, display in the [Source] window is changed to the source display mode. At
the same time, code is displayed beginning with <address>.

(2) When [Source] window is closed
The 16 lines of source code are displayed in the [Command] window. The system then waits for a
command input.
If <address> is not specified, this display begins with the current PC (displayed in the [Register]
window). If <address> is specified, the display begins with <address>.

>sc [
Idb %ba,SP1_INIT_ADDR
ldb %spl,%ba ; set SP1
Idb %ba,SP2_INIT_ADDR
ldb %sp2,%ba ; set SP2
calr INIT_RAM_BLK1 ; initialize RAM block 1
LOOP:
ldb %ext,INC_RAM_BLK1@rh
calr INC_RAM_BLK1@rl ; increment RAM block 1
ldb %ext,LOOP@rh
jr LOOP@rl ; infinity loop
>

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 201

CHAPTER 8: DEBUGGER

®3)

(4)

During log output

If the command execution result is output to a log file as specified by the log command, code is
displayed in the [Command] window and its contents are also output to the log file.

If the [Source] window is closed, code is displayed in the same way as in (2) above.

If the [Source] window is open, the window is redisplayed. In this case, the same number of lines is
displayed in the [Command] window as displayed in the [Source] window.

Successive display

If you execute the sc command after entering it from the keyboard, code can be displayed successively
by entering the [Enter] key only until some other command is executed.

When you press the [Enter] key, the [Source] window is scrolled forward one screen.

When displaying code in the [Command] window, 16 lines of code following the previously displayed
address are displayed (the same number of lines as displayed in the [Source] window if the sc com-
mand is executed during log output).

I Notes

Source codes can be displayed only when an absolute object file that contains source debug informa-
tion has been loaded.

The display start address you specified must be within the range of the program memory area
available with each microcomputer model.
An error results if the input one is not a hexadecimal number or not a valid symbol.
Error : invalid value (no such symbol / symbol type error)
An error results if the limit is exceeded.
Error : Address out of range, use 0-OxXXXX

IGUI utility

[View | Program | Source Display] menu item, [Source] button
When this menu item or button is selected, the [Source] window opens or activates and displays the
program from the current PC address.

[Source] button

202

EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 8: DEBUGGER

m (mix)

I Function

This command displays the unassembled result of the program and the contents of the program

source file in the [Source] window. The display contents are as follows:
¢ Line number

® Program memory address

® Object code

¢ Unassembled contents of the program

® Source code

I Format

>m [<address>] O (direct input mode)

<address>: Start address for display; hexadecimal or symbol (IEEE-695 format only)

Condition: 0< addresx last program memory address

I Display

(1) When [Source] window is opened

- Min HE
Search Label: I 'I EI
[Addy Code | Unassenble | Sourc 4|

o 57 8118 894b 1db ba,4b 1db %ba,SP1_INIT_ADDR

58 @111 1fcd 1db sp1,ba 1db %sp1.%ba

5o @112 891f 1db ba,1f 1db %ba,SP2_INIT_ADDR

68 8113 1fch 1db sp2,ba 1db %sp2,%ba

61 8114 B08fe 1db ext,fe (+) 1db ext,fe

T 62 811% B2ea calr ea calr IHIT_RAM_BLEKA1

63 LOOP:

64 @116 B8 fe 1db ext,fe (+) 1db ext,fe
L 65 8117 82ef calr ef calr INC_RAKM_BLK1 J

66 #8118 aafd jr fd jr LOOP

A7 ~
1] | Moz

If <address> is not specified, display in the [Source] window is changed to the mix (unassemble &

source) display mode. If <address> is specified, display in the [Source] window is changed to the mix

(unassemble & source) display mode. At the same time, code is displayed beginning with <address>.

(2) When [Source] window is closed

The 16 lines of mix display are produced in the [Command] window. The system then waits for a

command input.

If <address> is not specified, this display begins with the current PC (displayed in the [Register]

window). If <address> is specified, the display begins with <address>.
>

0110 094b Idb ba,4b Idb %ba,SP1_INIT_ADDR
0111 1fc4 Idb spl,ba ldb %spl,%ba
0112 091f Idb ba,if ldb %ba,SP2_INIT_ADDR
0113 1fc6 Idb sp2,ba ldb %sp2,%ba
0114 08fe Idb extfe (+) Idb ext,fe
0115 0O2ea calrea calr INIT_RAM_BLK1
LOOP:

0116 08fe Idb extfe (*) ldb %ext,INC_RAM_BLK1@rh
0117 02ef calr ef calr INC_RAM_BLK1@rl

) Idb %ext,LOOP@rh

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON

203

CHAPTER 8: DEBUGGER

®3)

(4)

During log output

If the command execution result is output to a log file as specified by the log command, code is
displayed in the [Command] window and its contents are output to the log file also.

If the [Source] window is closed, code is displayed in the same way as in (2) above.

If the [Source] window is open, the window is redisplayed. In this case, the same number of lines is
displayed in the [Command] window as displayed in the [Source] window.

Successive display

If you execute the m command after entering it from the keyboard, code can be displayed successively
by entering the [Enter] key only until some other command is executed.

When you press the [Enter] key, the [Source] window is scrolled forward one screen.

When displaying code in the [Command] window, 16 lines of code following the previously displayed
address are displayed (the same number of lines as displayed in the [Source] window if the m com-
mand is executed during log output).

I Notes

Source codes can be displayed only when an absolute object file that contains source debug informa-
tion has been loaded.

The display start address you specified must be within the range of the program memory area
available with each microcomputer model.
An error results if the input one is not a hexadecimal number or not a valid symbol.
Error : invalid value (no such symbol / symbol type error)
An error results if the limit is exceeded.
Error : Address out of range, use 0-OxXXXX

IGUI utility

[View | Program | Mix Mode] menu item, [Mix] button
When this menu item or button is selected, the [Source] window opens or activates and displays the
program from the current PC address.

[Mix] button

204

EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

8.9.11 Symbol Information

SY (symbol list)

CHAPTER 8: DEBUGGER

I Function

This command displays a list of symbols in the [Command] window.

I Format

(1) >sy [/a] O (direct input mode)
(2) >sy $<keyword> [/a]O (direct input mode)
(3) >sy #<keyword> [/a]O (direct input mode)

<keyword>: Search character string; ASCII character
Condition: 0< length of keyword< 32

I Examples

Format (1)

>sy [

INC_RAM_BLK1
INIT_RAM_BLK1

RAM_BLKO

RAM_BLK1
BOOT@C:\EOC63\TEST\MAIN.S
LOOP@C:\EOC63\TEST\MAIN.S
NMI@C:\EOC63\TEST\MAIN.S

>

0110
0116

0100

In format (1), all the defined symbols are displayed in alphabetical order. Global symbols are dis-
played first, then local symbols. Shown to right to each symbol is the address that is defined in it.

Format (2)

>sy $R O
INC_RAM_BLK1
INIT_RAM_BLK1
RAM_BLKO
RAM_BLK1

>

In format (2), the debugger displays global symbols that contain the character string specified by

<keyword>.

Format (3)

>sy #B O
BOOT@C:\EOC63\TEST\MAIN.S
>

0110

In format (3), the debugger displays local symbols that contain the character string specified by

<keyword>.

When local symbols are displayed, @ and the source file name in which the symbol is defined are

added.

I Notes

e The symbol list will be sorted by letter order if no option is added. If the option is added, the

symbol list will be sorted by address.

¢ The symbol list can only be displayed when the object file in IEEE-695 format has been read.

¢ The specification of keyword conforms to which defined for assembler tools.

B Gt utility

None

EO0C63 FAMILY ASSEMBLER PACKAGE MANUAL

EPSON

205

CHAPTER 8: DEBUGGER

8.9.12 Load File

If

(load file)

I Function

This command loads an object file in IEEE-695 format into the debugger.

I Format

(1) >If <file name> O (direct input mode)
(2) >IfO (guidance mode)
File Name ? <file name> O
>

<file name>: File name to be loaded (path can also be specified)

I Examples

Format (1)

>|f test.abs O
Loading file ... OK!
>

Format (2)

>if 0O

File name ? test.abs
Loading file ... OK!

>

I Notes

An error results if the loaded file is linked with a different ICE parameter file than the one the

debugger is using.
Error : Different chip type, cannot load this file

Only an IEEE-695 format object file (generated by the linker) can be loaded by the If command.

If you want to use source display and symbols when debugging a program, the object file must be in
IEEE-695 format that contains debug information loaded into the computer.

If the [Source] window is opened when loading a file, its contents are updated. The program contents
are displayed from the current PC address.

If an error occurs when loading a file, portions of the file that have already been read will remain in
the emulation memory.

B Gut utility

[File | Load File ...] menu item, [Load File] button
When this menu item or button is selected, a dialog box appears allowing selection of an object file to

be loaded. Load File
{= [Load File] button Lookjn: | &3 Test = gl e
Test.abz

Files of type: ISource Files [* absg) j Cancel |

206

EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 8: DEBUGGER

lo (load option)

I Function

This command loads a Motorola-S format program, data or option file listed below into the debugger.

