
MF730-05a

CMOS 8-BIT SINGLE CHIP MICROCOMPUTER E0C88 Family

STRUCTURED ASSEMBLER MANUAL

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written
permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice.
Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material
or due to its application or use in any product or circuit and, further, there is no representation that this material
is applicable to products requiring high level reliability, such as medical products. Moreover, no license to any
intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that
anything made in accordance with this material will be free from any patent or copyright infringement of a third
party. This material or portions thereof may contain technology or the subject relating to strategic products under
the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from
the Ministry of International Trade and Industry or other approval from another government agency. Please note
that "E0C" is the new name for the old product "SMC". If "SMC" appears in other manuals understand that it
now reads "E0C".

MS-DOS and EDLIN are registered trademarks of Microsoft Corporation, U.S.A.
PC-DOS, PC/AT, PS/2, VGA, EGA and IBM are registered trademarks of International Business Machines Corporation, U.S.A.
All other product names mentioned herein are trademarks and/or registered trademarks of their respective owners.

© SEIKO EPSON CORPORATION 1999 All rights reserved.

E0C88 Family Structured Assembler Manual

This manual explains the software development procedure using the E0C88
Family software development tool package "E0C88 Family Structured Assem-
bler", the functions of the software tools included in the package and how to
operate them.
This manual has been divided into the following three parts depending on the
explanation contents.

I User's Guide
Part I includes the explanation on program development, installation,
flow of program development and the basic processing procedures of
each tool within that flow when using the "E0C88 Family Structured
Assembler" package.

II Creating Procedure of Assembly Source File
Part II explains details of the parts relative to an assembly source file
creation such as the assembly source file format and the pseudo-
instructions of which the structured preprocessor sap88 and the cross
assembler asm88 are included.

III Reference
Part III describes the start-up format, all the start-up flags that can be
used, error messages, etc. as reference for each software tool.

When you develop the E0C88 Family program for the first time, you should
read from Part I to understand the development procedure. After understand-
ing basic operation procedure in Part I, you will be able to develop a program
by referring to the necessary section in Part II and III.

This manual and the software tools in this package can be used for all E0C88
Family models (compatible with new models in the future). Besides this
package, programs for the model specific settings are prepared as a "Develop-
ment Tool" package for each model. Refer to the manual attached in it.

Preface

E0C88 Family Structured Assembler Manual

I USER'S GUIDE Part I includes the explanation on program development,
installation, flow of program development and the basic
processing procedures of each tool within that flow when using
the "E0C88 Family Structured Assembler" package.

USER'S GUIDE EPSON I-i

CONTENTS

Contents

1 OUTLINE OF PACKAGE.. I-1
1.1 Introduction ... I-1

1.2 Standard Floppy Disk .. I-1

1.3 Outline of Software Tools .. I-1
1.3.1 Structured preprocessor <sap88> ... I-3
1.3.2 Cross assembler <asm88> .. I-3
1.3.3 Linker <link88> ... I-3
1.3.4 Other utilities .. I-3
1.3.5 Batch file .. I-3

2 DEVELOPMENTAL ENVIRONMENT AND INSTALL I-4
2.1 System Configuration ... I-4

2.2 Installation ... I-5
2.2.1 Installer .. I-5
2.2.2 Installation procedure .. I-6

3 PROGRAM DEVELOPMENT PROCEDURES .. I-10
3.1 Development Flow .. I-10

3.2 Creating Source File ... I-12
3.2.1 Development using assembler language ... I-12

3.3 Assembly ... I-15
3.3.1 Structured preprocessor (sap88) ... I-15
3.3.2 Cross assembler (asm88) .. I-15
3.3.3 Starting sap88 and asm88 ... I-17
3.3.4 Batch processing for relocatable assembly (ra88.bat) ... I-18
3.3.5 Relocatable object file ... I-22
3.3.6 Assembly list file .. I-22
3.3.7 Cross reference list .. I-23
3.3.8 Error list .. I-23
3.3.9 Example of assembly execution ... I-24

3.4 Link ... I-25
3.4.1 Linking modules .. I-25
3.4.2 Section control ... I-25
3.4.3 Module allocation information .. I-27
3.4.4 Starting link88 ... I-27
3.4.5 Batch processing for linking (lk88.bat) ... I-28
3.4.6 Absolute object file .. I-32
3.4.7 Execution example of linking .. I-32

3.5 Creating Program Data HEX File .. I-33
3.5.1 Program data HEX file ... I-33
3.5.2 Creating program data HEX file using hex88 .. I-33
3.5.3 Motorola S2 format ... I-34

3.6 Symbol Information ... I-35
3.6.1 Creating symbol information (rel88) .. I-35
3.6.2 Creating symbolic table file (sym88) .. I-36

USER'S GUIDE EPSON I-1

1 OUTLINE OF PACKAGE

1 OUTLINE OF PACKAGE
1.3 Outline of Software Tools
The software tools included in this package is
responsible for the area indicated (with shading) in
the overall software development program.

Figure 1.3.1 shows the flow of software develop-
ment using the structured assembler.

1.1 Introduction
The "E0C88 Family Structured Assembler" package
is one of the software development tools of the
CMOS 8-bit single chip microcomputer E0C88
Family. It consists of a cross assembler, linker and
utilities to create programs.
This package can commonly be used for all E0C88
Family models and allows for development of
programs with macro function. Model dependent
software tools are prepared for each model as
"E0C88XXX Development Tool" package.
Therefore, the software included in this package
can directly be used for future E0C88 Family
models as well.

1.2 Standard Floppy Disk
This package includes the following floppy disks
containing the structured assembler, linker and
various common software tools.

1) 3.5" floppy disk (2HD) for IBM-PC/AT one
2) E0C88 Family Structured Assembler Manual

(this manual) .. one

Before use of the package, read section "2.1 System
Configuration" containing information on the
personal computers compatible as the host for
development systems.
Always make a copy the master disk either on the
hard disk or on another floppy disk and store the
original in a safe place.

Note: Use the DISKCOPY for backup of the
original disk.

Refer to section "2.2 Installation" on how to install
the floppy disk and the software development
tools.

I-2 EPSON USER'S GUIDE

1 OUTLINE OF PACKAGE

C
ro

ss
 a

ss
em

bl
er

Li
nk

er

A
bs

ol
ut

e
ob

je
ct

 f
ile

B
in

ar
y/

H
E

X
 c

on
ve

rt
er

Pr
og

ra
m

 d
at

a
H

E
X

 f
ile

P
ro

gr
am

 u
nu

se
d

ar
ea

fil

lin
g

ut
ili

ty

Pr
og

ra
m

 d
at

a
H

E
X

 f
ile

(U
nu

se
d

ar
ea

 is
 f

ill
ed

w

ith
 F

F)

Sy
m

bo
l i

nf
or

m
at

io
n

re
fe

re
nc

e
fi

le

M
as

k
da

ta
ch

ec
ke

r

M
as

k
da

ta
 f

ile
fo

r
su

bm
itt

in
g

S
of

tw
ar

e
to

ol
 in

cl
ud

ed
in

 th
is

 p
ac

ka
ge

S
tr

uc
tu

re
d

pr
ep

ro
ce

ss
or

St
ru

ct
ur

ed
 a

ss
em

bl
y

so
ur

ce
 f

ile
s

.s

A
ss

em
bl

y
so

ur
ce

 f
ile

s
.m

s

.s
.s

.m
s

.m
s

A
ss

em
bl

y
lis

t f
ile

s
.l

.l
.l

R
el

oc
at

ab
le

 o
bj

ec
t f

ile
s

.o
.o

.o

L
in

k
co

m
m

an
d

pa
ra

m
et

er
 f

ile

E
rr

or
lis

t
fi

le

C
ro

ss
re

fe
re

nc
e

lis
t f

ile

.r
ef.e

.x

.a .s
a

.p
an

.lc
m

fil
88

X
X

X

m
dc

88
X

X
X

Sy
m

bo
lic

ta
bl

e
fi

le

S
ym

bo
lic

ta
bl

e
fil

e
ge

ne
ra

to
r

.s
y

.p
sa

S
ym

bo
l i

nf
or

m
at

io
n

ge
ne

ra
to

r

F
un

ct
io

n
op

tio
n

ge
ne

ra
to

r

Fu
nc

tio
n

op
tio

n
do

cu
m

en
t f

ile

Fu
nc

tio
n

op
tio

n
H

E
X

 f
ile

so
g8

8X
X

X
S

eg
m

en
t

op
tio

n
ge

ne
ra

to
r

Se
gm

en
t

op
tio

n
do

cu
m

en
t f

ile

Se
gm

en
t

op
tio

n
H

E
X

 f
ile

IC
E

 o
r

E
V

A

.fd
c

.fs
a

.s
dc

.s
sa

fo
g8

8X
X

X

sa
p

88

as
m

88

lin
k8

8<
fn

.lc
m

h
ex

88
re

l8
8>

fn
.r

ef

sy
m

88

F
ig

.
1

.3
.1

S

tr
u

ct
u

re
d

 a
ss

e
m

b
le

r
so

ft
w

a
re

 d
e

ve
lo

p
m

e
n

t
flo

w

USER'S GUIDE EPSON I-3

1 OUTLINE OF PACKAGE

The basic functions of each program are as follows.

1.3.1 Structured preprocessor <sap88>
The sap88 structure preprocessor is a preprocessor
used to add the macro function on the cross
assembler asm88.
First create assembly source files including macro
functions and process them with the sap88 to
create the source files (in which macros are
expanded into the E0C88 instructions) that can be
assembled with the asm88.

1.3.2 Cross assembler <asm88>
The asm88 cross assembler assembles the program
source file described by the E0C88 instruction set
and pseudo-instruction and converts it into
machine language.
The asm88 is compatible with the relocatable
assembly for development by module, and creates
relocatable object files used to link other modules
via the linker.

1.3.3 Linker <link88>
The relocatable object file created with the asm88 is
linked if there is more than one present and then
converted into absolute (binary form) object file.

1.3.4 Other utilities
This package contains the following utility pro-
grams in addition to the earlier mentioned major
programs.

(1) Symbol information generator <rel88>
This is a program that obtains symbolic table
information of the relocatable object file.
This utility is used for preprocessing of
symbolic table generations.

(2) Binary/HEX converter <hex88>
Converts the binary file into a Motorola S2
format HEX file (ASCII file).
This is basically used to convert the absolute
object file output from the link88 linker into a
HEX program file. The converted program data
HEX file allows for debugging through hard-
ware tools and creation of mask data.

(3) Symbolic table file generator <sym88>
The sym88 symbolic table file generator
converts a symbolic information file generated
in file redirect with the rel88 symbol
information generator to a symbolic table file
that can be referenced in the ICE88. Loading the
symbolic table file and the corresponding
relocatable assembly program file in the ICE88
makes symbolic debugging possible.

1.3.5 Batch files
Batch files are included to automatically process
basic tools and operations to promote efficient
program development. Customize the file
accordingly.

Note: The batch files are installed in the root
directory.
Use them after copying to your work
directory if necessary.

• ra88.bat: Batch file for relocatable assembly
• lk88.bat: Batch file for linking

Details on the batch file and how to create custom-
ized files will be explained in Section 3, respec-
tively under their titles.

I-4 EPSON USER'S GUIDE

2 DEVELOPMENTAL ENVIRONMENT AND INSTALL

2 DEVELOPMENTAL ENVIRONMENT
AND INSTALL
Here we will explain the configuration of the program development system and installation proce-

dure for the software tools.

2.1 System Configuration
The system configuration that is necessary for the program development using this package is shown below.

■ Development using IBM-PC/AT

Model: IBM-PC/AT and the full compatible (*1)

DOS: PC-DOS ver. 3.3 or higher (*2)

MS-DOS ver. 3.3 or higher (*2)

RAM capacity: 640K bytes (*3)

Hard disk drive: Free space more than 510K bytes is necessary (*4)

Floppy disk drive: 3.5 inches

2HD (1.44M bytes)

1 drive or more

CRT & graphic board: EGA, VGA (text display only, fixed at 80 character × 25 lines)
Printer: For listing (only character printing)

Other software: Editor For source file creation/modification

Restrictions:

*1 Compatible with models that use Intel 80286/386/486 system for CPU.
When debugging using the ICE88, the interface board is compatible with XT bus (8-bit) but assumes
that the CPU is 80286 or higher (IBM-PC/AT).

*2 In the case of MS-DOS 5.0, it is possible to operate unless the task swap function used.
It can be operated by DOS/V in compatible with PC/MS-DOS. (However, since multilingual mode is
not supported, be sure to use English mode.)

*3 This system operates in the real mode and does not use EMS and protected memory.

*4 Assumes to use HD basically.

USER'S GUIDE EPSON I-5

2 DEVELOPMENTAL ENVIRONMENT AND INSTALL

2.2 Installation
Here we will explain the installing of the programs
included in this package. The contents of the
floppy disk supplied with this package are shown
in Figure 2.2.1.
Keep the original disk in a safe place as a backup
after installing.

Note: Use the DISKCOPY for backup of the
original disk.

Example: When setting to append "EPSON" in the upper layered path name.

<EPSON>\ sap88.exe

asm88.exe

link88.exe

\<88XXX>

 ↑
Upper layered
path name set
when installing

 • • • •

\<test>

"E0C88 Family Structured Assembler"
package
(This package)

"E0C88XXX Development Tool"
package

• • •

2.2.1 Installer
This package includes the exclusive installer
"setupasm.exe" to install the software tools on the
customer's disk drive. Install the software tools in
this package by starting this installer.

Path name to install is fixed at the root directory (\)
in the default, but the setting that appending the
upper layered path name is possible.
When installing other software tools of the E0C88
Family, by setting the same upper layered path
name like this, file management on the disk will be
easy.

What's more, added path names will automatically
be reflected in the path name to search for batch
file commands.

setupasm.exe\

ra88.bat
lk88.bat
sap88.exe
asm88.exe
link88.exe
rel88.exe
hex88.exe
sym88.exe

Installer

Batch file for relocatable assembly
Batch file for linking
Structured preprocessor
Cross assembler
Linker
Symbol information generator
Binary/HEX converter
Symbolic table file generator

Fig. 2.2.1 Contents of floppy disk

Note: The batch files are installed in the root directory.
Use them after copying to your work directory if necessary.

I-6 EPSON USER'S GUIDE

2 DEVELOPMENTAL ENVIRONMENT AND INSTALL

2.2.2 Installation procedure
The software tools in this package need capacity
approximate 510K bytes including a work area in
case of all the program is installed. Therefore, we
recommend to use HD (hard disk) basically.

The exclusive installer in this package checks the
free space on the disk to be installed. If there is not
enough free space on the install destination disk,
reserve free space on the disk to perform file
deletion and backup.

■ Operation procedure
(1) Insert the floppy disk in this package into a drive.

(2) Start the installer.
When using an IBM-PC/AT, be sure to set
English mode.

C:setupasm

Hereafter, install according to the messages
displayed as below.

1. Initial screen

 E0C88 Family Development Tool Install Utility Ver. X.XX

 Copyright(C) SEIKO EPSON CORP. 1993–1996

 ******** Structured Assembler ********

Enter install drive from [A]

Enter copy drive & path to [C:\]

 (Quit : Ctrl + C)

************************* Message Window *************************
* OK : Enter *
* Caution : Install and copy drive must be set different name *
* *
**

Transfer source drive (original disk)

Transfer destination drive
and path (default setting)

USER'S GUIDE EPSON I-7

2 DEVELOPMENTAL ENVIRONMENT AND INSTALL

3. Registration of appending path of transfer destination

 E0C88 Family Development Tool Install Utility Ver. X.XX

 Copyright(C) SEIKO EPSON CORP. 1993–1996

 ******** Structured Assembler ********

Enter install drive from [A]

Enter copy drive & path to [C:\EPSO N\]

 (Quit : Ctrl + C)

************************* Message Window *************************
* Enter appends a path from default setting (max 40 char) *
* *
* *
**

Set appending path to transfer destination disk.