File Name specification

Program file ~.hsa (5 high-order bits), ~.Isa (8 low-order bits)
Data file* ~.csa

Function option data file ~.fsa

Segment option data file* ~.ssa

Melody data file* ~.msa

ONot used in some microcomputer models

I Format

(1) >lo <file name> O (direct input mode)
(2) >loO (guidance mode)
File Name .7 <file name> O
>

<file name>: File name to be loaded (path can also be specified)

I Examples

Format (1)

>|o test.Isa O ...Loads the program files test.Isa and test.hsa.
Loading file ... OK!

>

Format (2)

>lo O

File name ? test.fsa O ...Loads a function option file.
Loading file ... OK!

>

I Notes

¢ The debugger determines the file type based on the specified file name. Therefore, the debugger
cannot load a file not following to the name specification listed above, and an error will result.
Error : invalid file name
e If an error occurs when loading a file, portions of the file that have already been read are left as they
were loaded.

I GUI utility

[File | Load Option ...] menu item, [Load Option] button
When this menu item or button is selected, a dialog box appears allowing selection of a hex file to be
loaded.

@ [Load Option] button Load Option
Look, in; IaTesl j g| E, =

C3a080al fza

File name: || Open I
Files of type: Ifo file [*.fza) j Cancel |

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 207

CHAPTER 8: DEBUGGER

8.9.13 Flash Memory Operation

Il (load from flash memory)

I Function

This command loads the memory contents from the flash memory of the ICE63 into the target
memory. It therefore allows you to debug the program beginning from the contents previously saved
to the flash memory up to latest one.

I Format

(1) >Ifl <content>[... <content>] 0O (direct input mode)
(2) >IflO (guidance mode)
Read program 1l.yes 2.no..?<1|2> 0O
data l.yes 2.no..?<1l|2>0
fog l.yes 2.no..?<1|2>0
sog l.yes 2.no..?<1|2>0
mla l.yes 2.no..?<1l|2>0
Loading ...
>

<content>: Data type; p (program) / d (data) / f (fog) / s (sog) / m (mla)

I Examples

Format (1)
Siffp O ...Loads program data.
Loading from flash memory ... done!

Format (2)
>lfl O
Read program l.yes 2.no...? 1
data 1l.yes 2.no..?1
fog 1l.yes 2.no..?1
sog lyes 2.no..71
mla l.yes 2.no..?1
Loading from flash memory ... done!
>

I Notes

e If the flash memory is protected against read / write, an error will result and memory contents will not

...Select the contents to be loaded.

ooogo

be loaded into the target memory.
Error : flash ROM is protected

e If the flash memory has been erased, an error will result and memory contents will not be loaded into

the target memory.
Error : format error

208 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 8: DEBUGGER

e If the flash memory and target memory are mapped differently (e.g., the parameter file used in the
current debug differs from one that was used when the program was saved to the flash memory), an
error will result and memory contents will not be loaded into the target memory.

Error : Map information is not the same

In this case, the system displays the map information of the target memory and the flash memory

after showing the message above.

ICE flash
Chip name 63A08
Parameter version 02 00
Size of program 2000 O
data RAM 800 8000
data ROM 1000 7000
ext. memory 100 700
LCD 2C0 800
10 20 20
FO 20 FO
SO1 0 1000
SO2 100 1000
MLA 510 1000

Redo the loading with the correct parameter file using the efl or sfl command.

e If an error occurs when loading data, portions of the data that have already been read into the target

memory are left as they were loaded.

I GUI utility

[File | Flash Memory Operation...] menu item

When this menu item is selected, a dialog box appears allowing selection of flash memory operations.

Flash Memory Operation...

(=TT L oad from flash memon

I= | Erotest flash memon

Contents:
™ program
rooe
[~ fog
I sog Cancel |
T mla

To execute the Ifl command, select "Load from
flash memory" from the [Operation] list box and
select contents using the check boxes, then clock
[OK].

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

EPSON

209

CHAPTER 8: DEBUGGER

sfl (save to flash memory)

I Function

This command writes the contents of the target memory in the ICE63 into the flash memory.
Writing to the flash memory allows the ICE63 to be operated in free-run mode. Furthermore, the next
debug session can be continued immediately from the current contents in the flash memory.

I Format

(1) >sfl <content>[... <content>] [-p] O (direct input mode)

(2) >sflO0 (guidance mode)
Protect flash memory 1.yes 2.no..?<1|2> 0O
Write program 1.yes 2.no..?<1|2> 0O

data l.yes 2.no..?<1|2>0
fog l.yes 2.no..?<1l|2>0
sog l.yes 2.no..?<1l|2>0
mla l.yes 2.no..?<1|2>0
Saving ...
>
<content>: Data type; p (program) / d (data) / f (fog) / s (sog) / m (mla)
-p: Protect option
I Examples
Format (1)
>sflpdfsm-p O ...Saves all contents and sets prorect.

Please wait few minutes
Save to flash memory ... done!

>
Format (2)
>sfl O

... Protect is set.
... Write contents are selected.

Protect flash memory 1.yes 2.no..?1
Write program l.yes 2.no...? 1
data lyes 2.no..?1
fog lyes 2.no..?1
sog lyes 2.no..71
mla lyes 2.no..?1
Please wait few minutes
Save to flash memory ... done!
>

ooooodg

O If you enter only the [Enter] key in the middle of guidance, the guidance is terminated and only the
area you have selected up to that time is written into the flash memory.

I Notes

¢ If the flash memory is write-protected, an error results and memory contents are not written to the
flash memory.
Error : flash ROM is protected
The write-protect can be removed by erasing the flash memory with the efl command.

210 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 8: DEBUGGER

o If the flash memory has been erased, an error results, in which case you can choose to continue or stop
processing.
Error : format error
Save with the map information,
or quit the command ? 1l.save 2.quit...? 1
Protect flash memory 1l.yes 2.no...?

¢ If the flash memory and target memory are mapped differently, an error results. In this case, the
system displays the map information of the memory and a message prompting you to choose to
continue or stop processing.
Error : Map infomation is not the same
ICE flash

Chip name 63A08

Parameter version 02 00

Size of program 2000 O
data RAM 800 8000
data ROM 1000 7000
ext. memory 100 700

LCD 2C0 800
10 20 20
FO 20 FO
SO1 0 1000
S0O2 100 1000
MLA 510 1000

Save with the map information,
or quit the command ? l.save 2.quit...? 1
Protect flash memory 1l.yes 2.no...?

¢ When shipped from the factory or erased by the efl command, all data in the flash memory is initial-
ized to Oxff. When part of the data, such as a program, is written to the flash memory by the sIf
command, all other data in it remains unchanged (= 0xff). In this condition, the ICE63 cannot be
operated in free-run mode. To operate the ICE63 in free-run mode, always make sure that after
erasing the flash memory, all the data has been written into the flash memory.
In the ICE63, furthermore, the default values for all option data are 0x00. Consequently, if you write to
the flash memory before loading option data (lo command), the data you have written to the flash
memory is overwritten by 0x00.

B Gt utility

[File | Flash Memory Operation...] menu item
When this menu item is selected, a dialog box appears allowing selection of flash memory operations.

Flash Memory Operation... [X] To execute the sfl command, select "Save to flash
memory" from the [Operation] list box and select
contents to be saved using the check boxes, then
clock [OK]. The -p option can be specified using
the [Protect flash memory] check box.

N[eENTT N {5 e o Flash memorny

™ Protect flash memary

Contents:
™ program
r o
[~ fog
I seg Cancel |
T mla

EO0C63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 211

CHAPTER 8: DEBUGGER

efl (erase flash memory)

I Function

This command erases the contents of the ICE63's flash memory (including map information) and
removes its protect function.

I Format

efld (direct input mode)

I Example

>efl O
Clear flash memory ... done!
>

Note
When erased by the efl command, all data in the flash memory is initialized at Oxff. Even when part of
the data, such as a program, is thereafter written to the flash memory by the sIf command, all other
data remains unchanged (= Oxff). In this condition, the ICE63 cannot be operated in free-run mode. In
order for the ICE63 to be operated in free-run mode, always make sure that after erasing the flash
memory, all the data has been written into the flash memory.
In the ICE63, furthermore, the default values for all option data are 0x00. Consequently, if you write to
the flash memory before loading option data (lo command), the data you have written to the flash
memory is overwritten by 0x00.

IGUI utility

[File | Flash Memory Operation...] menu item
When this menu item is selected, a dialog box appears allowing selection of flash memory operations.

Flash Memory Operation... [x] To execute the efl command, select "Erase flash
memory" from the [Operation] list box and then
Operation: zh mernory clock [OK]

™ | Frotest fast TENEN

Contents:
=1 pragmam
o
=1 fog
=1 sog Cancel |
=1 il

212 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 8: DEBUGGER

8.9.14 Trace

tm (trace mode)

I Function

This command sets and displays a trace mode. It allows you to set the following three trace modes
and a trace trigger point (when a specified address is executed, the TRGOUT pin outputs a pulse).