2. Changing transfer destination drive and path

 E0C88 Family Development Tool Install Utility Ver. X.XX

 Copyright(C) SEIKO EPSON CORP. 1993–1996

 ******** Structured Assembler ********

Enter install drive from [A]

Enter copy drive & path to [C:\]

 (Quit : Ctrl + C)

************************* Message Window *************************
* Enter appends a path from default setting (max 40 char) *
* *
* *
**

The transfer source drive can also be changed by
return the cursor to this position.

The appending path of the transfer destination disk
can be set by setting the cursor to this position.
The transfer destination drive can also be changed
by setting the cursor to this position.

I-8 EPSON USER'S GUIDE

2 DEVELOPMENTAL ENVIRONMENT AND INSTALL

Volume name of original disk

If an error has occurred during installing, an error
message is displayed in the "Message Window".

Note: When an error which is not fatal is generated in the installing stage, the installer returns to the initial
screen and the operation can be continued. However, when "Quit" or a fatal error is generated, the
installer is forcibly terminated. (In this case, delete all the file which are installed incompletely.)

4. Confirmation of transfer source disk (original) insertion

 E0C88 Family Development Tool Install Utility Ver. X.XX

 Copyright(C) SEIKO EPSON CORP. 1993–1996

 ******** Structured Assembler ********

Install drive from : A:\

Copy drive to : C:\EPSON\

 (Quit : Ctrl + C)

************************* Message Window *************************
* Insert install disk [ASM88_DISK1] to specified drive *
* *
* Press any key to continue_ *
**

After setting the transfer source drive and transfer destination drive by Enter key respectively, the
installer waits for confirmation of the transfer source disk (original) insertion.

Installation starts by inputting any key in this status.

The file name to be transferred is displayed in the "Message Window" during installing. When the
installation is completed normally, an end message is displayed in the "Message Window".

5. Error

 E0C88 Family Development Tool Install Utility Ver. X.XX

 Copyright(C) SEIKO EPSON CORP. 1993–1996

 ******** Structured Assembler ********

Install drive from : A:\

Copy drive to : C:\

 (Quit : Ctrl + C)

************************* Message Window *************************
* Insufficient disk space *
* *
* Press any key to continue_ *
**

Confirm setting by Enter key

Confirm setting by Enter key

USER'S GUIDE EPSON I-9

2 DEVELOPMENTAL ENVIRONMENT AND INSTALL

3. Error messages

<Messages of installer>
1. Start-up message

E0C88 Family Development Tool Install Utility Ver. X.XX
Copyright (C) SEIKO EPSON CORP. 1993–1996

2. Setting, confirmation and operating messages

Enter install drive from

Enter copy drive & path to

Caution : Install and copy drive must be set different name

Insert install disk [volume name] to specified drive

Copy drive and path is [drive and path name]

Enter appends a path from default setting (max 40 char)

Install drive from : [Install drive and path name]

Copy drive to : [Copy drive and path name]

Copying [reading file]

to [writing file]

Press any key to continue

Press any key to exit

E0C88 Family Dev. Tools install utility has been successfully

Good-bye from E0C88 Family Dev. Tools install utility

Transfer source drive name

Transfer destination drive name

Transfer source drive name and transfer destination drive name

must be set to different names.

Insert the transfer source disk [volume name] into the specified drive.

Transfer destination drive and path is [drive name and path name].

Input path name appending to the default setting.

Transfer source drive is [drive name and path name].

Transfer destination drive is [drive name and path name].

Reading transfer source file [file name].

Writing transfer destination file [file name].

Press any key to continue the installer.

Press any key to terminate the installer.

Installation of the E0C88 Family software tools has been succeeded.

Terminates installation of the E0C88 Family software tools.

Message Explanation

Incorrect DOS Version use DOS 3.X or later

Write protect error

Unit No. is not exist

Drive not ready

Install disk is different

Seek error

Media type is different

Sector not found

Write error

Read error

Other error

Disk error on [drive]

Cannot create the path

Setting path already exists enter another drive and path

Insufficient disk space

Insufficient disk space, insert other disk

Bad select the install drive

Bad select the copy drive

Error : [Reading file] Cannot open source file

Error : [Writing file] Cannot open out file

E0C88 Family Dev. Tools install utility has been terminated

Caution : Delete temporary installed and files

DOS version is incorrect.

Transfer destination disk has been protected from writing.

There is no unit number.

The drive is not ready.

Disk to be installed is different.

Seek error has been generated.

Disk is different.

Sector cannot be detected.

Write error has been generated.

Read error has been generated.

Other error has been generated.

Disk error has been generated on [drive].

Path cannot be created.

Since the set path already exists, set another drive and path.

Disk space is insufficient.

Since the disk space is insufficient, insert another disk.

Drive specification for transfer source disk is wrong.

Drive specification for transfer destination disk is wrong.

Transfer source file cannot be read.

Transfer destination file cannot be written.

Installation of the E0C88 Family software tools has been terminated.

Since the installation of the E0C88 Family software tools has been

terminated, delete all the file which are installed incompletely.

Error message Explanation

I-10 EPSON USER'S GUIDE

3 PROGRAM DEVELOPMENT PROCEDURES

3 PROGRAM DEVELOPMENT
PROCEDURES
This section will start off by explaining the flow involved in program development and then give

details on how each software tool of this package is used, in accordance with the development flow. Each
software tools will be explained of its basic processing procedures and the flag settings (start-up command
flag) required for the tools in terms of batch file commands. Refer to Part III, "Reference" for more informa-
tion on other flags, etc.

3.1 Development Flow
The following shows the program development
procedure using the asm88 cross assembler.

<Relocatable assembly and link>
 – Create the entire program as a multiple module

(development by module) –

Relocatable assembly refers to the assembling
method in which programs are allocated into
several parts (each allocated part is referred to as a
module) according to the processing contents and
then undergoing development procedures by each
module.
The cross assembler can input assembly source files
created with an editor and the files in which
macros are expanded by the sap88.
Each module (relocatable object file) is linked via
the linker after assembling and then consolidated
into one program. The program memory address
that allocates each module is determined through
the link. Therefore, the developmental process in
which the source program is created can be
performed without regards to the address.
Debugging efficiency is boosted since this method
allows for debugging by modules that have been
allocated in small programs.

Figure 3.1.1 shows the flow of program develop-
ment upon using the relocatable assembly. This
package contains "ra88.bat" and "lk88.bat" that are
batch files containing basic processing tools.
Customize accordingly. (Refer to section "3.3.4
Batch processing the relocatable assembly" and
"3.4.5 Batch processing for linking (lk88.bat)" for
more information on "ra88.bat" and "lk88.bat".)

Note: Prepare each relocatable module under 32K
bytes so that they fit in one bank. Modules
exceeding this capacity will result in an error
message during linking. Thus, it will be
necessary to allocate the program so that it
is under 32K bytes. Similarly, the data size
must be under 64K bytes so that it fits in
one page.
The modules cannot be reallocated so that
they span across both banks. In this case,
the modules will be allocated so that it starts
from the head of the next bank. The pro-
gram memory (usable area) will be wasted if
all modules are too large. Give considera-
tion to each module size to prevent this.

USER'S GUIDE EPSON I-11

3 PROGRAM DEVELOPMENT PROCEDURES

Fig. 3.1.1 Relocatable assembly development flow

.s.s

Create source file
by editor

.s
Structured assembly
source files
(create for each module)

Execute sap88
Expands macro statements

.ms
Assembly source file after expanding
macro statements

Execute asm88
Assembles source file

.l
Assembly
list file

.x
Cross reference
list file

.e
Error
list file

1

2

3

Batch processing for relocatable assembly <ra88.bat>

• System code setting and FF filling in
 unused program area by fil88XXX.
• Program debugging using ICE88/EVA88.
• Creating mask data of program.

.o.o.o
Relocatable
object files
(create for each module)

Execute for each module

.o

Relocatable
object file

.lcm
Link command
parameter file for link88*

Batch processing for linking <lk88.bat>

4

Absolute
object file

Execute rel88
Creates symbol information

5

7

.ref
Symbol information
reference file

* Created by editor

Correct after
debugging program

6

Program data
HEX file

Execute sym88
Creates symbolic table file

.ref
Symbolic
table file

Execute hex88
Converts binary to HEX

Execute link88
Link

.sa

.a

I-12 EPSON USER'S GUIDE

3 PROGRAM DEVELOPMENT PROCEDURES

3.2 Creating Source File
Software used: Editor

Create the source file using the editor.
Small applications can be created solely in assem-
bler language with the entire program as a single
module.
What's more, source files for single module can
also be allocated by using the INCLUDE pseudo-
instruction of the sap88 structured preprocessor.
Generally, debugging requires appropriate
consideration to module allocation since source
files are each created for respective modules.

3.2.1 Development using assembler language
Create source files for assembler modules by using
the E0C88 CPU instruction set or assembler
pseudo-instructions.
Specify the assembly source file name with a ".s" on
the extension.
Each source program statement basically comes in
the following form.

Symbol Mnemonic Operand Comment
field field field field

• Symbol field:
This field indicates the symbol. Always put a colon (:)
immediately after the symbol, other than for EQU or
SET command statements.

• Mnemonic field:
This field indicates the operation code and pseudo-
instruction.

• Operand field:
This field indicates the operand, constant, variable,
defined symbol, symbol that indicates the memory
address and formula of each instruction.

• Comment field:
A semi-colon (;) at the beginning of this field, then
continued with a comment.

Refer to Part II of this manual for more information
on how to create a source file.
Macro statement offered by the sap88 structured
preprocessor and various pseudo-instructions of
the asm88 cross assembler can be used for this
assembler.
The following indicates an outlines of these
statements and instructions.

<Instruction set>
All E0C88 Family models employs a E0C88 in the
core CPU. Therefore, instructions are common for
all models other than for CPU MODELS and mode
limitations. Refer to the "E0C88 Core CPU Manual"
for more information on the instructions, and refer
to the "E0C88XXX Technical Manual" for control
program examples of the peripheral circuit
incorporated in each model.
The asm88 cross assembler is capable of converting
all mnemonic instruction settings of the E0C88 into
machine language.

<Macro statement>
Macro is used to priorly define a processing
(sequence of instructions) frequently used in the
program with a voluntary name to allow for it to
be called out under that specific name. As a result,
the need for routine procedures can be eliminated.
(For more information refer to Part II of this
manual.)
Macro statements are offered as pseudo-instruc-
tions of the sap88 and by putting it through the
sap88 it is applied in the macro call-out portion in
mnemonic form that can be assembled.

USER'S GUIDE EPSON I-13

3 PROGRAM DEVELOPMENT PROCEDURES

Example of macro definition

Before expanding
subtitle "example"
public main,work
external src_address,dst_address,counter

;
abc equ 0ffh
;

data
work: db [1]
;

code
;***
;** * macro define * **
;***
nop3 macro

nop
nop
nop
endm

;***
;** * example * **
;***
main:

ld a,#abc
lb b,[work]
nop3 ; macro call ***
ld ix,#src_address
ld iy,#dst_address
ld hl,[counter]

;***
end

After expanding
subtitle "example"
public main,work
external src_address,dst_address,counter

;
abc equ 0ffh
;

data
work: db [1]
;

code
;***
;** * macro define * **
;***
;***
;** * example * **
;***
main:

ld a,#abc
lb b,[work]
nop
nop
nop
ld ix,#src_address
ld iy,#dst_address
ld hl,[counter]

;***
end

Macro statement expanded into
mnemonics

Macro call

Macro definition

I-14 EPSON USER'S GUIDE

3 PROGRAM DEVELOPMENT PROCEDURES

<Pseudo-instruction>

Unlike CPU instructions, pseudo-instructions do not directly compose of application programs upon
executing control instructions to the asm88.
The pseudo-instructions that can be used with this assembler are indicated above according to their
functions. (Refer to Part II of this manual for more details.)

Section setting pseudo-instructions

(BANK, DATA)

Data definition pseudo-instructions

(DB, DW, DL, ASCII, PARITY)

Symbol definition pseudo-instructions

(EQU, SET)

Location counter control pseudo-instruction

(ORG)

External definition and reference pseudo-instructions

(EXTERNAL, PUBLIC)

Source file insertion pseudo-instruction

(INCLUDE) sap88 only

Assembly termination pseudo-instruction

(END)

Macro related pseudo-instructions

(MACRO–ENDM, DEFINE, LOCAL, PURGE, UNDEF,

IRP–ENDR, IRPC–ENDR, REPT–ENDR) sap88 only

Conditional assembly pseudo-instructions

(IFC–ENDIF, IFDEF–ENDIF, IFNDEF–ENDIF) sap88 only

Output list control pseudo-instructions

(LINENO, SUBTITLE, SKIP, NOSKIP, LIST, NOLIST, EJECT)

Use to specify sections.

 * Specifies the program area and data area.

 (For more details refer to "3.3.2 Cross assembler (asm88)".)

Specifies various data within the program memory.

Allocates constant to symbols (voluntary name) used within

the source program.

Sets the program counter.

Allows for symbols and labels to be referenced between modules.

Inserts contents of other source files in voluntary places.

Specified the assembly end point.

Defines the macro statement.

Assembly or skip can be set according to the definition

of the symbol.

Controls the output to the assembly list file.

Pseudo-instruction by function Description

USER'S GUIDE EPSON I-15

3 PROGRAM DEVELOPMENT PROCEDURES

3.3 Assembly
This section will explain the method to assemble
the assembly source file and the relocatable object
file created by the process.

Software used: sap88, asm88

.s
Structured assembly
source file (create for each module)

Execute sap88
Expands macro statements

.ms
Assembly source file after expanding
macro statements

Execute asm88
Assembles source file

.l
Assembly
list file

.x
Cross reference
list file

1

2

3

.o
Relocatable

object file

.e
Error
list file

Create source file
by editor

Linking

Execute
relocatable assembly

Fig. 3.3.1 Flowchart of relocatable assembly

3.3.1 Structured preprocessor (sap88)
This assembler system is composed of the sap88
structured preprocessor and asm88 cross
assembler.

As indicated in section 3.2.1, the sap88 is responsi-
ble in putting the macro statement in mnemonic
form.
Since the asm88 cannot read the macro statement,
assembly source files included these documents
can not be directly input in the asm88 as a file.
The asm88 is the actual assembler responsible in
converting the mnemonic language into machine
language and assembling cannot be performed
with sap88.
Therefore, there is a need to used both sap88 and
asm88 for the structured assembly. It is advisable
to process it through the sap88 even if the
structured assembly is not required, since the
process will not effect the source file.

The sap88 inputs an assembly source file with a ".s"
extension and expands the macro statements. After
that, the sap88 outputs a file for assembly. The
name of the extension of the output file should be
set as ".ms".

3.3.2 Cross assembler (asm88)
The asm88 cross assembler assemble the E0C88
Family CPU instructions and the pseudo-instruc-
tions of the asm88 and converts it into machine
language.
The asm88 is compatible with the relocatable
assembly.
The relocatable assembly creates relocatable object
files (".o") that will be linked with other modules
using a linker. The asm88 can input several
assembly source files and thus allows for simulta-
neously assembly of several relocatable modules.
The asm88 can also output three lists, i.e., assembly
list (".l"), error list (".e") and a cross reference list
(".x") for the programmer.
The assembly list consists of the line number, target
address, code that corresponds to the source and
source statements. The line number is output in
decimals, while the address and code are output in
hexadecimals.
If in case an error takes place during assembling,
an error list file containing the source file name,
line number in which the error took place, error
level and error message will be created. What's
more, the assembly list file will also note the line in
which the error took place with an asterisks "*"
beside the line number. Processing will be contin-
ued regardless of an error message unless the error
is fatal.
The relation of the symbol definition and reference
within the file has been prepared to foster easy
understanding depending on the cross reference
list.
File management has been enhanced since they are
prepared as separate files.

<Control of program and data memory>
This section will explain how to control the
memory of the program and data.
The E0C88XXX memory map can be categorized in
the program memory (ROM) for the program code
and RAM and I/O memory for the data.
For example, even if a certain symbol is noted in a
voluntary position in the assembly source file, the
asm88 is not capable of determining whether this is
within the program memory or data memory.
For this reason, there is a need to clarify which
memory each line comes under by prior instruction
through the section setting pseudo-instructions.
The following explains the section set methods for
the relocatable assembly, and the asm88 process
corresponding to the method.