1. Normal trace mode
The data written to the trace memory is always the latest trace information.

2. Single-delay trigger trace mode
One of the following three trace sampling areas can be specified with respect to the trace trigger
point:
e Start: Trace information is a sample beginning from the trace trigger point.
¢ Middle: Trace information is a sample from before and after the trace trigger point.
e End: Trace information is a sample all the way up to the trace trigger point.

3. Address-area trace mode
The execution process is traced as instructions inside or outside a specified address range are
executed. This address range can be specified in up to four locations.

I Format

(1) >tm <mode> <trigger> [<option>] [<addrl> <addr2> [... <addr7> <addr8>] O (direct input mode)

(2) >tm0O (guidance mode)
Current type setting
1. normal 2.single delay 3. addressarea ...?<1[2|3> O

Trigger address ? : <trigger> 0O
...... (guidance depends on the above selection, see examples)

>
<mode>: Trace mode; -n (hormal), -s (single delay), or -a (address area)
<trigger>: Trace trigger address; hexadecimal or symbol (IEEE-695 format only)
<option>: For single-delay trace mode: s (start) / m (middle) / e (end)

For addres-area trace mode: i (in area) / o (out area)
<addrl-8>: Address ranges; hexadecimal or symbol (IEEE-695 format only)
Condition: O< trigger, addr1-& last program memory address

I Examples

Format (1)
>tm-n 116 0O ... Sets normal trace mode and sets trigger point to 0x0116.

Format (2)

>tm0

Normal mode
Trigger Address : 0

1.normal 2.single delay 3.address area ...? 1 O ... [1. normal] is selected.
Trigger address ? :116 O ... Trigger address is input.
>tm0

Normal mode
Trigger Address : 0116

1.normal 2.single delay 3.address area ...? 2 O ... [2. single delay] is selected.
Trigger address ? :116 O ... Trigger address is input.

l.start 2.middle 3.end ...? 2 O ... Trace sampling area is selected.
>

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 213

CHAPTER 8: DEBUGGER

>tm0
Single delay mode

Trigger Address : 0116

Position: Middle

1.normal 2.single delay 3.address area ...? 3

Trigger address ? :116 O
l.inarea 2.outarea...? 1 O
Start address ? 110 0

End address ? 200 O

Start address ?
>

O

O ... [2. address area] is selected.
... Trigger address is input.
... Infout is selected.
.. Address range is input
in up to 4 locations.
.. Terminated by [Enter] key.

If you enter the [Enter] key only, the command will be canceled.
However, if more than one pair of addresses is specified after selecting the address-area trace mode

(one pair of addresses is specified in the above example), the range of specified addresses will be set

as the trace area.

I Notes

¢ The trigger addresses set here are marked by the letter "T" at the beginning of the address lines

displayed in the [So

urce] window.

¢ The address you specified must be within the range of the program memory area available with each

microcomputer model.
An error results if the input one is not a hexadecimal number or not a valid symbol.

Error : invalid value

An error results if the limit is exceeded.

Error : Address out of range, use 0-OxXXXX

B Gut utility

[Trace | Trace Mode Set ...] menu item
When this menu item is selected, a dialog box appears allowing selection of a trace mode.

(no such symbol / symbol type error)

Trace Mode Set Select a trace mode using the radio
button.
Trace Trigger: |D115 Enter addresses and /or select an option
and then clock [OK].
=
Single Delay S
Pasition: j P | |
L= TR ':I.:
— Address Area Sl P s e
Start Address 1: End Address 1: Smgle'delay trace mode
Start Address 2 End Address 2:
Start Address 3 I End Address 3: I = =
Start Address 4:| End Address 4: I Wi By 1 77 v iabiers 1 [177
Rk] el T |
Option: I j b e] ol Bk i |
HIT T e HETETeeg |
ey | ¥
| -

Normal trace mode

Address-area trace mode

214

EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

td (trace data display)

CHAPTER 8: DEBUGGER

I Function

This command displays the trace information that has been sampled into the ICE63's trace memory.

I Format

(1) >td [<cycle>] O

(2) >td0

>

(direct input mode)

(guidance mode)
Start point ?: (ENTER from the latest) <num>
(Trace data is displayed)

ad

<cycle>: Start cycle number of trace data; decimal (from O to 8,191)

I Display

The following lists the contents of trace information:

trace cycle: Trace cycle (decimal). The last information taken into the trace memory becomes
00001.

fetch addr: Fetch address (hexadecimal).

fetch code disasm:Fetch code (hexadecimal) and disassembled content.

register: Values of A, B, X, and Y registers after cycle execution (hexadecimal).

flag: States of E, I, C, and Z flags after cycle execution (binary).

data: Accessed data memory address (hexadecimal), read / write (denoted by r or w at
the beginning of data), and data (1-digit hexadecimal for 4-bit access; 4-digit
hexadecimal for 16-bit access).

SP: Stack access (1 for SP1 access; 2 for SP2 access).

trace in: Input to TRCIN pin (denoted by L when low-level signal is input).

(1) When [Trace] window is opened:

When the td command is input without <cycle>, the [Trace] window redisplays the latest data; when
the td command is input with <cycle>, the trace data starting from <cycle> is displayed in the [Trace]
window.

The display contents of the [Trace] window is updated after an execution of the target program.

All trace data can be displayed by scrolling the window.

il Trace H=] E3

trace fetch fetch register flag data trace =

cycle addr code disasm ABE X ¥ EICZ addr data SP in

gee811 880 1998 adc [%x]+,8x80 F 1 8005 AAAA 90808 80684 uC

@@t --- --— - F 1 00886 AAAA 00880 @85 r9

g0e89 8680B 1998 adc [%x]+,8x80 F 1 8006 AAAA 8008 @085 y9

peop - ----—- -——-———— F 1 00887 ARAA 0891 0086 re

a0887 @@8ec 1988 adc [%x],0x60 F 1 00887 ARAA 0891 0086 we

p@e®6 -——- ---—— -—————————— F 1 00887 ARAAA 0800 0887 r3

g@ees @ead 1FF8 ret F 1 0087 ARAA 0800 0887 w3

aeeay 8118 A6FD jr 8xfd F 1 00887 ARAA 0888 012C rAAAA 1

00003 9116 B8FE 1db %ext,8xfe F 1 00887 AAAA @880 ——- ——

gaee2 @117 B2EF calr B8xef F 1 00887 AAAA 1888 ——- ——

00001 00067 6800 1ldb %ext,0x00 F 1 0087 ARAA 0888 0128 wel1g 1

4| v
EO0C63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 215

CHAPTER 8: DEBUGGER

(2) When [Trace] window is closed:
When the td command is input without <cycle>, the debugger displays 11 lines of the latest trace data
in the [Command] window. When the #d command is input with <cycle>, the debugger displays 11
lines of the trace data from <cycle> in the [Command] window.

>td O

Start point ?:(ENTER from the latest) 0

trace fetch fetch register flag data trace

cycle addr code disasm AB X Y EICZaddrdata SP in

00011 0118 OOFD jr Oxfd F 10007 AAAA 0000 012C rAAAA 1
00010 0116 OSFE ldb %ext,0xfe F 1 0007 AAAA 0000 ---- --

00009 0117 O2EF calr Oxef F 1 0007 AAAA 1000 ---- --

00008 0007 0800 Idb %ext,0x00 F 1 0007 AAAA 0000 0128 w0118 1
00007 0008 0AO04 Idb %xI,0x04 F 1 0007 AAAA 1000 ---- --

00006 0009 1911 add [%x]+,0x01 F 1 0004 AAAA 0000 ---- --

00005 ---- ---- ---m-mme- F 1 0005 AAAA 0000 0004 rD

00004 000A 1990 adc [%x]+,0x00 F 1 0005 AAAA 0000 0004 wkE
00003 ---- ---- ---m-mee- F 1 0006 AAAA 0000 0005 r5

00002 000B 1990 adc [%x]+,0x00 F 1 0006 AAAA 0000 0005 w5
00001 ---- ---- -m-mmmmee- F 1 0007 AAAA 0000 0006 rE

>td 10 O

trace fetch fetch register flag data trace

cycle addr code disasm AB X Y EICZ addrdata SP in
00020 0009 1911 add [%x]+,0x01 F 1 0004 AAAA 0000 ---- --
00019 ---- ---- ---mmme- F 1 0005 AAAA 0000 0004 rC

00018 000A 1990 adc [%x]+,0x00 F 1 0005 AAAA 0000 0004 wD
00017 ---- ---- ---m-mmme- F 1 0006 AAAA 0000 0005 r5

00016 000B 1990 adc [%x]+,0x00 F 1 0006 AAAA 0000 0005 w5
00015 ---- ---- —mmmmmee- F 1 0007 AAAA 0000 0006 rE

00014 000C 1980 adc [%x],0x00 F 1 0007 AAAA 0000 0006 wE
00013 ---- ---- ---mmee- F 1 0007 AAAA 0000 0007 r4

00012 000D 1FF8 ret F 1 0007 AAAA 0000 0007 w4

00011 0118 OOFD jr Oxfd F 1 0007 AAAA 0000 012C rAAAA 1
00010 0116 O8FE Idb %ext,0xfe F 1 0007 AAAA 0000 ---- --
>

(3) During log output
When the command execution result is being output to a log file as specified by the log command, the
trace data is displayed in the [Command] window and its contents are also output to the log file.
If the [Trace] window is closed, data is displayed in the same way as in (2) above.
If the [Trace] window is open, its contents are redisplayed. In this case, the same number of lines are
displayed in the [Command] window as displayed in the [Trace] window.

(4) Successive display
When you execute the td command, the trace data can be displayed successively by entering the
[Enter] key only until some other command is executed.
When you input the [Enter] key, the [Trace] window is scrolled forward one screen.
When displaying data in the [Command] window, 11 lines of data preceding the previously displayed
cycle are displayed in the [Command] window (the same number of lines as displayed in the [Trace]
window if the command is executed during log output).
The direction of display is such that each time you input the [Enter] key, data on older execution
cycles is displayed (FORWARD). This direction can be reversed (BACKWARD) by entering the [B]
key. To return the display direction to FORWARD, input the [F] key. If the [Trace] window is open, the
direction in which the window is scrolled is also changed.

216 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 8: DEBUGGER

>td 100 O ... Started display in FORWARD.
(Data on cycle Nos. 110 to 100 is displayed.)

>p0 ... Changed to BACKWARD.
(Data on cycle Nos. 99 to 89 is displayed.)

>0 ... Continued display in BACKWARD.
(Data on cycle Nos. 88 to 78 is displayed.)

>f O ... Changed back to FORWARD.
(Data on cycle Nos. 99 to 89 is displayed.)

>

I Notes

¢ Specify the trace cycle No. within the range of 0 to 8,191. An error results if this limit is exceeded.
Error : Address out of range, use 0-8191

¢ The trace memory receives new data until a break occurs. When the trace memory is filled, old data is

overwritten by new data.

e For reasons of the ICE63's operation timing, the trace data at the boundary of operations, such as in
the fetch cycle at which trace starts or the execution cycle at which trace ends, will not always be
stored in memory.

I GUI utility

[View | Trace] menu item
When this menu item is selected, the [Trace] window opens and displays the latest trace data.

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON

217

CHAPTER 8: DEBUGGER

ts

(trace search)

I Function

This command searches trace information from the trace memory under a specified condition. The
search condition can be selected from three available conditions:

1. Search by executed address
In this mode, you can specify a program memory address. The debugger searches the cycle in
which the specified address is executed.

2. Search for a specified memory read cycle
In this mode, you can specify a data memory address. The debugger searches the cycle in which
data is read from the specified address.

3. Search for a specified memory write cycle
In this mode, you can specify a data memory address. The debugger searches the cycle in which
data is written to the specified address.

I Format

@
&)

>ts <option> <address> [(direct input mode)

>ts (guidance mode)

1. pc address 2. data read address 3. data write address ...?<1|2|3> O

Search address ?: <address> 0

(Search result is displayed)

>
<option>: Condition type (program address, data read address or data write address); pc/dr/dw
<address>: Search address; hexadecimal or symbol (IEEE-695 format only)

I Display

The search results are displayed in the [Trace] window if it is opened; otherwise, the results are
displayed in the [Command] window in the same way as for the td command.

Format (1)

>tspclle 0O

Trace searching ... Done!

trace fetch fetch register flag data trace

cycle addr code disasm AB X Y EICZaddrdata SP in

00010 0116 O8FE Ildb %ext,0xfe F 1 0007 AAAA 0000 ---- --

>

Format (2)

>ts 0

1.pc address 2.data read address 3.data write address ...? 1 O

Search address ?:116 0
Trace searching ... Done!

trace fetch fetch register flag data trace

cycle addr code disasm AB X Y EICZaddrdata SP in
00010 0116 O8FE Idb %ext,0xfe F 1 0007 AAAA 0000 ---- --

>

When command execution results are being output to a log file by the log command, the search
results are displayed in the [Command] window as well as output to the log file even when the
[Trace] window is opened.

218

EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 8: DEBUGGER

I Note

The address specified for search must be within the range of the program /data memory area available
for each microcomputer model.
An error results if the input one is not a hexadecimal number or not a valid symbol.
Error : invalid value (no such symbol / symbol type error)
An error results if the limit is exceeded for program memory address.
Error : Address out of range, use 0-OxXXXX
An error results if the limit is exceeded for data memory address.
Error : Address out of range, use 0-OXFFFF

B Gut utility

[Trace | Trace Search ...] menu item
When this menu item is selected, a dialog appears for setting a search condition.

Trace Search Select a option using the radio button and enter an address
in the text box, then click [OK].
Optior :
% PC Address
™ Data Flead Address
" Data'wiite &ddiess

Address: IDMD'I 1g]

Hexadecimal or Svmbol

Ok I Cancel |

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 219

CHAPTER 8: DEBUGGER

tf

(trace file)

I Function

This command saves the specified range of the trace information displayed in the [Trace] window by
the td or ts command to a file.

I Format

@
@

>tf [<cyclel> [<cycle2>]] <file name> O (direct input mode)
>tf [0 (guidance mode)
Start cycle number (max 8191) ?:<cyclel> 0O

End cycle number (min 0) ?:<cycle2> 0O

File Name ?: <file name> O

>

<cyclel>: Start cycle number; decimal (max 8,191)
<cycle2>: End cycle number; decimal (min 0)
<file name>: Output file name (path can also be specified)

I Examples

Format (1)
>tf trace.trc O ... Saves all trace information extracted byttheommand.
8191-8000
8000-7000

1000- 1
OK!
>

Format (2)

>tf O

Start cycle number (max 8191) ? :1000 O
End cycle number (min 0)?:1 ad
File name ? :test.trc

1000- 1

OK!

>

I Notes

If an existing file is specified, the file is overwritten with the new data.

The default value of <cyclel> is the last location, and the default value of <cycle2>is "1".

IGUI utility

[Trace | Trace File ...] menu item
When this menu item is selected, a dialog box appears allowing specification of the parameters.

Trace File Enter a start cycle number, end cycle number and a file

name, then click [OK].

Start Paint: (2131 [Decimal, max 8.191) To save all the trace information, leave the [Start cycle

End Faink: ID [Decimal, min 0] number] and [End cycle number] boxes blank.

_ The file name can be selected using a standard file selec-

File Mame: ItBSU'd Erowse...l . . o

tion dialog box that appears by clicking [Browse...].
Ok I Cancel |

220

EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 8: DEBUGGER

8.9.15 Coverage

CV (coverage)

I Function

This command displays coverage information (addresses where the program is executed).

The coverage information is displayed in the [Command] window.

I Format

>cv [<address1> [<address2>]] O (direct input mode)

<address1>: Start address; hexadecimal or symbol (IEEE-695 format only)
<address2>: End address; hexadecimal or symbol (IEEE-695 format only)
Condition: 0< addressk addressZ last program memory address

I Examples

>cv 100 1ff O ... Displays the executed addresses within the range from 0x100 to Ox1ff.
Coverage Infomation:
1: 0100..0102
2:0110..0118
>cv [... Displays all the executed addresses.
Coverage Infomation:
1: 0000..000d
2:0100..0102
3:0110..0118
>

I Notes

e If the cv command is input without <address1> and <address2>, coverage information in all address
is displayed; if both <address1> and <address2> are specified, coverage information within the
specified address range is displayed; if just <address1> is specified, the end address is treated as the
maximum program address and coverage information within that range is displayed.

¢ The addresses specified here must be within the range of the program memory area available with
each microcomputer model.
An error results if the input one is not a hexadecimal number or a valid symbol.
Error : invalid value (no such symbol / symbol type error)
An error results if the limit is exceeded.
Error : Address out of range, use 0-OxXXXX

e An error results if the start address is larger than the end address.
Error : end address < start address

I GUI utility

None

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 221

CHAPTER 8: DEBUGGER

CVC (coverage clear)

I Function

This command clears the coverage information.

I Format

>cve [(direct input mode)

IGUI utility

None

222 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 8: DEBUGGER

8.9.16 Command File

COM (execute command file)

I Function

This command reads a command file and executes the debug commands written in that file. You can
execute the commands successively, or set an interval between each command execution.

I Format

(1) >com <file name> [<interval>] O (direct input mode)

(2) >comDO (guidance mode)
File name ? <file name> O
Execute commands 1. successively 2. withwait...?<1|2> 0O
Interval (0 - 256 seconds) : <interval> O (appears only when "2. With wait" is selected)
>(Display execution progress)

<file name>: Command file name (path can also be specified)
<interval>: Interval (wait seconds) between each command; decimal (0—256)

I Examples

Format (1)
>com batchl.cmd 0O
> ... Commands in "batchl.com" are executed successively.