I-16 EPSON USER'S GUIDE

3 PROGRAM DEVELOPMENT PROCEDURES

Setting sections
The absolute address allocated within each module
of the relocatable assembly will be specified or
determined upon liking. Therefore, an absolute
address cannot be specified within the assembly
source file. A relative address specification can be
made using an ORG pseudo-instruction, however,
in this case, a standard for a relative address will be
required. What's more, there is also a need to
specify the segments of the program and data area
for the asm88.
The entire program for this assembler is catego-
rized into CODE and DATA. These basically
indicate the following areas.

CODE section: Program data area written in the ROM
DATA section: Data memory area other than ROM

The asm88 is complete with a CODE and DATA
pseudo-instruction to specify the section. The area
can be set through descriptions in the assembly
source file.

■ Specifying the CODE section
If a CODE pseudo-instruction is described within
an assembly source file, the asm88 will assemble it
to be allocated to the CODE section until the next
DATA pseudo-instruction appears. The CODE
pseudo-instruction can be used in several places
within one module. The asm88 assumes the head of
the CODE section within the module as relative
address 0000H and will continuously realign them
in the order that the CODE pseudo-instruction
appears to consolidate it into one block. In other
words, a CODE specification range of one module
will be handled as one CODE section. (Refer to
Figure 3.3.2.1.)
The CODE section of each module is further
consolidated as a whole by the linker. The linker
will link in sectional units in accordance with the
bank control within the program memory area.
The CODE section consists of CODE sections with
one or multiple modules and the maximum size is
limited to 32K bytes as one bank is. (Details on
section control will be explained in "3.4.2 Section
control".) Therefore, the programmer must be careful
not to use more than 32K bytes in the code when
creating a module. The capacity of the CODE section
can be verified by using the -ROM# flag when
starting-up the asm88. Use of this feature is advised.
For example, when flag specification for "-ROM
32768" is performed, an error message will be
displayed if a CODE section of one module exceeds
32K bytes.

■ Specifying the DATA section
If a DATA pseudo-instruction is described within
an assembly source file, the asm88 will assemble it
to be allocated to the DATA section until the next
CODE pseudo-instruction appears. The DATA
pseudo-instruction can be used in several places
within one module. The asm88 assumes the head of
the DATA section within the module as relative
address 0000H and will continuously realign them
in the order that the DATA pseudo-instruction
appears to consolidate it into one block. In other
words, a DATA specification range of one module
will be handled as one DATA section. (Refer to
Figure 3.3.2.1.)
The DATA section of each module is further
consolidated as a whole by the linker. The linker
will link in sectional units in accordance with the
page control within the data memory area.
The DATA section consists of DATA sections with
one or multiple modules and the maximum size is
limited to 64K bytes as one page is. (Details on
section control will be explained in "3.4.2 Section
control".) Therefore, the programmer must be
careful not to use more than 64K bytes in the code
when creating a module. The capacity of the DATA
section can be verified by using the -RAM# flag
when starting-up the asm88. Use of this feature is
advised.
For example, when flag specification for "-RAM
65535" is performed, an error message will be
displayed if a DATA section of one module
exceeds 64K bytes.

Fig. 3.3.2.1 CODE section and DATA section

■ Note
If either the CODE pseudo-instruction or DATA
pseudo-instruction is missing during relocatable
assembling the operation will result in an error. For
this reason, it is important that the CODE pseudo-
instruction is used for the program memory and
the DATA pseudo-instruction is used for the data
memory.

CODE
 :
 :
DATA
 :
CODE
 :
DATA
 :

Assembly source file

C1

D1

C2

D2

Object code

C1

C2

D1

D2

CODE
section

DATA
section

USER'S GUIDE EPSON I-17

3 PROGRAM DEVELOPMENT PROCEDURES

3.3.3 Starting sap88 and asm88
<sap88 operation procedure>

(1) Set the directory in which the structured
assembly source file (.s) is presented as the
current drive.

(2) Start-up the sap88 with the next format.

sap88_[flag]_ input file

_ indicates a space key input.
 indicates a return key input.

The following indicates the flag used for batch
processing of relocatable assembly (ra88.bat).

Refer to Part III of this manual for more informa-
tion on other flags.

Example 1: When continuously assembling several
assembly source files through relocatable
assembly.

C:\USER>c:\EPSON\asm88
 sample1.ms sample2.ms

Inputs the assembly source files "sample1.ms"
and "sample2.ms" created in the sub-directory
USER of drive C and starts the relocatable
assembly process. Then creates the relocatable
object files "sample1.o" and "sample2.o" in the
same directory as the input file.
At the same time, the assembly list files
"sample1.l" and "sample2.l", cross reference list
files "sample1.x" and "sample2.x", and error list
files "sample1.e" and "sample2.e" will also be
created in the same directory.
If the PATH to asm88 is set, then there is not
need to specify the path before asm88.

Example 2: Assembling with the relocatable assembler,
including the verification of the ROM and
RAM capacity.

C:\USER>c:\EPSON\asm88 -ROM 32768
 -RAM 65536 sample.ms

Inputs assembly source file "sample.ms" created
within the sub-directory USER of drive C and
starts relocatable assembly. Then creates the
relocatable object file "sample.o" in the same
directory as the input file.
At the same time, creates the assembly list file
"sample.l", cross reference list file "sample.x"
and error list file "sample.e" in the same
directory.
The capacity of the CODE and DATA sections
will be verified during assembling with the
-ROM and -RAM flags. An error will result in
this case when the CODE exceeds 32K bytes
and the DATA exceeds 64K bytes.
If the PATH to asm88 is set, then there is not
need to specify the path before asm88.

Refer to section "3.3.9 Example of assembly
execution" for more information on I/O files and
messages displayed.

Refer to Part III of this manual for information on
other flags.

Example: C:\USER>c:\EPSON\sap88 -o
 sample.ms sample.s

Inputs the assembly source file "sample.s"
created in the sub-directory USER of drive C
and then creates assembly source file
"sample.ms" to be input in asm88 in the same
directory as the input file.
If the PATH to sap88 is set, then there is not
need to specify the path before sap88.

Refer to section "3.3.9 Example of assembly
execution" for more information on I/O files and
messages displayed.

<asm88 operation procedure>

(1) Set the directory in which the assembly source
file (.ms) created with the sap88 exsists as the
current drive.

(2) Start-up the asm88 with the next format.

asm88_[flag]_ input file

_ indicates a space key input.
 indicates a return key input.

Flag can be omitted.

The following indicates the flags used for batch
processing of relocatable assembly (ra88.bat).

-o <file name> Specify the file name that is output.
(Specify ".ms" as the extension of the file
to be output.)
If this flag is omitted it will be processed
as a standard output.

Flag Description

-ROM#

-RAM#

Specify the ROM capacity in byte units.
It is especially useful during relocatable
assembling and is used to verify the size
of the CODE area.
Specify the RAM capacity in byte units.
It is especially useful during relocatable
assembling and is used to verify the size
of the DATA area.

Flag Description

I-18 EPSON USER'S GUIDE

3 PROGRAM DEVELOPMENT PROCEDURES

3.3.4 Batch processing for relocatable
assembly (ra88.bat)

The start-up procedures for sap88 and asm88 were
already discussed in the earlier section, however, it
must be further noted that these can be batch
processed by consolidating them into a batch file.
The batch file can voluntarily created by the user,
however, since this package contains batch file, i.e.,
ra88.bat for relocatable assembly, the following will
introduce the contents of the batch file and how to
use them.
This batch file can be used for general processing
purposes. Use it advantageously by customizing
the flag settings, etc. as needed.

Figure 3.3.4.1 shows the ra88.bat processing flow.

<Outline of process>
The ra88.bat inputs the specified assembly source
file and then executes sap88 and asm88, respec-
tively to perform relocatable assembly to create a
relocatable object file. Since the sap88 does not
permit input of multiple assembly source files, it is
limited to assembly per module other than when
several structured assembly source files are read
with the INCLUDE pseudo-instruction of the
sap88.

<Input/output files>
The following indicates the input/output files of
the ra88.bat.

■ Input file
Structured assembly source file
(relocatable): file_name.s
This is a structured assembly source file
(relocatable) created with an editor such as
EDLIN.

■ Output files

1. Assembly source file: file_name.ms
An assembly source file in which macros are
expanded will be output.

2. Relocatable object file: file_name.o
This is a binary file that has been converted in
machine language that can be reallocated
through relocatable assembly.
(This is also the file that inputs the lk88.bat
batch file to perform linking.)

3. Assembly list file: file_name.l
This is the file output as a list that corresponds
to each source statement when the machine
language and the relocatable address (the head
of the CODE or the DATA section is assumed
as relative address 000000H) converted with the
assembler.

4. Cross reference list file: file_name.x
This is the address list that contains the defini-
tion and references of symbols.

5. Error list file: file_name.e
This is the list of error taking place during
assembling.

.s
Structured assembly
source file
(create for each module)

Execute sap88
Expands macro statements

.ms
Assembly source file after expanding
macro statements

Execute asm88
Assembles source file

.l
Assembly
list file

.x
Cross reference
list file

.o
Relocatable

object file

.e
Error
list file

Batch file for relocatable assembly <ra88.bat>

Execute for each module

Fig. 3.3.4.1 ra88.bat processing flow

USER'S GUIDE EPSON I-19

3 PROGRAM DEVELOPMENT PROCEDURES

<Operation procedure>

(1) Set the directory in which the structured
assembly source file (.s) is presented as the
current drive.

(2) Start-up the ra88.bat with the next format.

ra88_ file name

_ indicates a space key input.
 indicates a return key input.

Do not input the extensions of file name. It is
fixed on the ".s" extension.

Example: C:\USER>c:\EPSON\ra88 sample

Inputs structured assembly source file
"sample.s" created within the sub-directory
USER of drive C and starts relocatable assem-
bly. Then creates the following files in the same
directory as the input file.

sample.ms, sample.o, sample.l,
sample.x, sample.e

If the PATH to ra88 is set, then there is not need
to specify the path before ra88.

Refer to section "3.3.9 Example of assembly
execution" for more information on I/O files and
messages displayed.

■ Customizing ra88.bat

<Customizing ra88.bat execution parameters>
Since the ra88.bat controls the program execu-
tion, it has a execution parameter customization
field within it. General parameters are tempo-
rarily described in the default position, how-
ever, it is advised that the program is custom-
ized in accordance with the user's development
method.

1. Setting the ROM capacity
(Verification of the size of the CODE section)
set rom = 32768 : The capacity of the ROM of

the CODE section that
locates errors will be
specified in bytes. (default
capacity 32768 = 32K bytes)

2. Setting the RAM capacity
(Verification of the size of the DATA section)
set ram = 65536 : The capacity of the RAM of

the DATA section that
locates errors will be
specified in bytes. (default
capacity 65536 = 64K bytes)

Note: There are basically no error checks made
on these parameter settings, therefore, do
not set the parameter with settings other
than those specified.

<Customizing ra88.bat execution command>
The ra88.bat has the following command line
upon execution of the program. Customize
these command lines if a flag without a default
setting is to be used.

sap88
%drv%sap88 -o %1.ms %1.s

asm88
%drv%asm88 -ROM %rom% -RAM %ram%
%1.ms

The %drv% is a path that locates the execution
command of the ra88.bat. For this reason, it can
not be altered and neither can the SET state-
ment that is defined be altered. The %1 is a file
name that is input from the command line.

The following indicates the ra88.bat program
source list and the message list of the ra88.bat.
Refer to it upon customizing the program.

I-20 EPSON USER'S GUIDE

3 PROGRAM DEVELOPMENT PROCEDURES

← Start-up command of sap88

← Start-up command of asm88

■ ra88.bat program source list

echo off
rem **
rem * E0C88 Family Auto Relocatable Assemble Execution Utility
rem * (Ver. X.XX)
rem * Copyright(C) SEIKO EPSON CORP. 1993–1996
rem **
rem * customized parameter information
rem * rom=* * : rom capacity(32768 max.)
rem * ram=* * : ram capacity(65536 max.)
rem **
rem ********** customized parameter area (default) **********
rem * caution : customized parameters value do not check, therefore
rem * please be carefully when you set
rem **********
set rom=32768
set ram=65536

rem ********** command searching path **********
rem set drv=c:\

rem **
rem * main program
rem * if you want to use another option(s), please append
rem * option flag(s) at command line.
rem **
:start

echo E0C88 Family Auto Relocatable Assemble Execution Utility Ver. X.XX
echo Copyright (C) SEIKO EPSON CORP. 1993–1996

if "%1"=="" goto usage
:error_chk

if not exist %drv%nul goto exit04
if not exist %1.s goto exit05
if not exist %drv%sap88.exe goto exit06
if not exist %drv%asm88.exe goto exit07

rem (sap88)
:sap88
%drv%sap88 -o %1.ms %1.s

if errorlevel 1 goto exit01

rem (asm88)
:asm88
%drv%asm88 -ROM %rom% -RAM %ram% %1.ms

if errorlevel 1 goto exit02
goto end

:usage
echo usage : ra88 needs [input file_name]

goto skip
:exit01
echo Error stop at %drv%sap88.exe

goto skip
:exit02
echo Error stop at %drv%asm88.exe

goto skip
:exit03
echo Cannot find %drv% installed E0C88 dev. tools directory

goto skip
:exit04

← Setting the capacity of the ROM
← Setting the capacity of the RAM

The drv is a path that locates the execution command
of the ra88.bat. It is set to root directory by default.
Customize it if necessary.

User customization field

Note: There are basically no
error checks made on
these parameter
settings, therefore, do
not set the parameter
with settings other
than those specified.

USER'S GUIDE EPSON I-21

3 PROGRAM DEVELOPMENT PROCEDURES

echo Cannot find input file
goto skip

:exit05
echo Cannot find %drv%sap88.exe

goto skip
:exit06
echo Cannot find %drv%asm88.exe

goto skip
:end
echo ra88.bat utility has been successfully executed.
:skip
set rom=
set ram=
set drv=

■ Message list

1. Start-up message

E0C88 Family Auto Relocatable Assemble Execution Utility Ver. X.XX
Copyright (C) SEIKO EPSON CORP. 1993–1996

2. Message when terminated normally

ra88.bat utility has been successfully executed.

Note: The following operations will be stopped when an error occurs.

3. Error message

<Precautions upon using the batch file>

(1) Some of the messages displayed during batch
processing is automatically generated through
the MS-DOS/PC-DOS batch processing
function and command. For this reason, it may
be placed under MS-DOS/PC-DOS control
when an error occurs and thus force the batch
processing to be interrupted.

(2) When an error occurs, the following procedures
do not automatically continue. However, it may
not be controllable as noted in reason (1)
indicated above.

(3) The ra88.bat and the lk88.bat (mentioned
hereafter) employ the MS-DOS/PC-DOS COPY
command in addition to E0C88 Family tools.

For this reason, it is requested that the COPY
command is operable, by setting the PATH,
when executing the batch file.

(4) The execution parameters (user customization
field) of the batch file basically do not locate
parameter setting errors. Therefore, do not set
the parameters other than specified.

(5) An MS-DOS/PC-DOS environment variable
will be used to execute the batch file, therefore,
the size of the environment variable should be
allocated with as much space as possible using
the CONFIG.SYS.

usage : ra88 needs [input file_name]

Error stop at [drive and path name] sap88.exe

Error stop at [drive and path name] asm88.exe

Cannot find [drive and path name] installed E0C88 dev.

tools directory

Cannot find input file

Cannot find [drive and path name] sap88.exe

Cannot find [drive and path name] asm88.exe

Usage output.

Error occurred in sap88.

Error occurred in asm88.

Cannot find [drive or path] in which the E0C88 Family software tools

is installed.

Cannot find aa88.bat input file (.s).

Cannot find sap88.

Cannot find asm88.

Error message Explanation

I-22 EPSON USER'S GUIDE

3 PROGRAM DEVELOPMENT PROCEDURES

3.3.5 Relocatable object file
The relocatable object file is a binary file that is
created through the relocatable assembly of the
asm88.
Other than when -o flag is specified the file name
that is created will be the same file name input
with the asm88 and the extension will be ".o".
This file consists of header information and symbol
tables required for reallocation using the linker, in
addition to the object (machine language) code.

3.3.6 Assembly list file
The assembly list file is an ASCII file added with an
object code (hexadecimal) and code address
(hexadecimal) in the assembly source file input in
the asm88. It is created through asm88 assembly.
Each page will have a header with the file name
and date that the file is created.

The file name that is created will be the same as the
file name input via the asm88 other than when -o
flag is specified. The extension will be ".l".

The assembly list file consists of the following items:
LINE The consecutive line number

from the beginning.
ADDRESS This refers to the target

address of the object code.
CODE: This is the object (machine

language) code that
corresponds to the source
statement in the same line.

SOURCE STATEMENT .. This is the assembly source
input in the asm88.

When relocatable assembly is performed, the code
address will be a relative address from the begin-
ning of the CODE section. Similarly, the address of
the data area is a relative address from the begin-
ning of the DATA section.
If an error is occurred, an asterisks "*" will be
placed at the beginning of the line in which the
error occurred.

The output of assembly list file can be controlled
with the following asm88 pseudo-instructions and
flag specifications upon start-up.

■ Output list control pseudo-instructions

Refer to Part II of this manual for details of the pseudo-instructions.

■ Start-up flag

-l Prevents creation of an assembly list file.
Flag Description

Refer to Part III of this manual for for details of the flag.

LINENO

SUBTITLE

SKIP

NOSKIP

LIST

NOLIST

EIECT

Changes the line number (LINE) to the voluntary value.

Inserts the subtitle line that is voluntarily set after the column explanation line.

If any line of the code exceeds 5 bytes through ASCII, DB or DW data settings, the exceeding

portion will not be output. (default setting.)

Outputs all codes by canceling the SKIP setting.

The following lines are output in a list when the NOLIST setting is canceled.

Prevents output of the list from the line after the pseudo-instruction.

Adds a involuntary page break.

Pseudo-instruction Description

USER'S GUIDE EPSON I-23

3 PROGRAM DEVELOPMENT PROCEDURES

VALUE Symbol value (6 digit, hexadecimal expression)

LINE No. INFORMATION
This is a list in which the symbol is defined or
referenced line numbers. They are output as follows.
lineno* lineno lineno lineno
lineno* : The line number in which the target symbol

is defined.
lineno: The line number in which the target symbol

is referenced.

The LINE No. INFORMATION can consist up to a
maximum of 12 line numbers.

The following page header will be output at the
head of each page.

The numeric labels are temporary labels. The same
name can be used if they are outside the range
defined by the general label. It will not be output
on the cross reference list. (Refer to Part II of this
manual for the numeric labels.)

The cross reference list file can prohibit output
using the -x flag of the asm88.

3.3.7 Cross reference list
The cross reference list file is created through
asm88 assembly with an ASCII file. This ASCII file
is defined within the module or contains a list of
reference symbols.
The name of the file created will be the same as the
file name input with the asm88 other than when
specifying -o flag. The extension will be ".x".

The output format of the cross reference list file is
as follows.

R SYMBOL A VALUE LINE No. INFORMATION

R Reference definition
G: Global
L: Local

SYMBOL Symbol name (maximum 15 characters)

A Attribute
L: Label
C: Constant
V: Variable
U: Undefined within the module

Example of cross reference list

CROSS REFERENCE TABLE OF asm88 error.x 1993-06-07 17:28 PAGE 1

L delay L 000100H 5* 14 15
L delay_00 L 000103H 7* 9
L delay_3times L 000107H 13*

SOURCE FILE LINE No.: ERROR LEVEL: ERROR MESSAGE

SOURCE FILE Source file name

LINE No. Line number in which the error
occurred

ERROR LEVEL Level of error

Warning This is a warning and does not
affect the output object.

Severe This is a general error. The
output object will be invalid.

Fatal This is a fatal error. Assembly
will be interrupted. Fatal errors
are displayed on the CRT
without output of an error list
file.

ERROR MESSAGE Error content

Refer to Part III of this manual for the error mes-
sages of the asm88.

Example of error list

error.s 16: Severe: ddelay not defined

When an error is not generated, nothing will be
output in the error list file.

3.3.8 Error list
The errors generated during asm88 assembling will
be output as an error list file.
The name of the file created will be the same as the
file name input with the asm88 other than when
specifying -o flag. The extension will be ".e".

The output format of the error list is as indicated
below.

I-24 EPSON USER'S GUIDE

3 PROGRAM DEVELOPMENT PROCEDURES

3.3.9 Example of assembly execution
The following shows example of the assembly execution.

■ Messages when ra88.bat (relocatable assembly) is executed

C:\USER>c:\EPSON\ra88 sample

C:\USER>echo off
E0C88 Family Auto Relocatable Assemble Execution Utility Ver. X.XX
Copyright (C) SEIKO EPSON CORP. 1993–1996
sap88 Structured Assembler Preprocessor Version X.XX

Copyright (c) 1993 by Advanced Data Controls, Corp.
Licenced to SEIKO EPSON CORP.
asm88 Cross Assembler Version X.XX

Copyright (c) 1993 by Advanced Data Controls, Corp.
Licenced to SEIKO EPSON CORP.

9 Symbol(s) Used

0 Warning Error(s)
0 Severe Error(s)

ra88.bat utility has been successfully executed.
C:\USER>

USER'S GUIDE EPSON I-25

3 PROGRAM DEVELOPMENT PROCEDURES

3.4 Link
This section will explain the linking operations of
relocatable modules.

Software used: link88

Execute link88
Link

.lcm
Link command
parameter file

Creating program
data HEX file

Create the link88
link command

parameter file by editor

.a
Absolute
object file

Relocatable object files

.o.o.o

Fig. 3.4.1 Link processing flow

3.4.1 Linking modules
The object codes of each module created with the
relocatable assembly of the asm88 is not specified
to be located in a certain portion of the ROM. The
allocation address is determined by how each
modules are linked. The link88 linker is the tool
used for linking operations.

When linking is successfully performed the relative
address for the external reference label that was
undeclared up to this point will be declared and
thus, create an absolute object file (.a) that consoli-
dates all modules into one file. By processing this
absolute object file with the binary/HEX converter
hex88, as indicated in section 3.5, the program data
HEX file to be used to create the program mask
data or to debug the hardware will be created.

3.4.2 Section control
The E0C88 Family has a 24-bit width address space
(maximum of 16M bytes). By using the topmost 8-
bit for register control using the code bank register
(CB), expand page register (EP, XP, YP) and others,
the address space can be allocated into a 32K-byte
bank (CODE) or 64K-byte page (DATA) unit.
Access performance can be improved within those
ranges. By rewriting the content of the register, the
user will have access of a voluntary bank or page
from a voluntary bank. As a result, large programs
and data bases can easily be controlled. However,
the bank and page will not automatically be
changed with the execution of the program and
thus it must be set in accordance with the program
specifications.

Therefore a program as described in linear
programs can not be created in the 16M-byte
address space.
This indicates that multiple modules can not
simply be linked.
For this reason, the link88 employs a multi-section
method to resolve this problem by allocate volun-
tary modules in voluntary addresses.
Allocation in this method is undertaken by making
it possible to specify addresses for block units
referred to as sections.
The section is categorized into a CODE section in
which the allocation site is the ROM and the DATA
section which is the data memory. To resolve the
aforementioned bank and page problems, the size
of one CODE section can consist of up to 32K bytes
and the size of one DATA section is limited to 64K
bytes. It is important to note that this size is based
on the fact that they are not allocated over the bank
or page limit. If in case they are allocated in the
middle of a bank or page, the size will be limited to
the remaining size.

To create an object code for the desired multi-
section using the section method, the user must
define the section and supply address information
on the allocation of the section to allocate the
address.
The section is defined by using the linker's second-
ary flag (flag used to define section) +code and
+data and the -p flag is used to allocate the ad-
dress.
Up to a maximum of 255 sections can be defined
with one link.

<Example of section definition>
Let's look at the section definition procedures
through a simple example.
First, the method to actualize a memory mapping
as indicated in Figure 3.4.2.1 will be explained.
It will be assumed that "prg1.s" describing C1 and
D1, "prg2.s" describing C2 and "prg3.s" describing
C3 is assembled and then each respective
relocatable object file "prg1.o", "prg2.o" and
"prg3.o" is created.
In this case, C indicates the CODE section and D
indicates the DATA section.

The flag to link88 can be specified through input
redirect operations.
When the following flag specification is performed
and a link command parameter file (filename.1cm)
that is used to allocate the address and define the
section is created following by executing
link88<filename.lcm, a memory mapping as
indicated in Figure 3.4.2.1 will be created.

I-26 EPSON USER'S GUIDE

3 PROGRAM DEVELOPMENT PROCEDURES

<Allocation address and relocation of section>
As indicated in the earlier example, the -p flag
determines the physical start address of the section
defined immediately before operations.
Let's say, for example, the following settings are
made for a certain section.

-p 0x10000

The start address of this section will physically be
10000H. The CODE section will be specified at the
head of bank 2 and the DATA section will be
specified at the head of page 1.
The following allocation (reallocation of address
information) will be performed for a symbol if a
symbol is defined to be positioned from the head of
this section to the 1234H offset and that symbol is
used to reference that address.

(1) When handled as data memory (symbol name
will be indicated as "SYMBOL".)

Operand Relocate value
#SYMBOL → #1234H
[SYMBOL] → [1234H]
#POD SYMBOL → 01H
#LOD SYMBOL → 1234H
#HIGH SYMBOL → 12H
#LOW SYMBOL → 34H
[BR:LOW SYMBOL] → [BR:34H]

(2) When handled as program memory (symbol
name will be indicated as "LABEL".)

Operand Relocate value
#BOC LABEL → 02H
#LOC LABEL → 9234H

A relative valued in accordance with the
address that allocated by the branch instruction
will be calculated and set for PC relative branch
instructions like "JRL LABEL".

The section start address, in the above example,
was specified at the head of the bank or page,
however, specifications can be made for it to start
in the middle of a bank or page, as indicated below.

-p 0x15000

In this case the start address will physically be
15000H and have a 5000H offset from the head of
the bank or page. The link88 relocates each symbol
based on the physical address, therefore, such
offsets will also be properly processed.
All symbol information after reallocation will be
recorded in the absolute object file. A list of these
symbols can be created using the rel88 symbol
information generating utility. Refer to section
"3.6.1 Creating symbol information (rel88)" for
more information on rel88 operations.

Fig. 3.4.2.1 Memory mapping example

Contents of the file transferred to link88
(link88<filename.lcm)

-o prg.a ...(1)
+code -p0x000000 ...(2)
+data -p0x00f000 ...(3)
prg1.o ...(4)
+code -p0x000100 ...(5)
prg2.o prg3.0 ...(6)

(1) Specifies the absolute object file that is
output with the -o flag.

(2) Defines the CODE section that starts with a
physical address from 000000H.

(3) Defines the DATA section that starts with a
physical address from 00F000H.

(4) Allocates "prg1.o" to the sections defined in
(2) and (3) indicated above.
In this case, the contents of the CODE
section C1 in "prg1.o" will be allocated from
the beginning of the CODE section defined
in (2) and the contents of the DATA section
D1 will be allocated at the head of the
DATA section defined in (3).

(5) Defines the CODE section that starts with a
physical address from 000100H. This CODE
section is different from the CODE section
defined in (2). The CODE section (2) will be
completed when a new section is defined at
this point.

(6) The "prg2.o" CODE section of C2, and
"prg3.o" CODE section C3 will be continu-
ously be allocated in respective order.
In this example, "prg2.o" and "prg3.o" does
not have a DATA section. However, if there
is a DATA section then it will be allocated
from the address following D1 of the DATA
section defined in (3).

There are three sections defined and linked in this
example as indicated above. When the link is
successful an absolute object file named "prg.a" will
be created.
Multiple modules can be allocated in these sections
defined as long as it is within the allowable
capacity limit. What's more, multiple sections can
be allocated within one bank as well.

C1

C2

C3

D1
I/O

Memory
000000H

00001FH
000100H

002xxxH

00F000H
00F800H

00FFFFH
00F7xxH

C1
D1

prg1.o

C2

prg2.o

C3

prg3.o

USER'S GUIDE EPSON I-27

3 PROGRAM DEVELOPMENT PROCEDURES

3.4.3 Module allocation information
As indicated in the example of section definition
mentioned earlier, section definitions and com-
mand lines that specify files can be handed over to
the link88 through the input redirect function.
The number of modules are limited and the link is
simple, as indicated in the example, it will be
possible to create a file similar to that indicated in
the example and directly input into the link88.
There will be need to be conscious about the
memory efficiency when increasing the number of
modules.
One CODE section is limited to 32K bytes and the
DATA section is limited to 64K bytes. Thus, it will
be necessary to allocate each module so that it does
not exceed the limit. It will be necessary to give
consideration to the combination of modules in
each section upon allocation. Otherwise, there will
be more unused memory area and thus, require
unnecessary memory extension.

3.4.4 Starting link88

<Operations of link88>

(1) Set the directory in which the relocatable object
files (.o) to be linked and the link command
parameter file (.lcm) including link88 command
line created with the editor are existed as the
current drive.

(2) Start-up the link88 with the next format.

link88_<_ link command parameter file name

_ indicates a space key input.
 indicates a return key input.

Regardless of the input redirect function, the link
command parameter file can directly be input in
the command line. The procedures will be omitted
since it is not practical. Refer to Part III of this
manual for more information on formatting.
Details on the flags that compose the command
line will also be omitted.
Refer to Part III of this manual for details of the
flags.

Example:Performing linking through the link command
parameter file (.lcm)

C:\USER>c:\EPSON\link88
< sample.lcm

Use the link command parameter file
"sample.lcm" created in the USER of the sub-
directory of drive C as the input redirect
function to start-up link88 and perform linking.

The name of the absolute object file specified in
the link command parameter file will be created
in the same directory as the input file.
If the PATH to link88 is set, then there is not
need to specify the path before link88.

Refer to Section 3.4.2 for the link command
parameter file.

I-28 EPSON USER'S GUIDE

3 PROGRAM DEVELOPMENT PROCEDURES

3.4.5 Batch processing for linking (lk88.bat)

Fig. 3.4.5.1 lk88.bat processing flow

As so with the assembler, this package contains the
lk88.bat batch file for linking.
This batch file is prepared so that it can process the
procedures from linking to creation of the program
data HEX file. (Details on processing procedures
after linking will be noted later.)
Figure 3.4.5.1 shows the processing flow of
lk88.bat.

<Outline of processing procedures>
The lk88.bat reads the link command parameter file
for the link88 and executes linking operations.
When an absolute object file is created using the
link88, it will then use the rel88 symbol informa-
tion generator. After reallocation operations are
complete a symbolic table information file will be
created. After that, the sym88 will be executed to
generate a symbolic table file that is necessary for
symbolic debugging using the ICE88.
Then a program data HEX file will be created with
the hex88 binary/HEX converter from the absolute
object file.

<Input/output files>

■ Input files

1. Link command parameter file: file_name.lcm
This is a command parameter file for the link88.
It indicates the information to reallocate the
relocatable object of the E0C88 memory space.

2. Relocatable object file: file_name.o
This is a relocatable file in machine language
that can be output through relocatable assem-
bly with the cross assembler.

■ Output files

1. Absolute object file: file_name.a
This is the multi-section object file created with
the linker.

2. Program data HEX file: file_name.sa
This is a Motorola S2 format ASCII record file
consisting of an absolute object file that was
converted with the binary/HEX converter.

.o.o.o
Relocatable
object files
(create for each module) .lcm

Link command
parameter file for link88*

Batch processing for linking <lk88.bat>

Absolute
object file

Execute rel88
Creates symbol information

.ref
Symbol information
reference file

* Created by editor

Program data
HEX file

Execute sym88
Creates symbolic table file

.ref
Symbolic
table file

Execute hex88
Converts binary to HEX

Execute link88
Link

.sa

.a

USER'S GUIDE EPSON I-29

3 PROGRAM DEVELOPMENT PROCEDURES

3. Symbol information reference file: file_name.ref
This is the symbol information reference file of
the absolute object file that was reallocated by
the physical address.