Format (2)

>com(]

File name ? test.cmd O

Execute commands 1. successively 2. with wait ...? 2 ad

Wait time (0 - 256 seconds) : 2 O

..... ... 2 sec. of interval is inserted after each command execution.

I Notes

¢ Any contents other than commands cannot be written in the command file.

¢ An error results if the file you specified does not exist.
Error : Cannot open file

¢ Another command file can be read from a command file. However, the nesting of command files is
limited to a maximum of 5 levels. An error results if a com (or cmw) command at the sixth level is
encountered, the commands in the file specified by that com (or cmw) command will not be executed,
but the subsequent execution of the commands in upper level files will be executed continuously.
Error : Maximum nesting level(5) is exceeded, cannot open file

¢ If you specify an interval more than 256 seconds, it is set to 256 by default.

¢ Use the hot key ([CTRL]+[Q]) to stop executing a command file.

I GUI utility

[Run | Command File ...] menu item
When this menu item is selected, a dialog box appears allowing selection of a command file.

Com %] Enter an interval and a file name, then click [OK].
The file name can be selected using a standard file
Executing Wait Time: ID— selection dialog box that appears by clicking
[Browse...].
Command File Path I— Browse...l

Cancel |

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 223

CHAPTER 8: DEBUGGER

CMW (execute command file with wait)

I Function

This command reads a command file and executes the debug commands written in that file at prede-
termined time intervals.

The execution interval of each command can be set in a range of 1 to 256 seconds (in 1-second incre-
ments) using the md command. In the initial debugger settings, the execution interval is 1 second.

I Format

(1) >cmw <file name> O (direct input mode)

(2) >cmw O (guidance mode)
File name ? <file name> 0O
>(Display execution progress)

<file name>: Command file name (path can also be specified)

I Examples

Format (1)
>cmw batchl.cmd 0O

Format (2)
>cmwi]
File name ? test.cmd O

I Notes

¢ Any contents other than commands cannot be written in the command file.

¢ An error results if the file you specified does not exist.
Error : Cannot open file

¢ Another command file can be read from a command file. However, the nesting of command files is
limited to a maximum of 5 levels. An error results if a cmw (or com) command at the sixth level is
encountered, the commands in the file specified by that ecmw (or com) command will not be executed,

but the subsequent execution of the commands in upper level files will be executed continuously.
Error : Maximum nesting level(5) is exceeded, cannot open file

¢ If the cmw command is written in the command file that you want to be read by the com command,
all other commands following that command in the file (even when a com command is included) will
be executed at predetermined time intervals.

¢ Use the hot key ([CTRL]+[Q]) to stop executing a command file.

IGUI utility

None
However, the same function as the emw can be executed using [Command File...] in the [Run] menu
(see the com command).

224 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 8: DEBUGGER

rec (record commands to a file)

I Function

This command records all debug commands following this command to a specified command file.

I Format

(1) >rec <file name> O (direct input mode)

(2) >recO (guidance mode) ...See Examples for guidance.

<file name>: Command file name (path can also be specified)

I Examples

(1) First rec execution after debugger starts up

>rec U

File name ? sample.cmd O

1. append 2. clear and open ...? 2 ad ...Displayed If the file is already exists.
>

(2) "rec" command input in the second and following sessions

>rec U
Set to record off mode. ...Record function toggles when rec is input.

>rec O
Set to record on mode.

I Notes

¢ In record on mode, besides the commands directly input in the [Command] window, the commands
executed by selecting from a menu or with a tool bar button (except the [Help] menu commands) are
also displayed in the [Command] window, and output to the specified file.
If you modify the register value or data memory contents by direct editing in the [Register] or [Data]
window, or set breakpoints in the [Source] window by double-clicking the mouse, the corresponding
commands are also displayed in the [Command] window, and output to the specified file.

¢ At the first time, you should specify the file name to which all debug commands following the rec
command will be output.

¢ Once an output command file is opened, the recording is suspended and resumed (toggled) every
time you input the rec command. This toggle operation remains effective until you terminate the
debugger. If you want to record following commands to another file, you can use format (1) to specify
the file name, then current output file is closed and all following commands will be recorded in the
newly specified file.

e If you want to execute some commands frequently, you can record them to a file at the first execution,
and then use the com or emw command to execute that command file you made.

B Gut utility
[Option | Record ...] menu item

When this menu item is selected, a standard file selection
dialog box appears for specifying a command recording file. (Chmst Clammmmre] s
If the recording function has been activated, a dialog box maero.cmd

appears allowing selection of either record-off mode or aga St
. . g Miew
record-on mode. A new recording file can also be specified Record On
using the [New...] button.
& Record Off

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 225

CHAPTER 8: DEBUGGER

8.9.17 log
log (log)
I Function

This command saves the input commands and the execution results to a file.

I Format

(1) >log <file name> 0O (direct input mode)

(2) >log O (guidance mode) ...See Examples for guidance.

<file name>: Log file name (path can also be specified)

I Examples

(1) First log execution after debugger starts up

>log O

File name ? debugl.log ad

1. append 2. clear and open ...? 2 g ...Displayed If the file is already exists.
>

(2) "log" command input in the second and following sessions
>log O
Set to log off mode. ...Logging function toggles when log is input.

>log O
Set to log on mode.

I Notes

¢ Inlog on mode, the contents displayed in the [Command] window are written as displayed directly to
the log file.
The commands executed by selecting from a menu or with a tool bar button are displayed in the
[Command] window. However, the [Help] menu and button commands are not displayed. If you
modify the register value or data memory contents by direct editing in the [Register] or [Data]
window, or set breakpoints in the [Source] window by double-clicking the mouse, the corresponding
commands and the execution results are also displayed in the [Command] window, and output to the
specified file.

The displayed contents of the [Source], [Data], [Trace] or [Register] window produced by command
execution are displayed in the [Command] window as well. The on-the-fly information is also dis-
played. However, the updated contents of each window after some execution, as well as the contents
of each window scrolled by scroll bar or arrow keys, are not displayed.

o At the first time, you should specify the file name to which all following debug commands and
execution results will be output.

¢ Once a log file is open, log output is suspended and resumed (toggled) every time you input the log
command. This toggle operation remains effective until you terminate the debugger. If you want to
specify a new log file, you can use format (1) to specify the file name, then current log file is closed
and following commands and results will be output to the newly specified file.

I GUI utility I -
[Option | Log ...] menu item B
When this menu item is selected, a standard file selection dialog box Log i
appears for specifying a log file. gl =]
If the logging function has been activated, a dialog box appears allowing] =
selection of either log-off mode or log-on mode. A new log file can also L1
be specified using the [New...] button.

226 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 8: DEBUGGER

8.9.18 Map Information

ma (map information)

I Function

This command displays the map information that is set by a parameter file.

I Format

>mad (direct input mode)

I Example

After the command is input, the system displays the chip name, version of the parameter file, and
map information in each area. When you input the [Enter] key here, the system goes on and displays
the map information in the I/O area and LCD area.

>mal]

Chip name 1 63A08
Parameter file version : 02

Program area : 0000 - 1FFF
Data ram area : 0000 - O7FF
Data rom area : 8000 - 8FFF
LCD area : FOOO - F2BF
External memory area : F800 - F8FF
10 area : FFOO - FFFF

Size of FO area 132

Size of SO1 area :0
Size of SO2 area : 256
Size of MLA area : 1296

>[]
10 Area
01234567 89ABCDEF 01234567 89ABCDEF 01234567 89ABCDEF 01234567 89ABCDEF
FFOO mmmm-mmm --mmmmmm -------= --==--=- -mmm-mmm -------- mmmmmmmm ------ mm
FF40 -mmm-mmm -mmm-mmm ----- MMM --=--==- ===-- mmm ----mmmm ----mmmm -mmm-mmm
FF80 mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm mmmmmit
FFCO mmmmmmmm ----mmmm -------- ==-=---- mmmmmmmm -------- mmmmmmmm --------
>[]
LCD Area

01234567 89ABCDEF 01234567 89ABCDEF 01234567 89ABCDEF 01234567 89ABCDEF

FOO0O mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm mmmmmr
FO40 mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm mmmmmr
FO80 mmmmmmmm mmmmmmmm
FOCO
F100 mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm mmmmmr
F140 mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm mmmmmr
F180 mmmmmmmm mmmmmmmm
F1CO
F200 -m-m-m-m -m-m-m-m -m-m-m-m -m-m-m-m -m-m-m-m -m-m-m-m -m-m-m-m -m-m-m-m
F240 -m-m-m-m -m-m-m-m -m-m-m-m -m-m-m-m -m-m-m-m -m-m-m-m -m-m-m-m -m-m-m-m
F280 -m-m-m-m -m-m-m-m
>

0 When displaying the map information of the I/O and LCD areas, the mapped addresses are marked
by the letter "m".

B Gut utility

None

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 227

CHAPTER 8: DEBUGGER

8.9.19 Mode Setting

md

(mode)

I Function

This command sets the debugger modes described below.

1.