4. Symbolic table file: file_name.sy
This file contains symbol names and the
address list information for symbolic
debugging.

<Operation procedure>

(1) Set the directory including the relocatable
object files (.o) to be linked as the current drive.
Put the command parameter file handed over
to the link88 in the same directory.

(2) Start-up the lk88 with the next format.

lk88

 indicates a return key input.

Example: C:\USER>c:\EPSON\lk88

Use the link command parameter file
"sample.lcm" created in the USER of the sub-
directory of drive C to start batch processing.
Batch processing will create the absolute object
file (.a), symbol information reference file (.ref),
program data HEX file (.sa) and symbolic table
file (.sy) in the same directory as the input file.
If the PATH to lk88 is set, then there is not need
to specify the path before lk88.

■ Customizing lk88.bat

<Customizing ra88.bat execution parameters>
Since the lk88.bat controls the program execu-
tion, it has a execution parameter customization
field within it. General parameters are tempo-
rarily described in the default position. Always
customize the batch files according to your
development method since the parameter will
vary depending on your application style.

1. Parameter file name to be input
set parfn = file_name : Link command

parameter file name
(.lcm) input to link88

2. Output file name
set outfn = file_name : File name of absolute

object file and
program data HEX
file

3. Use of the symbol information generator (rel88)
set rel88 = y : rel88 is used (default)

A symbol information
reference file (.ref) will be
created.

= n : rel88 is not used.

4. Use of +sec flag (information on individual section)
of the symbol information generator (rel88)
set secf = y : +sec flag is added to rel88

(default)
= n : +sec flag is not added to rel88

Note: This parameter will be ignored when rel88
is not used.

Note: There are basically no error checks made
on these parameter settings, therefore, do
not set the parameter with settings other
than those specified.

<Customizing lk88.bat execution command>
The lk88.bat has the following command line
upon execution of the program. Customize
these command lines if a flag without a default
setting is to be used.

link88
%drv%link88<%parfn%.lcm

rel88 (when +sec flag is used)
%drv%rel88 -v +sec
%outfn%.a>%outfn%.ref

rel88 (when +sec flag is not used)
%drv%rel88 -v %outfn%.a>%outfn%.ref

hex88
%drv%hex88 -o %outfn%.sa %outfn%.a

sym88
%drv%sym88 %outfn%.ref

The %drv% is a path that locates the execution
command of the lk88.bat. For this reason, it can
not be altered and neither can the SET state-
ment that is defined be altered.
Use the same name for the customized param-
eter outfn as the name described in the link
command parameter (.lcm).

The following indicates the lk88.bat program
source list and the message list of the lk88.bat.
Refer to it upon customizing the program.

I-30 EPSON USER'S GUIDE

3 PROGRAM DEVELOPMENT PROCEDURES

■ lk88.bat program source list

echo off
rem **
rem * E0C88 Family Auto Link Execution Utility
rem * (Ver. X.XX)
rem * Copyright(C) SEIKO EPSON CORP. 1993–1996
rem **
rem * customized parameter information
rem * parfn= : input parameter file_name
rem * (file_name_lcm) for link88.exe i.e. c8316xxx.lcm
rem * outfn= : output file_name which is written
rem * in the input parameter file_name i.e. c8316xxx
rem * rel=y y : use rel88 for absolute symbol map generation
rem * =n n : do not use rel88
rem *
rem * secf=y y : show physical address and module size with absolute
rem * symbolic table after link procedure
rem * =n n : do not show physical address and module size just
rem * symbolic table after link procedure
rem **
rem ********** customized parameter area (default) **********
rem * caution : customized parameters value do not check, therefore
rem * please be carefully when you set
rem **********
set p arfn=samp le
set outfn=samp le
set rel=y
set secf=y

rem ********** command searching path **********
rem set drv=c:\

rem **
rem * main program
rem * if you want to use another option(s), please append
rem * option flag(s) at command line
rem **
:start

echo E0C88 Family Auto Link Execution Utility Ver. X.XX
echo Copyright (C) SEIKO EPSON CORP. 1993–1996

:error_chk
if not exist %drv%nul goto exit05
if not exist %parfn%.lcm goto exit06
:chk00
if not exist %drv%link88.exe goto exit07
if not exist %drv%rel88.exe goto exit08
if not exist %drv%hex88.exe goto exit09
if not exist %drv%sym88.exe goto exit10

:link88
%drv%link88<%p arfn%.lcm

if errorlevel 1 goto exit01

rem (rel88 no sec option)
:rel88_01

if "%rel%"=="n" goto hex88
if "%secf%"=="y" goto rel88_02

%drv%rel88 -v %outfn%.a>%outfn%.ref
if errorlevel 1 goto exit02

goto hex88

← Name of link command parameter file to be input
← Name of file to be output
← Use of not of rel88
← Use or not of the rel88 + sec flag

The drv is a path that locates the execution command
of the lk88.bat. It is set to root directory by default.
Customize it if necessary.

User customization field

Note: There are basically no
error checks made on
these parameter
settings, therefore, do
not set the parameter
with settings other
than those specified.

← Start-up command of link88

← Start-up command of rel88 (no +sec flag)

USER'S GUIDE EPSON I-31

3 PROGRAM DEVELOPMENT PROCEDURES

rem (rel88 with sec option)
:rel88_02
%drv%rel88 -v +sec %outfn%.a>%outfn%.ref

if errorlevel 1 goto exit02

:hex88
%drv%hex88 -o %outfn%.sa %outfn%.a

if errorlevel 1 goto exit03

:sym88
%drv%sym88 %outfn%.ref

if errorlevel 1 goto exit04
goto end

:exit01
echo Error stop at %drv%link88.exe

goto skip
:exit02
echo Error stop at %drv%rel88.exe

goto skip
:exit03
echo Error stop at %drv%hex88.exe

goto skip
:exit04
echo Error stop at %drv%sym88.exe

goto skip
:exit05
echo Cannot find %drv% installed E0C88 dev. tools directory

goto skip
:exit06
echo Cannot find %parfn% input parameter file

goto skip
:exit07
echo Cannot find %drv%link88.exe

goto skip
:exit08
echo Cannot find %drv%rel88.exe

goto skip
:exit09
echo Cannot find %drv%hex88.exe

goto skip
:exit10
echo Cannot find %drv%sym88.exe

:end
echo lk88.bat utility has been successfully executed.

:skip
set parfn=
set outfn=
set rel=
set secf=
set drv=

← Start-up command of rel88 (with +sec flag)

← Start-up command of hex88

← Start-up command of sym88

■ Message list

1. Start-up message

E0C88 Family Auto Link Execution Utility Ver. X.XX

Copyright (C) SEIKO EPSON CORP. 1993–1996

I-32 EPSON USER'S GUIDE

3 PROGRAM DEVELOPMENT PROCEDURES

2. Message when terminated normally

lk88.bat utility has been successfully executed.

3. Error message

Note: The following operations will be stopped when an error occurs.

<Precautions upon using the batch file>

(1) Some of the messages displayed during batch
processing is automatically generated through
the MS-DOS/PC-DOS batch processing
function and command. For this reason, it may
be placed under MS-DOS/PC-DOS control
when an error occurs and thus force the batch
processing to be interrupted.

(2) When an error occurs, the following procedures
do not automatically continue. However, it may
not be controllable as noted in reason (1)
indicated above.

(3) The execution parameters (user customization
field) of the batch file basically do not locate
parameter setting errors. Therefore, do not set
the parameters other than specified.

(4) An MS-DOS/PC-DOS environment variable
will be used to execute the batch file, therefore,
the size of the environment variable should be
allocated with as much space as possible using
the CONFIG.SYS.

3.4.6 Absolute object file
The absolute object file is a binary file created by
link88.
The name of the file name created will be the same
as that specified with the -o flag.
The files come in a multi-section object format.
This file is composed of an object (machine lan-
guage) code and various reallocation information.

3.4.7 Execution example of linking
The following shows examples of the lk88
execution.

C:\USER>c:\EPSON\lk88

C:\USER>echo off
E0C88 Family Auto Link Execution Utility Ver. X.XX
Copyright (C) SEIKO EPSON CORP. 1993–1996
link88 Linker Version X.XX

Copyright (c) 1993 by Advanced Data Controls, Corp.
Licenced to SEIKO EPSON CORP.
lk88.bat utility has been successfully executed.
C:\USER>

Error stop at [drive and path name] link88.exe

Error stop at [drive and path name] rel88.exe

Error stop at [drive and path name] hex88.exe

Error stop at [drive and path name] sym88.exe

Cannot find [drive and path name] installed E0C88 dev.

tools directory

Cannot find [file_name] input parameter file

Cannot find [drive and path name] link88.exe

Cannot find [drive and path name] rel88.exe

Cannot find [drive and path name] hex88.exe

Cannot find [drive and path name] sym88.exe

Error occurred in link88.

Error occurred in rel88.

Error occurred in hex88.

Error occurred in sym88.

Cannot find [drive or path] in which the E0C88 Family software tools

is installed.

Cannot find input parameter file (.lcm) that is used with the lk88.bat.

Cannot find link88.

Cannot find rel88.

Cannot find hex88.

Cannot find sym88.

Error message Explanation

USER'S GUIDE EPSON I-33

3 PROGRAM DEVELOPMENT PROCEDURES

3.5 Creating Program Data HEX File
This section will explain the program data HEX file
and how they can be created using the hex88
binary/HEX converter.

Software used: hex88

• System code setting and FF filling
 in unused program area by fil88XXX.
• Program debugging using ICE88/EVA88.
• Creating mask data of program.

.a
Absolute
object file

Execute hex88
Convertes binary to HEX

.sa
Program data
HEX file

Fig. 3.5.1 Program data HEX file generation flow

3.5.1 Program data HEX file
The program data HEX file is an ASCII file in
which the binary object codes were converted in
HEX data.
The Motorola S2 format is generally employed at
the HEX file format since the E0C88 Family has a
16M-byte address space. (Refer to section 3.5.3 for
more information.)
This file will be required to mask program data or
to debug program with the ICE88 and EVA88.
When development is undertaken for modules
according to relocatable assembly, the absolute
object file created by the linker will be converted
into HEX data through the hex88 binary/HEX
converter and then create a program data HEX file.
The program data HEX file created through such
procedures will set system codes according to each
model and fill FF of the unused built-in ROM area.
This is done with the fil88XXX software tools
according to the model and comes with the
"E0C88XXX Development Tool" package.

3.5.2 Creating program data
HEX file using hex88

The following indicates the direction in creating a
program data HEX file using the hex88.

(1) Set the directory in which the absolute object
file (.a) is presented as the current drive.

(2) Start-up the hex88 with the next format.

hex88_[flag]_ file name

_ indicates a space key input.
 indicates a return key input.

The following indicates the flag employed during
batch processing (lk88.bat) of links.

Example: Converting sample.a to create program data
HEX file

C:\USER>c:\EPSON\hex88 -o
 sample.sa sample.a

"sample.sa" will be created in the same direc-
tory as the input file by inputting the absolute
object file "sample.a" created in the USER of the
sub-directory of drive C and converting it into
HEX data format.
If the PATH to hex88 is set, then there is not
need to specify the path before hex88.

The batch file can allow for hex88 to be executed
after linking. Refer to section "3.4.5 Batch process-
ing for linking (lk88.bat)" for more details on such
batch processing methods.

-o <file name> Specify the file name that is output.
(Specify ".sa" as the extension of the file
to be output.) If this flag is omitted it will
be processed as a standard output.

Flag Description

I-34 EPSON USER'S GUIDE

3 PROGRAM DEVELOPMENT PROCEDURES

<ADDR> Indicates the address of the first
data byte of that line.
The <ADDR> field in S2 format is
3-byte.

<DATA BYTES> Data will be allocated in 1 byte
units in order of the increase in
address. This field generally
includes the 32-byte (maximum)
data.

<CHECKSUM> This is the complement of 1 of the
total number of bytes allocated to
that line (excluding S field).

3.5.3 Motorola S2 format
The HEX file in the Motorola S2 format is a collec-
tion of records composed of fields like the follow-
ing.

<S FIELD><COUNT><ADDR><DATA BYTES><CHECKSUM>

All information will be indicated in hexadecimal
pairs and each pair will indicate a 1-byte value.

<S FIELD> Indicates the format of that line.
"S2" will appear in this field.

<COUNT> Indicates the total number of bytes
of <ADDR>, <DATA BYTES> and
<CHECKSUM> in hexadecimal
form.

Motorola S2 format

S224000380788812CF7C8812CFC0CFC1CFC2CFC3CFC4CFC5CFC6CFC7CFD0CFD1CFD2CFD3CF7C
S2240003A0D4CFD5CFD6CFD7CFD8CFD9CFDACFDBCFDCCFDDCFDECFDFCFE0CFE1CFE2CFE3CF90
S2240003C0E4CFE5CFE6CFE7CFE8CFE9CFEACFEBCFECCFEDCFEECFEFCFF0CFF1CFF2CFF3CE71
S2240003E0F4CEF5CEF8CEF9CFFACFFEDD8812C8C8C9C9CACACCCCCCCCCDCDA8A9AAABACAD28
S224000400AEAFCFB4CFB5CFB6CFB7CFBCCFBDA0A1A2A3A4A5A6A7CFB0CFB1CFB2CFB3CFB8AC
S224000420CFB9F6F7CE94CE95CE9688CE97CE90CE91CE9288CE93CE9CCE9DCE9E88CE9FCE22
S22400044098CE99CE9A88CE9BCE80CE81CE8288CE83CE84CE85CE8688CE87CE88CE89CE8A9E
S22400046000CE8BCE8CCE8DCE8E88CE8FE438E536E634E732CEE02FCEE12CCEE229CEE326CE

<ADDR>
<COUNT> 32-byte
<S FIELD>

<DATA BYTES> <CHECKSUM>

USER'S GUIDE EPSON I-35

3 PROGRAM DEVELOPMENT PROCEDURES

3.6 Symbol Information

3.6.1 Creating symbol information (rel88)
The rel88 is a utility used to create symbol informa-
tion. It will obtain symbol information from the
specified object file and then create its list. The
target object files are the relocatable object file
created with asm88 and the absolute object file
created with link88.

Generally, this tool is used for two purposes: one
for checking the symbol list after linking and
second for generating a file to be input to the
sym88.

The rel88 outputs a list in accordance with the
standard output.
The following explains the operations to obtain the
symbol list of an absolute object file.

<rel88 operation procedure>
When creating a symbol list for

the absolute object file

(1) Set the directory in which the absolute object
file (.a) is presented as the current drive.

(2) Start-up the rel88 with the next format.

rel88_[flag]_ input file name_>_output file name

_ indicates a space key input.
 indicates a return key input.

General flags

The following indicate the list of symbols that are
created.

■ Correlation with flag

*** rel88 (default) format ***

0x8000c acia.o
0x80b8d acia.o
0x8000C n_getch
0x80bcD _buffer
0x8059C n_recept
0x8045C n_outch
0x80baD _ptlec
0x80b8D _ptecr
0x8082C n_main

*** rel88 -v format ***

SECTION 1
0x008000 c acia.o
0x008000 C n_getch
0x008045 C n_outch
0x008059 C n_recept
0x008082 C n_main

SECTION 2
0x0080b8 d acia.o
0x0080b8 D _ptecr
0x0080ba D _ptlec
0x0080bc D _buffer

*** rel88 +sec format ***

SECTION 1: code
 address = 0x008000 size = 0x000b8

SECTION 2: data
 address = 0x0080b8 size = 0x00000

(For reference)

*** -a format ***

0x000000 c sec: 1 acia.o
0x0000b8 d sec: 2 acia.o
0x0000bc D sec: 2 _buffer
0x0000b8 D sec: 2 _ptecr
0x0000ba D sec: 2 _ptlec
0x000000 C sec: 1 n_getch
0x000082 C sec: 1 n_main
0x000045 C sec: 1 n_outch
0x000059 C sec: 1 n_recept

*** -d format ***

0x000000 c acia.o
0x0000b8 d acia.o
0x000000 C n_getch
0x0000bc D _buffer

Refer to the following examples for information on
the flag effects. Refer to Part III of this manual for
more details on the flag.

Since the rel88 output corresponds to the standard
output, a file will be created according to the
output redirect.

Example: C:\USER>c:\EPSON\rel88 -v +sec
sample.a > sample.ref

Inputs the absolute object file "sample.a"
created in the USER of the sub-director of drive
C and then creates the symbol list file
"sample.ref" in the same directory as the input
file.
If the PATH to rel88 is set, then there is not
need to specify the path before rel88.

+sec

-v

Outputs the start address and size of
each section.
Sorts the sections contents according to
the symbol value.

Flag Description

I-36 EPSON USER'S GUIDE

3 PROGRAM DEVELOPMENT PROCEDURES

0x000059 C n_recept
0x000045 C n_outch
0x0000ba D _ptlec
0x0000b8 D _ptecr
0x000082 C n_main

*** -g format ***

0x000000 C n_getch
0x0000bc D _buffer
0x000059 C n_recept
0x000045 C n_outch
0x0000ba D _ptlec
0x0000b8 D _ptecr
0x000082 C n_main

*** +dec format ***

 0 c acia.o
 184 d acia.o
 0 C n_getch
 188 D _buffer
 89 C n_recept
 69 C n_outch
 186 D _ptlec
 184 D _ptecr
 130 C n_main

3.6.2 Creating symbolic table file (sym88)
The sym88 symbolic table file generator converts
symbol information reference (.ref) output from the
rel88 symbol information generator into an
information file that contains a symbolic table for
symbolic debugging in the ICE88.

<sym88 operation procedure>

(1) Set the directory in which the symbol
information reference file (.ref) is presented as
the current drive.

(2) Start-up the sym88 with the next format.

sym88_ input file name

_ indicates a space key input.
 indicates a return key input.

Example: C:\USER>c:\EPSON\sym88
sample.ref

Inputs the symbol information reference file
"sample.ref" created in the USER of the sub-
director of drive C and then creates the
symbolic table file "sample.sy" in the same
directory as the input file.
If the PATH to sym88 is set, then there is not
need to specify the path before sym88.

E0C88 Family Structured Assembler Manual

II CREATING PROCEDURE OF ASSEMBLY SOURCE FILE

Part II explains details of the parts relative to an assembly
source file creation such as the assembly source file format and
the pseudo-instructions of which the structured preprocessor
sap88 and the cross assembler asm88 are included.

CREATING PROCEDURE OF ASSEMBLY SOURCE FILE EPSON II-i

CONTENTS

Contents

1 OUTLINE ... II-1
1.1 File Name ... II-1

1.2 Source File Differences Depending on sap88 and asm88 ... II-1

1.3 Macro Instructions ... II-1

2 GENERAL FORMAT OF SOURCE FILE .. II-2
2.1 Symbol .. II-3

2.2 Mnemonic ... II-3

2.3 Operand ... II-3

2.4 Comment .. II-3

2.5 Numerical Expression .. II-3

2.6 Characters ... II-4

2.7 ASCII Character Set .. II-4

2.8 Expressions .. II-4

2.9 Operators ... II-5

2.10 Instruction Set .. II-6

2.11 Register Name .. II-6

2.12 Addressing Mode ... II-7

2.13 Example for Mnemonic Notation ... II-8

3 PSEUDO-INSTRUCTIONS .. II-9
View of the explanation ... II-9

3.1 Section Setting Pseudo-Instructions ... II-10

3.2 Data Definition Pseudo-Instructions .. II-11

3.3 Symbol Definition Pseudo-Instructions .. II-15

3.4 Location Counter Control Pseudo-Instruction ... II-16

3.5 External Definition and External Reference Pseudo-Instructions II-16

3.6 Source File Insertion Pseudo-Instruction [sap88 only] ... II-17

3.7 Assembly Termination Pseudo-Instruction ... II-17

3.8 Macro-Related Pseudo-Instructions [sap88 only] ... II-18

3.9 Conditional Assembly Pseudo-Instructions [sap88 only] .. II-24

3.10 Output List Control Pseudo-Instructions .. II-27

CREATING PROCEDURE OF ASSEMBLY SOURCE FILE EPSON II-1

1 OUTLINE

1 OUTLINE
When you develop a program using the assembly language, first create an assembly source file

using the CPU instructions and the pseudo-instructions included with the cross assembler. The assembly
source file should be created according to the contents and rules to be explained hereafter, using EDLIN or
an editor you have.

1.1 File Name
As explained in Section 3.3 of Part I, this assembler
is separated into two programs: the structured
preprocessor sap88 which expands macro
instructions into the format that can be assembled
by the asm88, and the cross assembler asm88 which
actually executes assembly. Files to be handled in
this series of procedures are an assembly source
file. However, since there are some difference in
each file, extensions of the file names are specified
as below.

 • Structured assembly source file:
file_name.s
This is an assembly source file which includes
macro instructions, etc., and is input into the
structured preprocessor sap88. When you
create programs using the assembler language,
create assembly source files to make the file
name with the extension ".s".

 • Assembly source file:
file_name.ms
This is an assembly source file in which the
macro instructions have been expanded, and is
generated from the structured preprocessor
sap88.

In the structured preprocessor sap88 and the cross
assembler asm88, files with other extensions can be
input, but generally use the above mentioned
extension.

1.2 Source File Differences
Depending on sap88 and asm88

As explained in the previous section, format of the
file to be input to the cross assembler asm88 is
different from that of the structured preprocessor
sap88 as to contents.
The statement (line) such as macro instruction and
sap88 pseude-instruction, which can be used in the
structured preprocessor sap88, cannot be
distinguished in the cross assembler asm88, and
will cause an error. Consequently, when using the
macro instructions, be sure to expand it to the
format which can be input into the cross assembler
asm88, using the structured preprocessor sap88.

In particularly, attention should be paid when
modifying the source file ".ms" being input into the
asm88 directly.
The pseudo-instructions which are incorporated in
the cross assembler asm88 functions will not cause
an error in the structured preprocessor sap88.
In the pseudo-instructions explained later, details
for only the structured preprocessor sap88 are
indicated by [sap88 only] or the notes are
described. Take care when reading.

1.3 Macro Instructions
Macro instruction allows the user to define virtual
instructions with instruction sequences. The
structured preprocessor sap88 expands the defined
instructions into the source format that can be
assembled by the cross assembler asm88.
The following describes the outline of it.

When using the same statement block in multiple
parts of a program, previous define the statement
block with an optional name, after this the state-
ment block can be called using the defined name.
The defined statement block is Macro.
Describe the macro name that has been defined
and necessary parameters in program, to call the
macro. That part is expanded in the contents of the
statement block that have been defined as a macro
by the structured preprocessor sap88, and at that
point the changing of the specified parameters is
also to be done.
In addition to the macro-definition and the macro-
call, some pseudo-instructions related to the macro
have been provided. For details, see Section 3.8.

II-2 EPSON CREATING PROCEDURE OF ASSEMBLY SOURCE FILE

2 GENERAL FORMAT OF SOURCE FILE

The following explains the general particulars such as the composition of the statement and characters and
notation for numerical values which can be used.

Each source program statement should be written using the following format.

Symbol field Mnemonic field Operand field Comment field

Example:
on equ 1000h
start: jrl init ;to initialize
flag: db [1]
value: db 080h

2 GENERAL FORMAT OF SOURCE FILE
Assembly source file is composed of statements (lines) such as the CPU instruction set, pseudo-

instructions which are incorporated in the sap88 and asm88, and comments, and is completed by END
pseudo-instruction (pseudo-instruction to terminate assembly). (Statements can be described after the END
pseudo-instruction, however, that part will not be assembled.)
The following explains the asm88 fundamentally. (Functions permitted on the asm88 will not cause an
error on the sap88.)

Example of source file

subtitle "assembly source file example (sample.s)"
public main
external src_address, dst_address, counter

;
code

main:
ld ix,[src_address]
ld iy,[dst_address]
ld hl,[counter]
ret

;***
end

In the above sort of format line, the line end
normally is the termination, however, the operand
may be described over several lines.

Symbol field: In this field, describe a symbol. A
colon (:) must be used following
the symbol except for the
statement of the EQU or SET
instruction.
Use symbols properly in
accordance with the following
definition.

Symbol •Label (Colon must follow)
•Name (Constant definition by EQU or

SET instruction)

Mnemonic field: In this fild, describe an operation
code or a pseudo-instruction.

Operand field: In this field, describe an operand
or constant of each instruction, a
variable, a defined symbol, a
symbol that indicates memory
address, or an operational
expression.

Comment field: Put semicolon (;) at the beginning
of this field, and describe a
comment following it.

CREATING PROCEDURE OF ASSEMBLY SOURCE FILE EPSON II-3

2 GENERAL FORMAT OF SOURCE FILE

2.1 Symbol
Symbol is the name in which the specific value is
defined. The following two ways are to define a
symbol.

(1) Label
The symbol that is put at the beginning of
statement of CPU instructions or data definition
is defined as a label. The value that is defined to
the symbol is the address of the CPU instruc-
tion or data area.

(2) Name
It is defined using the EQU or SET pseudo-
instruction. The value that is defined to the
symbol is the value of <expression> that is
specified using the EQU or SET pseudo-
instruction.

The symbol definition is in accordance with the
following rules.

 • Although the symbol length is not restricted, a
maximum of 15 characters from the front will
be distinguished as a symbol.

 • In the case of a label, it can be described from
any column, however, a colon (:) must be used
at the end of a label.

 • In the case of a name, it must begin from
column 1.

 • The characters that can be used for symbols are
as follows:
Alphabetic characters (A–Z, a–z), Arabic
numerals (0–9), _

 • To input symbol it does not matter whether
capital letters or small letters are used. In the
default setting, capital letters and small letters
are not distinguished, therefore symbols ABC
and abc are handled identically. However,
when the -c flag is used, they are distinguished.

 • A symbol cannot begin with a number.
Symbol names must begin with an alphabetic
character or "_".

2.2 Mnemonic
A CPU instruction or a pseudo-instruction is
placed in the mnemonic field. These are normally
composed of character-strings that end with a
blank space.These are discussed later.

In the default setting of the asm88 and sap88, capital
letters and small letters are not distinguished. In
such cases, even if inputting the following, they will
all be considered as correct and the same.

Examples: byte BYTE bYtE

In the default setting, it is also permissible for a
CPU instruction set to be written either in capital
letters or small letters. When writing programs, it is
better to write them with the standard method.
However, when handling the symbol name to
distinguish between capital letters and small letters
using -c flag, be sure to describe the CPU instruc-
tion set and register name in small letters.

Example:
jrl ABC ;jump to label ABC
ld a,b ;A register <- B register

2.3 Operand
0 or more operands can be placed in accordance
with the content of the mnemonic field. These
operands are allocated by the parameter strings.
They begin from a blank character indicating the
termination of the mnemonic field, are delimited
by a comma and end with a blank character or
semicolon.

2.4 Comment
Comments are disregarded in the process of
assembly. The comment begins with a ";" (semico-
lon) and ends at the termination of the line end
(line feed code).

2.5 Numerical Expression
Bit control is frequently executed in a microcom-
puter built into the equipment. For this reason,
asm88 and sap88 can handle binary, octal, hexa-
decimal and decimal expressions as the radix of
numerical expression.

The radix is recognized by placement of the
following characters after the number.

B: Binary
O, Q: Octal
H: Hexadecimal
None: Decimal (D can be used.)

(These may also be written as small
letters.)

The numbers must begin with Arabic numerals
(0–9). For example, the number "10" can appear as
follows.

10: Decimal
1010B: Binary
12Q: Octal
0AH: Hexadecimal

(To distinguish from names all
hexadecimal numbers using letters A to F
must have a "0" in front. eg. 0AH = HEX
number, AH = name)

II-4 EPSON CREATING PROCEDURE OF ASSEMBLY SOURCE FILE

2 GENERAL FORMAT OF SOURCE FILE

2.6 Characters
The sap88 and asm88 have adopted the notation
that has been normally called ASCII (American
Standard Code for Information Interchange) for
expression of characters and character strings.

2.7 ASCII Character Set
The ASCII character set code is composed of two
parts: 7 bits data according to the characters and 1
bit parity to check whether there is an error during
transfer. The ASCII character set is classified into
the following four types.

Table 2.7.1 ASCII character code table

These descriptions by escape sequences are only
permitted in character strings. The character string
can be handled by ASCII instruction, and they can
also be expressed by sets of characters enclosed by
single quotation marks.

2.8 Expressions
Constants are set at many points within programs,
for example, the operands for CPU instruction set
and the parameters for pseudo-instructions.
Moreover, constants can be shown using expres-
sions. The cross assembler asm88 evaluates
expressions and can make the result value into the
constant. A variable of the same size as the num-
bers used by the CPU or a larger one may be used
for the expression evaluation during assembly.

NOTE:
(1) When a relocatable code is made, the address

can only be used within the expression of which
the result will be a quantity that becomes
relocatable or a constant.

Consequently, the following expressions may
be used.

label1 - label2 ; When two labels are in the
 same program selection

label1 + <constant>
label1 - <constant>

The following expressions may not be used
because the result will not be a relocatable
quantity or a constant.

label1 + label2
label1 & label2
label1 * <constant>
label1 / <constant>
label1 % <constant>
label1 * label2
label1 / label2
label1 % label2
<constant> + label2
label1 - label2 ; When two labels are in the

 different program selection

(2) Since the results do not become relocatable
quantity, logic operations using a relocatable
address become errors during assembly.

Expressions are composed of several terms linked
by binary operators (for example, +). In the evalua-
tion, these expressions are calculated with 16-bit
precision.
The following terms may be used within the
expressions.

1 Numbers
2 Variables which have been defined by the user

to use the EQU and SET instructions, and
declared labels

3 Location counters $

In the asm88, the notation characters can be
handled as a character constant by enclosing them
with single quotation marks such as 'A', 'Z' and 'X'.
'\'' is particularly used for the single quotation
marks themselves.

To express a character which can not be displayed
such as a control code, the asm88 permits the
following notations for control characters thought
to have a particularly high usage frequency.

'\a' Bell (07H)
'\n' New-line (0AH)
'\r' Return (0DH)
'\t' Tab (09H)
'\b' Back space (08H)
'\e' Escape (1BH)
'\i' Shift-in (0FH)
'\o' Shift-out (0EH)

The notation, \nnn (nnn is an octal), can also be
used. When this notation is used, bell, for example,
can be written '\007'.

00

01

02

03

04

05

06

07

08

09

0a

0b

0c

0d

0e

0f

00

NUL

SOH

STX

ETX

EOT

ENQ

ACK

BEL

BS

HT

LF

VT

FF

CR

SO

SI

01

DEL

DC1

DC2

DC3

DC4

NAK

SYN

ETB

CAN

EM

SUB

ESC

FS

GS

RS

US

02

SP

!

"

#

$

%

&

'

(

)

✻

+

'

-

.

/

03

0

1

2

3

4

5

6

7

8

9

:

;

<

=

>

?

04

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

05

P

Q

R

S

T

U

V

W

X

Y

Z

[

\(¥)

]

^

_

06

`

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

07

p

q

r

s

t

u

v

w

x

y

z

{

|
}

~

DEL

00 01 10 11

Section

HL

CREATING PROCEDURE OF ASSEMBLY SOURCE FILE EPSON II-5

2 GENERAL FORMAT OF SOURCE FILE

Table 2.9.1c Binary operator

When $ is used as the operand for the CPU instruc-
tions, the address immediately preceding the
instruction is applied.

The asm88 is a two pass assembler and the values
for several variables which are used in program are
not defined in the pass 1 stage. When variables for
which values are undefined appear within expres-
sions during the pass 1 execution, 0 is assigned for
them. And if there are variables for which values
are still undefined in pass 2 execution, an error
results. Also, if variables which were undefined
when used for the expression in pass 1 are used in
pass 2, it causes a phase error. Consequently, you
should define the values for variables prior to
using them in an expression.