Displaying on-the-fly information
You can choose the display interval of the on-the-fly information from 0 to 5 (times) per second.
When 0 is chosen, the on-the-fly information will not be displayed.

Measurement mode for the execution cycle counter
This mode can be selected from the actual execution-time measurement mode (indicated in
microseconds) or the bus cycle mode (indicated in terms of the number of cycles executed).

Interrupt mode for step execution
You can choose to enable or disable interrupts during single-stepping.

Single-step display mode

You can choose to display the execution results of each step or only the last step during single-step
operation. The register values are updated when their contents are displayed in the [Register]
window; they are displayed in the [Command] window if the [Register] window is closed.

If the [Source] window is open, the displayed lines are marked with an arrow as they are executed
according to the setting of this mode.

Mode of execution cycle counter

This can be selected from hold mode or reset mode. In reset mode, the counter value is reset to 0
each time you enter a program execution command (including execution by the [Enter] key).

The value of the execution cycle counter is also reset when you execute a gr command, switch this
mode or the counter measurement mode, or execute an rst command.

lllegal instruction check mode

When loading a program file into the computer using the If or lo command, you can choose
whether or not you want illegal instructions to be checked.

This check is disabled when rewriting the program memory with a pe or pf command.

cmw command wait time
A cmw command wait time can be set in the range of 1 to 256 seconds (in 1-second increments).

Default values of debugger modes

Mode Default setting
On-the-fly function Twice per second
Counter measurement mode Bus cycle
Interrupt at stepping Not allowed
Step display Each step
Execution cycle counter reset Hold
Illegal instruction check Checked
cmw wait time 1 second

228

EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

I Format

(1) >md <option> <num> [... <option> <num>] 0O

(2) >md DO
Current settings
On the fly interval 0 - 5 times/sec

2. cycle ?

CHAPTER 8: DEBUGGER

(direct input mode)

(guidance mode)

Current setting : <0 ... 5>0
Current setting : <1 | 2>0
Current setting : <1 | 2>0
Current setting : <1 | 2>0
Current setting : <1 | 2>0
Current setting : <1 | 2>0
Current setting : <1 ... 256>0

Counter unit 1.time
Interrupt at step 1. allowed 2. not allowed ...?
Step display mode 1. each 2. last 2 ?
Counter mode 1l.reset 2. hold 22
lllegal instruction 1. check 2.nocheck ..?
Cmw wait time 1-256s L?
>

<option>: <num>:

-f (on the fly interval) 0-5 times/sec

-u (couter unit) 1. Time 2. Cycle

-i (interrupt at step) 1. Allowed 2. Not allowed

-s (step display mode) 1. Each 2. Last

-c (counter mode) 1. Reset 2. Hold

-il (illegal instruction) 1. Check 2. No check
-cm (cmw wait time) 1-256 sec

I Examples

>md-ul 0O
>mdJ
On the fly interval : 2 times/sec

Counter unit :time
Interrupt at step : not allowed
Step display mode : each
Counter mode : hold

Illegal instruction : check

...Sets the execution cycle counter in time measurement mode.

Cmw wait time '1s

On the fly interval O - 5 times/sec .7 2times/sec : 5 O
Counter unit 1l.time 2.cycle .7 time 12 O
Interrupt at step 1.allowed 2.not allowed ...? not allowed : 1 O
Step display mode 1l.each 2.last ...7 each 12 O
Counter mode l.reset 2.hold ...7 hold O
Illegal instruction 1.check 2.no check ...? check : ad
Cmw wait time 1-256s L2001 s:3 O

>

I Notes

¢ The actual interval of the on-the-fly display is obtained from the expression below.
(1 [sec] / Count set) + (Overhead of the PC, RS232C interface and ICE63 [sec]) = display interval [sec]
The overhead varies depending on the performance of the PC and baud rate of the R5232C interface.

Be aware that there is a 0.05 sec to 0.1 sec overhead in this system.

¢ In guidance mode, the following keyboard inputs have special meaning:

"qO" ... Command is terminated. (finish inputting and start execution)
A ... Return to previous item.
"o ... Input is skipped. (keep current value)

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON

229

CHAPTER 8: DEBUGGER

B Gut utility

[Option | Mode Setting...] menu item
When this menu item is selected, a dialog box appears allowing selection of each mode.

Select the mode using the check boxes or enter the

number interval settings, and then click [OK].
On--the-fly Dizplay IE_ times per second
Counter unit : " time ' cycle
Intermupt at step: © allowed) not allowed
Step dizplay mode ; % each T Jast
Counter made: © resst 7+ hold

llegal instruction: & check ¢ no check

cmyw command wait bime; I'I seconds [1 to 256]

Cancel |

230 EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 8: DEBUGGER

8.9.20 Quit
g (quit)
I Function

This command quits the debugger.

I Format

>q0 (direct input mode)

I GUI utility

[File | Exit] menu item
Selecting this menu item terminates the debugger.

EOC63 FAMILY ASSEMBLER PACKAGE MANUAL EPSON 231

CHAPTER 8: DEBUGGER

8.9.21 Help

?

(help)

I Function

This command displays the input format of each command.

I Format

a2 (direct input mode)

2) ? <n> (direct input mode)

(3) ? <command> (direct input mode)
<n>: Command group number; decimal

<command>: Command name
Condition: 1=n<6

I Examples

When you input the command in Format 1 or 2, the system displays a list of commands classified by
function. Use the command in Format 3 if you want to display the input format of each individual

command.

>?0

group 1: program, data & register ... pe,pf,pm,a(as) / dd,de,df,dm,dw / od / rd,rs

group 2: execution & break g,gr,s,n,rst / bp,bc(bpc),bd,bdc,br,bre,bs,bsc,bsp,bl,bac
group 3: source & symbol u,sc,m/ sy

group 4: file & flash rom If,lo / Ifl,sfl,efl

group 5: trace & coverage tm,td,ts,tf / cv,cve

group 6: othersccceeee com,cmw,rec,log / ma,md,q,?

Type "? <group #>" to show group or type "? <command>" to get usage of the command
>?210

group 1: program, data & register

pe (program enter), pf (program fill), pm (program move), a/as (inline assemble),
dd (data dump), de (data enter), df (data fill), dm (data move), dw (data watch),
od (option dump),

rd (register display), rs (register set)

Type "? <command>" to get usage of the command

>? pe O
pe (program enter): change program memory
usage: pe [address] ... change program with guidance

pe address codel [... code8] ... change program with specified code
>

IGUI utility

[Help | Contents...] menu item, [Help] button
When this menu item or button is selected, the [Help] window opens to show help topics.

T [Help] button

232

EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 8: DEBUGGER

8.10 Status/Error/Warning Messages

1. ICE status messages

Status message

Content of message

Break by PC break

Break caused by PC breakpoint

Break by data break

Break caused by data break condition

Break by register break

Break caused by register break condition

Break by sequential break

Break caused by sequential break condition

Key Break

Break caused by pressing [ESC] key or [Key break] button

Break by accessing no map program area

Break caused by accessing undefined program-memory area

Break by accessing no map data area

Break caused by accessing undefined data-memory area

Break by accessing ROM area

Break caused by writing to data ROM area

Out of SP1 area

Break caused by accessing outside SP1 stack area

Out of SP2 area

Break caused by accessing outside SP2 stack area

Break by external break

Break caused by signal input to ICE63's BRKIN pin

2. ICE error messages

Error message

Content of message

communication error

Communication error other than time-out
(overrun, framing, or BCC error)

CPU is running

Target is running.

ICE is busy

ICE63 is busy processing a job.

ICE is free run mode

ICE63 is operating in free-run mode.

ICE is maintenance mode

ICE63 is placed in maintenance mode.

no map area, XXXX

No-map area is specified for accessing.

not defined ID, XXXX

ICE63's respond ID is invalid.

on tracing

System is tracing execution data.

reset time out

CPU cannot be reset (for more than 1 second).

target down

PRC board does not operate correctly or remains reset.

Time Out!

Communication time-out

3. Flash memory error messages

Error message

Content of message

flash memory error, XXXX

Writing or erasing flash memory has failed at XXXX.

flash ROM is protected

Flash memory is protected against access.

format error

Flash memory is not mapped.

Map information is not the same

Map information loaded from parameter file does not match that in
the parameter file.

verify error, XXXX

Verify error has occurred when data was written to flash memory.

4. Command error/warning messages

Error message

Content of message (Commands involved)

Address out of range, use 0—0xXXXX

The specified program memory address is out of range.
(a/as, pe, pf, pm, sc, m, u, g, gr, bp, bc, bs, tm, ts, cv)

Address out of range, use 0—-0xFFFF

The specified data memory address is out of range.
(dd, de, df, dm, dw, bd, ts)

Cannot load program/ROM data, check ABS file

Failed to load program/ROM data; some file other than IEEE-695
executable format was specified. (If)

Cannot open file

The file cannot be opened. (If, lo, com, cmw, log, rec)

Data out of range, use 0—-0xF

The specified number is out of the data range. (de, df)

Different chip type, cannot load this file

A different ICE parameter is used in the file. (If)

end address < start address

The start address is larger than the end address.
(pf, pm, df, dm, bd, cv)

error file type (extension should be CMD)

The specified file extension is invalid. (com, cmw)

FO address out of range, use 0—OxEF

FO address is invalid. (od)

illegal code

The input code is not available. (pe, pf)

illegal mnemonic

The input mnemonic is invalid for EOC63000. (a/as)

Incorrect number of parameters

The parameter number is incorrect. (All commands)

Incorrect option, use -f/-u/-i/-s/-c/-il/-cm

An invalid mode setting option was specified. (md)

Incorrect r/w option, use riw/*

An illegal R/W option was specified. (bd)

Incorrect register name, use A/B/X/Y/F

An invalid register name was specified. (br)

Incorrect register name,
use PC/A/B/XIYIFISP1ISP2/EXT/Q

The specified register name is invalid. (rs)

EO0C63 FAMILY ASSEMBLER PACKAGE MANUAL

EPSON 233

CHAPTER 8: DEBUGGER

Error message

Content of message (Commands involved)

Input address does not exist

Attempt is made to clear a break address that has not been set. (bp)

invalid command

This is an invalid command. (All commands)

invalid data pattern

The input data pattern is invalid. (bd, br)

invalid file name

The file name (extension) is invalid. (lo)

invalid value

The input data, address or symbol is invalid. (All commands)

Maximum nesting level(5) is exceeded,
cannot open file

Nesting of the com/cmw command exceeds the limit. (com, cmw)

MLA address out of range, use 0—0xFFF

MLA address is invalid. (od)

no such symbol

There is no such symbol. (All symbol support commands)

no symbol information

No symbol information is available since the ".ABS" file has not
been loaded. (sy)

Number of passes out of range, use 0-4095

The specified pass count for sequential break is out of range. (bs)

Number of steps out of range, use 0—65535

The specified step count is out of range. (s, n)

SO address out of range, use 0-0x1FFF

SO address is invalid. (od)

SP1 address out of range, use 0-0x3FF

The specified SP1 address is out of range. (bsp)

SP2 address out of range, use 0-0xFF

The specified SP2 address is out of range. (bsp)

symbol type error

The specified symbol type (program/data) is incorrect.
(All symbol support commands)

Warning message

Content of message (Commands involved)

Break address already exists

Attempt is made to set an already-set break address. (bp)

Identical break address input

Input command contains identical address.

round down to multiple of 4

Watch data address is invalid. (dw)

234

EPSON EOC63 FAMILY ASSEMBLER PACKAGE MANUAL

EPSON

International Sales Operations

AMERICA ASIA
EPSON ELECTRONICS AMERICA, INC. - CHINA -
- HEADQUARTERS - EPSON (CH|NA) CO., LTD.

1960 E. Grand Avenue
El Segundo, CA 90245, U.S.A.
Phone: +1-310-955-5300 Fax: +1-310-955-5400

- SALES OFFICES -

West

150 River Oaks Parkway

San Jose, CA 95134, U.S.A.

Phone: +1-408-922-0200 Fax: +1-408-922-0238

Central

101 Virginia Street, Suite 290

Crystal Lake, IL 60014, U.S.A.

Phone: +1-815-455-7630 Fax: +1-815-455-7633

Northeast

301 Edgewater Place, Suite 120

Wakefield, MA 01880, U.S.A.

Phone: +1-781-246-3600 Fax: +1-781-246-5443

Southeast

3010 Royal Blvd. South, Suite 170

Alpharetta, GA 30005, U.S.A.

Phone: +1-877-EEA-0020 Fax: +1-770-777-2637

EUROPE

EPSON EUROPE ELECTRONICS GmbH

- HEADQUARTERS -
Riesstrasse 15

80992 Muenchen, GERMANY
Phone: +49-(0)89-14005-0 Fax: +49-(0)89-14005-110
- GERMANY -

SALES OFFICE

Altstadtstrasse 176

51379 Leverkusen, GERMANY

Phone: +49-(0)217-15045-0 Fax: +49-(0)217-15045-10

- UNITED KINGDOM -

UK BRANCH OFFICE

2.4 Doncastle House, Doncastle Road

Bracknell, Berkshire RG12 8PE, ENGLAND

Phone: +44-(0)1344-381700 Fax: +44-(0)1344-381701

- FRANCE -

FRENCH BRANCH OFFICE

1 Avenue de I' Atlantique, LP 915 Les Conquerants

Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE
Phone: +33-(0)1-64862350 Fax: +33-(0)1-64862355

28F, Beijing Silver Tower 2# North RD DongSanHuan
ChaoYang District, Beijing, CHINA
Phone: 64106655 Fax: 64107320

SHANGHAI BRANCH

4F, Bldg., 27, No. 69, Gui Jing Road
Caohejing, Shanghai, CHINA

Phone: 21-6485-5552 Fax: 21-6485-0775

- HONG KONG, CHINA -

EPSON HONG KONG LTD.

20/F., Harbour Centre, 25 Harbour Road
Wanchai, HONG KONG

Phone: +852-2585-4600 Fax: +852-2827-4346
Telex: 65542 EPSCO HX

- TAIWAN, R.O.C. -

EPSON TAIWAN TECHNOLOGY & TRADING LTD.
10F, No. 287, Nanking East Road, Sec. 3

Taipei, TAIWAN, R.O.C.
Phone: 02-2717-7360
Telex: 24444 EPSONTB

Fax: 02-2712-9164

HSINCHU OFFICE

13F-3, No. 295, Kuang-Fu Road, Sec. 2
HsinChu 300, TAIWAN, R.O.C.

Phone: 03-573-9900 Fax: 03-573-9169

- SINGAPORE -

EPSON SINGAPORE PTE., LTD.

No. 1 Temasek Avenue, #36-00

Millenia Tower, SINGAPORE 039192

Phone: +65-337-7911 Fax: +65-334-2716

- KOREA -

SEIKO EPSON CORPORATION KOREA OFFICE
50F, KLI 63 Bldg., 60 Yoido-Dong

Youngdeungpo-Ku, Seoul, 150-010, KOREA

Phone: 02-784-6027 Fax: 02-767-3677

- JAPAN -
SEIKO EPSON CORPORATION
ELECTRONIC DEVICES MARKETING DIVISION

Electronic Device Marketing Department

IC Marketing & Engineering Group
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5816 Fax: +81-(0)42-587-5624

ED International Marketing Department | (Europe & U.S.A.)
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5812 Fax: +81-(0)42-587-5564

ED International Marketing Department Il (Asia)
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5814 Fax: +81-(0)42-587-5110

ENERGY
SAVING

EPSON

In pursuit of “Saving” Technology , Epson electronic devices.
Our lineup of semiconductors, liquid crystal displays and quartz devices
assists in creating the products of our customers’ dreams.
Epson IS energy savings

EPSON

SEIKO EPSON CORPORATION

m Electronic devices information on Epson WWW server

http:/h d .CO.j
p:Www.epson.colp I First issue AUGUST 1997, Printed JULY 1999 in Japan @ B

	㄀ 䜀攀渀攀爀愀氀 
	1.1 Features
	1.2 Tool Composition
	1.2.1 Composition of Package
	1.2.2 Outline of Software Tools

	1.3 Working Environment
	1.4 Installation
	1.5 Directories and Files after Installation

	㈀ 匀漀昀琀眀愀爀攀 䐀攀瘀攀氀漀瀀洀攀渀琀 倀爀漀挀攀搀甀爀攀 
	2.1 Software Development Flow
	2.2 Development Using Work Bench
	2.2.1 Starting Up the Work Bench
	2.2.2 Creating a New Project
	2.2.3 Editing Source Files
	2.2.4 Configuration of Tool Options
	2.2.5 Building an Executable Object
	2.2.6 Debugging

	㌀ 圀漀爀欀 䈀攀渀挀栀 
	3.1 Features
	3.2 Starting Up and Terminating the Work Bench
	3.3 Work Bench Windows
	3.3.1 Window Configuration
	3.3.2 Window Manipulation

	3.4 Toolbar and Buttons
	3.4.1 Standard Toolbar
	3.4.2 Build Toolbar
	3.4.3 Window Toolbar
	3.4.4 Toolbar Manipulation
	3.4.5 [Insert into project] Button on a [Edit] Window

	3.5 Menus
	3.5.1 [File] Menu
	3.5.2 [Edit] Menu
	3.5.3 [View] Menu
	3.5.4 [Insert] Menu
	3.5.5 [Build] Menu
	3.5.6 [Tools] Menu
	3.5.7 [Window] Menu
	3.5.8 [Help] Menu

	3.6 Project and Work Space
	3.6.1 Creating a New Project
	3.6.2 Inserting Sources into a Project
	3.6.3 [Project] Window
	3.6.4 Opening and Closing a Project
	3.6.5 Files in the Work Space Folder