2.9 Operators
The asm88 accepts the following operators.

Table 2.9.1a Unary operator (1)

Table 2.9.1b Unary operator (2)

Operator Function

+a Positive sign

Example: ld a,#+25h

-a Negative sign

Example: add b,#-13h

~a Assigns the values reversing each bit.

Example: and a,#~10h

LOW a Assigns a lower 8-bit value of an expression.

Example: or b,#low 1234h

HIGH a Assigns a lower 8-bit value of an expression after

the expression value is shifted 8-bit to the right.

This is the same as that to return the upper 8-bit of a

16-bit expression.

Example: ld h,#high 1020h

BOC Calculates a bank value from a physical address.

This operator is effective for a physical address.

(Bank Of Code)

Example: ld a,#boc label

ld nb,a

LOC Calculates a logical address within the logical space

from a physical address. This operator is effective

for a physical address.

(Logical address Of Code)

Example: ld hl,#loc label

jp hl

:

label:

Operator Function

a+b Addition (32-bit signed integer)

Example: sbc [hl],#25h+10h

a-b Subtraction (32-bit signed integer)

Example: sub a,#63h-03h

a*b Multiplication (32-bit signed integer)

Example: xor l,#48h*5h

a/b Integer division (32-bit signed integer)

Example: cp ba,#1256h/31h

a%b Remainder. Divides the left operand by the right

operand, and returns the remainder.

Example: add a,#0d7h%4fh

a&b Logical AND. Returns true if both operands are

true. Returns false if either of the operands is false

or both operands are false.

Example: ld sp,#04a1h&2030h

a|b Logical OR. Returns true if either operand is true or

both operands are true.

Example: ld ix,#3026h|1000h

a^b Exclusive OR. Returns true if one operand is true

and the other is false. Returns false if both operands

are true or false.

Example: ld [iy],#44h^10h

a<<b Shift to left. Shifts b (integer) bits to the left.

Example: adc hl,#5000h<<3

a>>b Shift to right. Shifts b (integer) bits to the right

Example: cp ba,#8130h>>10h

Operator Function

POD Calculates a page value from a physical address.

This operator is effective for a physical address.

(Page Of Data)

Example: ld a,#pod label

ld ep,a

LOD Calculates a logical address within the page from a

physical address. This operator is effective for a

physical address.

(Logical address Of Data)

Example: ld ix,#lod label

ld a,[ix]

:

label:

II-6 EPSON CREATING PROCEDURE OF ASSEMBLY SOURCE FILE

2 GENERAL FORMAT OF SOURCE FILE

• Priority for operators
An expression is evaluated from left to right,
however, an operator with higher priority is
evaluated earlier than the other operators immedi-
ately in front of or behind it. If there are two or
more continued operators equal in priority, the
operators are evaluated from the left side.
Every left parenthesis "(" must have a correspond-
ing right parenthesis ")".
The following table shows the priority for opera-
tors.

Table 2.9.2 Priority for operators

2.10 Instruction Set
The asm88 accepts each of the following instruc-
tions as CPU instruction set.

E0C88 Family instruction list
adc cp inc neg rete sep swap
add cpl int nop rets sla upck

and dec jp or rl sll xor

bit div jrl pack rlc slp

call djr jrs pop rr sra

carl ex ld push rrc srl

cars halt mlt ret sbc sub

2.11 Register Name
The CPU register names indicated in the following
have been reserved as keywords in the asm88.
Refer to the "E0C88 Core CPU Manual" for
information on the respective register functions.

a Data register A

b Data register B

ba A and B register pair

h Data register H

l Data register L

hl Index register HL

ix Index register IX

iy Index register IY

sp Stack pointer SP

br Base register BR

sc System condition flag SC

pc Program counter PC

nb New code bank register NB

cb Code bank register CB

ep Expand page register EP

xp XP expand page register for IX

yp YP expand page register for IY

ip XP and YP register

Operators Priority

|, ^, & Low

+ (addition), - (subtraction) ↑
*, /, %, <<, >>

BOC, LOC, POD, LOD ↓
HIGH, LOW, ~, -, + High

• Operation rules for BOC, LOC, POD and LOD
In the unary operators, four operators BOC, LOC
POD and LOD are peculiar to the E0C88, and
possesses original rules for operation as the below.

BOC (physical address & 0x7f8000) >> 15
LOC If (physical address & 0x7f8000)

(physical address & 0x7fff) | 0x8000
else

(physical address & 0x7fff) | 0x0000
POD (physical address & 0xff0000) >> 16
LOD (physical address & 0xffff)

In the above, the value indicates the physical value
possessed by the operand. During assembly, the
asm88 only generates special relocation
information corresponding to each operator and
the actual address calculation is done by the link88
during linking.

CREATING PROCEDURE OF ASSEMBLY SOURCE FILE EPSON II-7

2 GENERAL FORMAT OF SOURCE FILE

2.12 Addressing Mode
The E0C88 determines the execution address
according to the following 12 types of addressing
modes.

Table 2.12.1 List of E0C88 addressing modes

Table 2.12.2 Notation rules for operands

No. Notation rule

1 A "#" is to be placed in front of numeric expressions

and symbols

2 Register name is to be written directly

3 Index register is to be enclosed by brackets ([])

4 Index register and displacement are to be enclosed by

brackets ([])

5 Index register + L is to be enclosed by brackets ([])

6 A "BR:" is to be placed in front of numeric expres-

sions and enclosed by brackets ([])

7 Numeric expressions and symbols are to be enclosed

by brackets ([])

8 Numeric expressions and symbols are to be enclosed

by brackets ([])

9 Numeric expressions and symbols are to be enclosed

by brackets ([])

10 Numeric expressions and symbols are to be written

directly

11 Numeric expressions and symbols are to be written

directly

12 None

No. Addressing mode

1 Immediate data addressing

2 Register direct addressing

3 Register indirect addressing

4 Register indirect addressing with displacement

5 Register indirect addressing with index register

6 8-bit absolute addressing

7 16-bit absolute addressing

8 8-bit indirect addressing

9 16-bit indirect addressing

10 Signed 8-bit PC relative addressing

11 Signed 16-bit PC relative addressing

12 Implied register addressing

Refer to the "E0C88 Core CPU Manual" for details
on each addressing mode. The notation rules for
the operands corresponding to these addressing
modes are as follows.

II-8 EPSON CREATING PROCEDURE OF ASSEMBLY SOURCE FILE

2 GENERAL FORMAT OF SOURCE FILE

2.13 Example for Mnemonic Notation
The examples for mnemonic notation in each addressing mode are shown in the below.

Addressing Constant Name Label (default) Default definition

name equ 50h label: address 00ffh

#nn eg.) ld a,#0ffh eg.) ld a,#name eg.) ld a,#label -----

0 to 255

#mmnn eg.) ld ba,#1000h eg.) ld ba,#name eg.) ld ba,#label -----

0 to 65535

[br:ll] eg.) ld b,[br:0ffh] eg.) ld b,[br:name] eg.) ld b,[br:label] [br:low lod label]

0 to 255

[hhll] eg.) ld 1,[1000h] eg.) ld l,[name] eg.) ld l,[label] [lod label]

0 to 65535

[ix+dd] eg.) ld [ix+10h],a eg.) ld [ix+name],a ----- -----

[iy+dd]

[sp+dd]

-128 to 127

#hh eg.) ld br,#0ffh eg.) ld br,#name eg.) ld br,#label high lod label

0 to 255

#pp eg.) ld ep,#05h eg.) ld ep,#name eg.) ld ep,#label pod label

0 to 255

#bb eg.) ld nb,#05h eg.) ld nb,#name eg.) ld nb,#label boc label

0 to 255

rr eg.) jrs 10h eg.) jrs name eg.) jrs label loc label

-128 to 127

[kk] eg.) jp [10h] eg.) jp [name] eg.) jp [label] [low lod label]

0 to 255

qqrr eg.) jrl 1000h eg.) jrl name eg.) jrl label loc label

-32768 to 32767

 • Meaning of the above mentioned default
definitions are as follows:
For example, when "jrl label" has been de-
scribed, the cross assembler asm88 judges as "jrl
loc label".

jrl label → jrl loc label

The program sequence is long jumped to the
logical address converted from the physical
address.

 • An error occurs when the operand exceeding
the above mentioned addressing range has
been specified, or when it is judged to exceed it.

 • In programming, pay attention to the following
points when using the short branch or long
branch instruction.

jrs(l) 10H Jumps to the address at
a distance of (10+1)H
from current address

jrs(l) $+10H ... Jumps to the address at
a distance of 10H from
current address

Except for the above, notations described in the
"E0C88 Core CPU Manual" can be used as is.

CREATING PROCEDURE OF ASSEMBLY SOURCE FILE EPSON II-9

3 PSEUDO-INSTRUCTIONS

3 PSEUDO-INSTRUCTIONS
In this chapter the usage of each type of pseudo-instruction supported by the asm88 and sap88 is

explained in the form classified by function. The format as explained below has been adopted for each
explanation to permit reference to it at any time.

View of the explanation
The explanation contents of each pseudo-instruc-
tion have been configured as the following format.

1) Name
Name of the pseudo-instruction . . . Function of
the instruction

2) Format
Here the instruction format is described. The
format is explained using notations according
to the following rules.
The explanations of the respective terms used
in the operand notations are as follows.

<Expression>
General expression composed of symbols and
constants including operators

<Numerical expression>
Constant expression using a numerical value
expression (including name which has been
defined as constant by EQU instruction)

<Label>
Symbols having a definition within the self-
module that has a relocatable property

<Name>
Symbols defined by EQU and SET instructions

<Symbol>
Name to be defined for the specific value

<Character string>
Character strings enclosed by double quotation
marks

The following symbols have been given special
meanings.

{ } ... The enclosed part indicated an optional
selection.

{ }* .. This option may be placed repeatedly any
number of times.

| | | .. When different parameters of a number of
different types can be adopted, one among
them that is delimited by this symbol
must necessarily be used as a parameter.

Other symbols
Commas ","s, brackets "[" and "]", and parenthe-
ses "(" and ")" may be input as assembler
sources.

3) Functions
Here the operations of the instruction are
explained in detail.

4) Examples
Here usage examples are indicated. Several
types may be written depending on the instruc-
tion.

5) Related items
Here instructions that function in a similar
manner and instructions that assist in under-
standing are indicated.

6) Restriction
Here restrictions for use are provided. Also,
causes of errors that occur in the use of an
instruction (forgetting the separator, for
example) are explained.

II-10 EPSON CREATING PROCEDURE OF ASSEMBLY SOURCE FILE

3 PSEUDO-INSTRUCTIONS

3.1 Section Setting Pseudo-Instructions
The section setting pseudo-instructions set each section (code section and data section) and decides
program area. The section setting pseudo-instructions are as follows:

CODE DATA

The section setting pseudo-instruction of the cross
assembler asm88 has been defined on assumption
that the code section should be allocated into ROM
and data section into RAM. It aims that the non-
volatile data such as program codes and constant
data should not be assigned into RAM, since the
microcomputer to built into an equipment has
RAM area that the initial values become undefined.
Therefore, when the non-volatile data such as
program codes and constant data are described, it
must be described within code section to set the
code section by CODE pseudo-instruction. When
the volatile data such as work area and stack area
are described, it must be described within data
section to set the data section by DATA pseudo-
instruction.

Correspondence of each pseudo-instruction, setting
section, area used, and contents to be described are
shown in table below.

Section name Area used Contents to be described

Code section ROM Data allocation that is

(CODE) necessary to decide from the

power on, such as program

code, constant data, and table.

Data section RAM Reservation for data area that

(DATA) does not matter if the initial

value is undefined at power on,

such as work area, stack area,

flags, and buffers.

Name:

DATADefinition of data section

Format:

DATA

Functions:

This instruction is used to reserve and allocate the
data area in the DATA section (RAM area). An
optional number of DATA sections may be defined
within one module and resumed during assembly.
Normally, the data section definition performs only
area reservation, and it is not output to the object
as a result of the assembly. However, this section is
a RAM area. When using equipment with built in
microcomputer, pay attention that the RAM area is
undefined at the power on and the initial values
are invalidated.
Since this instruction specifies the section with the
same function as the CODE pseudo-instruction, be
sure to specify which when in the assembly for the
data section. When it has not been specified, an
error message is output.

Example:

Reserves an area for flag and buffer table in the data
section.

data
flag: db [1]
buffer: db [256*8]

Related items:

CODE, ORG

Name:

CODE.....Definition of program section

Format:

CODE

Functions:

This instruction is used to allocate the program and
constants in the CODE section (ROM area). An
optional number of CODE sections may be defined
within one module and resumed during assembly.
Since this instruction specifies the section with the
same function as the DATA pseudo-instruction, be
sure to specify which when in the assembly. When
it has not been specified, an error message is
output.

Example:

Defines the program and constants in the code section.

code
trans: ld [iy],[ix]

inc ix
inc iy
djr nz,trans
ret
db 01h, 02h, 03h, 04h, 05h

Related items:

DATA, ORG

CREATING PROCEDURE OF ASSEMBLY SOURCE FILE EPSON II-11

3 PSEUDO-INSTRUCTIONS

3.2 Data Definition Pseudo-Instructions
Data definition pseudo-instruction is the pseudo-instruction to define data to be stored into the memory.
The data definition pseudo-instructions are as follows:

DB DW DL ASCII PARITY

Name:

DB Reserve/constant setting of the byte unit
data area

Format 1:

DB <expression> {,<expression>}*

Format 2:

DB <expression> (<numeric expression>)
 {,<expression> (<numeric expression>)}*

Format 3:

DB [<numeric expression>]
 {,[<numeric expression>]}*

Functions:

This instruction is used to reserve the 1 byte unit
data area and to set the constant. The setting of
constants are done according to a string of numeric
values delimited by a comma or the specification
for the repeat number. The parameters for this
instruction can be described over several lines, but
you should take care that the relocation informa-
tion for linking are not included. Further when this
instruction is used, it should be described within
the DATA (RAM) area when reserving data area,
and within the CODE (ROM) area when setting
constant. The code generation rules for each format
are as follows.

 • Format 1
This format defines the optional constant as the
optional number of object codes in 1 byte unit
and multiple expressions can be specified for an
operand field. The expression is handled as
constant value of 1 byte and when multiple
specifications are made, the object codes are
generated in the order of specification.

 • Format 2
This format repeat defines the optional constant
in 1 byte units and sets the repeat number in a
<numeric expression> enclosed by parentheses.

 • Format 3
This format reserves the area for the number of
bytes that have been assigned by the <numeric
expression> enclosed by brackets. The code
generated within the object at this time is 0.

Integer numeric constants, character constants and
symbols can be used as the expressions for formats
1 and 2, but they must necessarily have an absolute
numeric attribute. The value of the expression must
also be within the range of -128 to 255. When an
operation result is outside the above range, it will
be made an error and the value of the lower 1 byte
will be made the evaluation value. Each format can
be premixed for one instruction.

Examples:

buffer: db [50] ; Reserves 50 bytes area

tratbl: db '0','1','2','3','4','5','6','7',
'8','9','A','B','C','D','E','F'

; Reserves 16 bytes data as the
 constant

xhrbuf: db ' '(64) ; Reserves 64 bytes and
 initializes at the character code
 for the space

db '*'(64) ; Reserves 64 bytes '*' as the
 constant

Related items:

DW, DL

II-12 EPSON CREATING PROCEDURE OF ASSEMBLY SOURCE FILE

3 PSEUDO-INSTRUCTIONS

Name:

DW Reserve/constant setting of the word
unit data area

Format 1:

DW <expression> {,<expression>}*

Format 2:

DW <expression> (<numeric expression>)
{,<expression> (<numeric expression>)}*

Format 3:

DW [<numeric expression>]
{,[<numeric expression>]}*

Functions:

This instruction is used to reserve the word (2
bytes) unit data area and to set the constant. The
setting of constants are done according to a string
of numeric values delimited by a comma or the
specification for the repeat number. The param-
eters for this instruction can be described over
several lines. Further when this instruction is used,
it should be described within the DATA (RAM)
area when reserving data area, and within the
CODE (ROM) area when setting constant. The code
generation rules for each format are as follows.