	3.7 Source Editor
	3.7.1 Creating a New Source or Header File
	3.7.2 Loading and Saving Files
	3.7.3 Edit Function
	3.7.4 Tag Jump Function
	3.7.5 Printing

	3.8 Build Task
	3.8.1 Preparing a Build Task
	3.8.2 Building an Executable Object
	3.8.3 Debugging
	3.8.4 Executing Other Tools

	3.9 Tool Option Settings
	3.9.1 Assembler Options
	3.9.2 Linker Options
	3.9.3 Debugger Options
	3.9.4 HEX Converter Options

	3.10 Work Bench Options
	3.11 Short-Cut Key List
	3.12 Error Messages
	3.13 Precautions

	㐀 䄀猀猀攀洀戀氀攀爀 
	4.1 Functions
	4.2 Input/Output Files
	4.2.1 Input File
	4.2.2 Output Files

	4.3 Starting Method
	4.4 Messages
	4.5 Grammar of Assembly Source
	4.5.1 Statements
	4.5.2 Instructions (Mnemonics and Pseudo-instructions)
	4.5.3 Symbols (Labels)
	4.5.4 Comments
	4.5.5 Blank Lines
	4.5.6 Register Names
	4.5.7 Numerical Notations
	4.5.8 Operators
	4.5.9 Location Counter Symbol "$"
	4.5.10 Optimization Branch Instructions for Old Preprocessor

	4.6 Section Management
	4.6.1 Definition of Sections
	4.6.2 Absolute and Relocatable Sections
	4.6.3 Sample Definition of Sections

	4.7 Assembler Pseudo-Instructions
	4.7.1 Include Instruction (#include)
	4.7.2 Define Instruction (#define)
	4.7.3 Numeric Define Instruction (#defnum)
	4.7.4 Macro Instructions (#macro ... #endm)
	㐀⸀㜀⸀㔀 䌀漀渀搀椀琀椀漀渀愀氀 䄀猀猀攀洀戀氀礀 䤀渀猀琀爀甀挀琀椀漀渀猀 ⠀⌀椀昀搀攀昀 ⸀⸀⸀ ⌀攀氀猀攀 ⸀⸀⸀ ⌀攀渀搀椀昀Ⰰ ⌀椀昀渀搀攀昀⸀⸀⸀ ⌀攀氀猀攀 ⸀⸀⸀ ⌀攀渀搀椀昀⤀  
	4.7.6 Section Defining Pseudo-Instructions (.code, .data, .bss)
	4.7.7 Location Defining Pseudo-Instruction (.org, .align)
	4.7.8 Absolute Assembling Pseudo-Instruction (.abs)
	4.7.9 Symbol Defining Pseudo-Instruction (.set)
	4.7.10 Data Defining Pseudo-Instruction (.codeword, .word)
	4.7.11 Area Securing Pseudo-Instructions (.comm, .lcomm)
	4.7.12 Global Declaration Pseudo-Instruction (.global)
	4.7.13 List Control Pseudo-Instructions (.list, .nolist)
	4.7.14 Source Debugging Information Pseudo-Instructions (.stabs, .stabn)
	4.7.15 Comment Adding Function
	4.7.16 Priority of Pseudo-Instructions

	4.8 Relocatable List File
	4.9 Sample Executions
	4.10 Error/Warning Messages
	4.10.1 Errors
	4.10.2 Warning

	4.11 Precautions

	㔀 䰀椀渀欀攀爀 
	5.1 Functions
	5.2 Input/Output Files
	5.2.1 Input Files
	5.2.2 Output Files

	5.3 Starting Method
	5.4 Messages
	5.5 Linker Command File
	5.6 Link Map File
	5.7 Symbol File
	5.8 Absolute List File
	5.9 Cross Reference File
	5.10 Linking
	5.11 Branch Optimization Function
	5.12 Error/Warning Messages
	5.12.1 Errors
	5.12.2 Warning

	5.13 Precautions

	㘀 䠀攀砀 䌀漀渀瘀攀爀琀攀爀  
	6.1 Functions
	6.2 Input/Output Files
	6.2.1 Input Files
	6.2.2 Output Files

	6.3 Starting Method
	6.4 Messages
	6.5 Output Hex Files
	6.5.1 Hex File Configuration
	6.5.2 Motorola-S Format
	6.5.3 Intel-HEX Format
	6.5.4 Conversion Range

	6.6 Error/Warning Messages
	6.6.1 Errors
	6.6.2 Warning

	6.7 Precautions

	㜀 䐀椀猀愀猀猀攀洀戀氀攀爀  
	7.1 Functions
	7.2 Input/Output Files
	7.2.1 Input Files
	7.2.2 Output Files

	7.3 Starting Method
	7.4 Messages
	7.5 Disassembling Output
	7.6 Error/Warning Messages
	7.6.1 Errors
	7.6.2 Warning

	㠀 䐀攀戀甀最最攀爀  
	8.1 Features
	8.2 Input/Output Files
	8.2.1 Input Files
	8.2.2 Output Files

	8.3 Starting Method
	8.3.1 Start-up Format
	8.3.2 Start-up Options
	8.3.3 Start-up Messages
	8.3.4 Hardware Check at Start-up
	8.3.5 Method of Termination

	8.4 Windows
	8.4.1 Basic Structure of Window
	8.4.2 [Command] Window
	8.4.3 [Source] Window
	8.4.4 [Data] Window
	8.4.5 [Register] Window
	8.4.6 [Trace] Window

	8.5 Tool Bar
	8.5.1 Tool Bar Structure
	8.5.2 [Key Break] Button
	8.5.3 [Load File] and [Load Option] Buttons
	8.5.4 [Source], [Mix], and [Unassemble] Buttons
	㠀⸀㔀⸀㔀 嬀䜀漀崀Ⰰ 嬀䜀漀 琀漀 䌀甀爀猀漀爀崀Ⰰ 嬀䜀漀 昀爀漀洀 刀攀猀攀琀崀Ⰰ 嬀匀琀攀瀀崀Ⰰ 嬀一攀砀琀崀Ⰰ 愀渀搀 嬀刀攀猀攀琀崀 䈀甀琀琀漀渀猀 
	8.5.6 [Break] Button
	8.5.7 [Help] Button

	8.6 Menu
	8.6.1 Menu Structure
	8.6.2 [File] Menu
	8.6.3 [Run] Menu
	8.6.4 [Break] Menu
	8.6.5 [Trace] Menu
	8.6.6 [View] Menu
	8.6.7 [Option] Menu
	8.6.8 [Windows] Menu
	8.6.9 [Help] Menu

	8.7 Method for Executing Commands
	8.7.1 Entering Commands from Keyboard
	8.7.2 Executing from Menu or Tool Bar
	8.7.3 Executing from a Command File
	8.7.4 Log File

	8.8 Debug Functions
	8.8.1 Loading Program and Data Files
	8.8.2 Source Display and Symbolic Debugging Function
	8.8.3 Displaying and Modifying Program, Data, Option Data and Register
	8.8.4 Executing Program
	8.8.5 Break Functions
	8.8.6 Trace Functions
	8.8.7 Operation of Flash Memory
	8.8.8 Coverage

	8.9 Command Reference
	8.9.1 Command List
	8.9.2 Reference for Each Command
	8.9.3 Program Memory Operation
	a / as (assemble mnemonic)
	pe (program memory enter)
	pf (program memory fill)
	pm (program memory move)

	8.9.4 Data Memory Operation
	dd (data memory dump)
	de (data memory enter)
	df (data memory fill)
	dm (data memory move)
	dw (data memory watch)

	8.9.5 Command to Display Option Information
	od (option data dump)

	8.9.6 Register Operation
	rd (register display)
	rs (register set)

	8.9.7 Program Execution
	g (go)
	gr (go after reset CPU)
	s (step)
	n (next)

	8.9.8 CPU Reset
	rst (reset CPU)

	8.9.9 Break
	bp (break point set)
	bc / bpc (break point clear)
	bd (data break)
	bdc (data break clear)
	br (register break)
	brc (register break clear)
	bs (sequential break)
	bsc (sequential break clear)
	bsp (break stack pointer)
	bl (break point list)
	bac (break all clear)

	8.9.10 Program Display
	u (unassemble)
	sc (source code)
	m (mix)

	8.9.11 Symbol Information
	sy (symbol list)

	8.9.12 Load File
	lf (load file)
	lo (load option)

	8.9.13 Flash Memory Operation
	lfl (load from flash memory)
	sfl (save to flash memory)
	efl (erase flash memory)

	8.9.14 Trace
	tm (trace mode)
	td (trace data display)
	ts (trace search)
	tf (trace file)

	8.9.15 Coverage
	cv (coverage)
	cvc (coverage clear)

	8.9.16 Command File
	com (execute command file)
	cmw (execute command file with wait)
	rec (record commands to a file)

	8.9.17 log
	log (log)

	8.9.18 Map Information
	ma (map information)

	8.9.19 Mode Setting
	md (mode)

	8.9.20 Quit
	q (quit)

	8.9.21 Help
	? (help)

	8.10 Sratus/Error/Warning Messages