 • Format 1
This format defines the optional constant as the
optional number of object codes in word (2
bytes) units and multiple expressions can be
specified for an operand field. The expression is
handled as a long word constant value or
symbol value and when multiple specifications
are made, the object codes are generated in the
order of specification.

 • Format 2
This format repeat defines the optional constant
in word units and sets the repeat number in a
<numeric expression> enclosed by parentheses.

 • Format 3
This format reserves the area for the number of
words that have been assigned by the <numeric
expression> enclosed by brackets. The code
generated within the object at this time is 0.

Integer numeric constants, character constants and
symbols can be used as the expressions for formats
1 and 2. When the expression has a relocatable
quality, the logical address of the location where
the concerned symbol has been allocated is rear-
ranged during linking. The value of the expression
must also be within the range of -32766 to 65535.
When an operation result is outside the above
range, it will be made an error and the value of the
lower 2 bytes will be made the evaluation value.
Each format can be premixed for one instruction.

Examples:

array: dw [10] ; Reserves 10 word size area

external func1,func2,func3,
func4,func5

jmptbl: dw func1,func2,func3,func4,func5
; Jump table of the functions

Related items:

DB, DL

CREATING PROCEDURE OF ASSEMBLY SOURCE FILE EPSON II-13

3 PSEUDO-INSTRUCTIONS

Name:

DL Reserve/constant setting of the long
word unit data area

Format 1:

DL <expression> {,<expression>}*

Format 2:

DL <expression> (<numeric expression>)
{,<expression> (<numeric expression>)}*

Format 3:

DL [<numeric expression>]
{,[<numeric expression>]}*

Functions:

This instruction is used to reserve the long word (4
bytes) unit data area and to set the constant. The
setting of constants are done according to a string
of numeric values delimited by a comma or the
specification for the repeat number. The param-
eters for this instruction can be described over
several lines. Further when this instruction is used,
it should be described within the DATA (RAM)
area when reserving data area, and within the
CODE (ROM) area when setting constant. The code
generation rules for each format are as follows.

 • Format 1
This format defines the optional constant as the
optional number of object codes in long word (4
bytes) units and multiple expressions can be
specified for an operand field. The expression is
handled as a long word constant value or
symbol value and when multiple specifications
are made, the object codes are generated in the
order of specification.

 • Format 2
This format repeat defines the optional constant
in long word units and sets the repeat number
in a <numeric expression> enclosed by paren-
theses.

 • Format 3
This format reserves the area for the number of
long words that have been assigned by the
<numeric expression> enclosed by brackets.
The code generated within the object at this
time is 0.

Integer numeric constants, character constants and
symbols can be used as the expressions for formats
1 and 2. When the expression has a relocatable
quality, the lower 16 bits value is rearranged as a
valid value during linking. Each format can be
premixed for one instruction.

Examples:

lubarr: dl [10] ; Reserves 10 4 byte size areas

lonum: dl 13768 ; Sets the constant lonum with a
 long word size integer

Related items:

DB, DW

II-14 EPSON CREATING PROCEDURE OF ASSEMBLY SOURCE FILE

3 PSEUDO-INSTRUCTIONS

Name:

ASCII.....ASCII text storing in memory

Format:

ASCII character expression {, character expression}*
character expression

 = character string | character constant | byte constant

Functions:

This instruction is used to store the ASCII character
code in memory.
For the area reserved by this instruction, the ASCII
text assigned by the parameter must be stored in
the memory. The character string for the parameter
is decoded and stored in the memory sequentially
from low-order addresses.
The area size becomes the number of bytes for the
decoded parameter. The operand is a character
string of one or more characters enclosed by
double quotation marks.
The ASCII instruction stores the character code of
each character of the character string in the
memory, however, since the information showing
the length and the termination of the character
string is not output, the character strings may be
set without a limitation.

Examples:

ascii "E0C88 Family"
ascii "bell",'\a' ; bell and BELL code
ascii "bell\07" ; Other format example
ascii "bell",'\07' ; Other format example
ascii 62h,65h,6ch,6ch,07h ; Other format example

Related item:

Table of ASCII character set

Name:

PARITY.....Setting/resetting of parity bit

Format:

PARITY <operand>

Functions:

The alphabet that has been adopted in the cross
assembler asm88 is an ASCII character set. The
ASCII character data are indicated with 7 bits and
the most significant bit shows the parity. This bit
can be optionally set or reset either always 0 or
always 1 using the PARITY instruction. In addi-
tion, the total number for 1 bit can be made odd or
even. The following parities can be specified for an
<operand>.

PARITY 7 Sets the parity bit at 0 (default)
PARITY 8 Sets the parity bit at 1
PARITY ODD It is set such that "1" within the 8

bits becomes odd
PARITY EVEN It is set such that "1" within the 8

bits becomes even

Related item:

Table of ASCII character set

CREATING PROCEDURE OF ASSEMBLY SOURCE FILE EPSON II-15

3 PSEUDO-INSTRUCTIONS

3.3 Symbol Definition Pseudo-Instructions
Symbol definition pseudo-instruction is the pseudo-instruction to define an expression with a name. The
symbol definition pseudo-instructions are as follows:

EQU SET

Name:

EQU.....Name value setting

Format:

<name> EQU <expression>

Functions:

This instruction is used to define the <expression>
with a <name>. The value of a name that has been
defined by this instruction may not be changed
later. Nor may an EXTERNAL declared symbol be
placed on the right side of the equals sign.
Length of the expression is not restricted, but up to
a 6 character hexadecimal number can be output to
the assembly list. When a 7 or more character
hexadecimal number has been defined, a warning
is output.

In the sap88, the name defined by the EQU can be
used in the conditional expression of the IFC
statement that hereafter occurs, or it can be used as
the parameter for the IFDEF/IFNDEF statements.
[sap88 only]

Examples:

false equ 0 ; Initialization
true equ -1
tablen equ TABFIN-TABSTA ; Calculation of table

 length
nul equ 00h ; Defines a character

 string indicating
 ASCII characters

soh equ 01h
stx equ 02h
etx equ 03h
eot equ 04h
enq equ 05h

Related items:

SET, IFC, IFDEF, IFNDEF, REPT

Limitation:

The <name> description must begin from the 1st
column.

Name:

SET.....Name value setting

Format:

<name> SET <expression>

Functions:

This instruction is the same as the EQU instruction,
it is intended, among others, to improve mainte-
nance of the assembler source code and it serves to
link <numeric expressions> with the <names>.
Unlike in the case of the EQU instruction, a name
defined by the SET instruction can be redefined
any number of times for other values and can be
treated as an assembler variable. Among the the
attributes of the cross-reference list, which is one of
the output lists of the assembler, those are defined
as variables take this symbol. The right side of the
equals sign must be defined before this instruction.
The main object of this instruction is to use the
name as a conditional assemble or macro variable
and it serves as a valuable function in the struc-
tured preprocessor sap88. However, it does not
have too much application in the cross assembler
asm88 itself, other than functioning to permit the
redefining of names.
Length of the expression is not restricted, but up to
a 6 character hexadecimal number can be output to
the assembly list. When a 7 or more character
hexadecimal number has been defined, a warning
is output.
In the sap88, the name defined by the SET can be
used in the conditional expression of the IFC
statement that hereafter occurs, or it can be used as
the parameter for the IFDEF/IFNDEF statements.
[sap88 only]

Examples:

abc set 1
ld a,#abc

abc set 2
ld a,#abc

Related items:

EQU, IFC, IFDEF, IFNDEF, REPT

Limitation:

The <name> description must begin from the 1st
column.

II-16 EPSON CREATING PROCEDURE OF ASSEMBLY SOURCE FILE

3 PSEUDO-INSTRUCTIONS

3.4 Location Counter Control
Pseudo-Instruction

The location counter control pseudo-instruction is
as follows:

ORG

3.5 External Definition and External
 Reference Pseudo-Instructions

External definition and external reference pseudo-
instructions are the pseudo-instructions to define
and refer symbols which are commonly used
between modules.

• External reference pseudo-instruction
.....EXTERNAL

• External definition pseudo-instruction
.....PUBLIC

Name:

EXTERNAL ..Symbol external definition declaration

Format:

EXTERNAL <symbol> {,<symbol>}*

Functions:

EXTERNAL and PUBLIC instructions are used so
that the same symbol will be used between multi-
ple modules. Declaration must be done with an
EXTERNAL instruction to reference symbols not
defined within the self-module, but rather defined
within other modules. If a declaration is made in
EXTERNAL, it will simultaneously be made in
PUBLIC as well.

Example:
external sqrt
carl sqrt

Related item:

PUBLIC

Name:

PUBLICGlobal declaration of symbol

Format:

PUBLIC <symbol> {,<symbol>}*

Functions:

When optional symbols are used in multiple
modules, they are declared with the PUBLIC and
EXTERNAL instructions. PUBLIC is used for
declaration of symbols, such that there is a defini-
tion within the self-module that permits reference
from other modules.

Example:
public sqrt ; SQRT permits reference from other

 modules

sqrt: ; Routine that computes the square
 root of an integer

.....
etc.

Related item:

EXTERNAL

Name:

ORG.....Changing of location counter value

Format:

ORG <expression>

Functions:

This instruction is used to specify addresses where
program has been placed. <expression> must be a
relative value from a label within the current
program section. At this time, an attempt to insert
an absolute address into the program counter
results as an error.
Length of the expression can be defined up to a 6
digit hexadecimal number, and an error occurs if 7
digits or more has been defined.

Examples:

sizstk equ 200h ; The stack size is 512 bytes
topstk: ; Reserves space for the

 stack
org topstk+sizstk

Related items:

CODE, DATA

CREATING PROCEDURE OF ASSEMBLY SOURCE FILE EPSON II-17

3 PSEUDO-INSTRUCTIONS

3.6 Source File Insertion Pseudo-
Instruction [sap88 only]

Source file insertion pseudo-instruction is a
pseudo-instruction to read and insert other files
into the optional location of source file.

INCLUDE

* This instruction can only be used in the struc-
tured preprocessor sap88. The sap88 expands
this instruction and creates the source file in
which the specified file is inserted. In the cross
assembler asm88, this instruction cannot be
used and will cause an error if used.

3.7 Assembly Termination
Pseudo-Instruction

Assembly termination pseudo-instruction termi-
nates each source program.

END

Name:

INCLUDE.....Another file insertion

Format:

INCLUDE <file name>

Functions:

This instruction reads the specified file in the
following an INCLUDE statement.
Including can be nested to optional depths.
Another file can be further included into a file that
is already included.

The sap88 analyses this pseudo-instruction and
creates the output file in which the specified file is
inserted. This pseudo-instruction is not transferred
to the asm88 as is.

Examples:

include chargen.s ; Character generator
include utilsub ; General purpose

 subroutine group

Limitation:

This instruction can only be used in the structured
preprocessor sap88. In the cross assembler asm88,
it cannot be used and will cause an error if used.

Name:

END.....Assembly stop

Format:

END {<Label>}

Functions:

This instruction is used to stop the assembly. A list
for the portion following this instruction is output,
but not assembled.

II-18 EPSON CREATING PROCEDURE OF ASSEMBLY SOURCE FILE

3 PSEUDO-INSTRUCTIONS

3.8 Macro-Related Pseudo-
Instructions [sap88 only]

The following pseudo-instructions are related to
the macro functions, and they perform a macro
definition, a macro deletion, a repeat definition,
and the like.

MACRO ~ ENDM
DEFINE
LOCAL
PURGE
UNDEF
IRP ~ ENDR
IRPC ~ ENDR
REPT ~ ENDR

* These pseudo-instructions can only be used in
the structured preprocessor sap88. The sap88
outputs the source file in which the setting
contents of these pseudo-instructions are
expanded into a form that can be assembled by
the cross assembler asm88. Further these
macro-related pseudo-instructions cannot be
accepted in the asm88 and will cause an error if
used.

Name:

MACRO.....Macro definition

Format:

<macro name> MACRO [<parameter> [, <parameter>] *]
<statement string>
[EXITM]
<statement string>

[<macro name>] ENDM

Functions:

This instruction performs a macro definition. If the
specified macro name is already used, the previous
definition will be overridden and this current
definition will redefine the macro. Names includ-
ing any characters except blank characters, brackets
"(" , ")", "{" , "}", "[" , "]" and a colon ":" can be used
as macro names. It is not necessary to define the
macro name for the ENDM line except the case that
the macro definition was nested. Moreover, there is
no limitation as to the number of parameters.
Arguments delimited by a comma "," can be
specified by the number of your choice at the time
of a macro call. The number of arguments should
not necessarily be equal to the number of param-
eters at the time of a macro definition. If a character
string identical to one parameter exists in the
macro body, it will be replaced with the corre-
sponding argument character string at the time of a
macro call. If any corresponding argument does
not exit it will be replaced with a blank character
string. It is also possible to specify a blank charac-
ter string on arguments. In this case, specification
should be done using the characters which are not
included in the blank character string. For example,
if it is specified as shown below at the time of a
certain macro "xmac" call :

xmac 1,,2

The second argument will become a blank charac-
ter string. At the same time, the number of argu-
ment at the time of the call will be replaced with
the sap88 system parameters NARG and narg. The
blank character string arguments at this time will
also be counted.

CREATING PROCEDURE OF ASSEMBLY SOURCE FILE EPSON II-19

3 PSEUDO-INSTRUCTIONS

All the parameters are not necessarily independent
as tokens. Some will be replaced with arguments
even when they occur inside character strings. In
order to reduce substitution, it is advisable to use
special symbols so that too much substitution can
be evaded. All symbols except a comma "," and
brackets "(" , ")", "{" , "}", "[" . "}" can be used for
parameters and arguments.
For example :

sum macro c,d
ld a,[c]
add a,d
ld [c],a
endm

sum total,#20

The above will be interpreted as follows :

l#20 a,[total]
a#20#20 a,#20
l#20 [total],a

If you redefine your macro definition as shown
below, your input will be correctly replaced :

sum macro c,&d
ld a,[c]
add a,&d
ld [c],a
endm

The blank characters before and after parameters
and arguments will be discarded. The blank
characters inside parameters and arguments,
however, are valid. Please take caution in this
respect. A macro call from inside the body of the
macro for a macro definition can also be done. In
this case, a macro call should be initiated at the
time the macro call generates.
For example :

 maca macro x,y
add x,y
endm

 macb macro x,y
maca x,y
endm

macb a,#2 → add a,#2

 maca macro x,y
sub x,y
endm

macb a,#2 → sub a,#2

A macro call from the body of the macro can be
executed according to the depth of your choice.
However, if the call enters a loop, the macro call
will be suspended. Take a simple example for
instance:

add macro x,y
ld a,x
add a,y
ld x,a
endm

When the macro defined as above is called, it is
expanded as follows:

ld a,b
add b,#2 → add a,#2

ld b,a

"add a,y" in the third line will call itself. The macro
call, therefore, will not occur. It will turn out to be a
simple "add" instruction. If we take a look at a little
more complicated example :

maca macro x,y
macb x,y
macc x,y
endm

macb macro x,y
macc x,y
maca x,y
endm

macc macro x,y
maca x,y
macb x,y
endm

When performing a conditional assembly using the
IFC statement inside the body of the macro, the
judgment will be made at the time of the macro
call. If an EXITM line occurs at this time, the macro
expansion will be suspended and the macro call
will end at that moment.

maca r0,#2

macb r0,#2

macc r0,#2

maca r0,#2

macc r0,#2

maca r0,#2

maca r0,#2

macb r0,#2

macb r0,#2

macc r0,#2

maca r0,#2

II-20 EPSON CREATING PROCEDURE OF ASSEMBLY SOURCE FILE

3 PSEUDO-INSTRUCTIONS

For example :

xmac macro x,y
...
ifc MODE == 2

exitm
endif
...
endm

MODE set 2
xmac #3,#4

When called as shown above, the macro expansion
will end at the EXITM line.

MODE set 1
xmac #3,#4

When called as shown above, the macro expansion
will be executed to the last.

It is possible to include a macro definition in the
body of the macro. In this case, however, the macro
name of the MACRO line corresponding to the
ENDM line will be required :

x macro
...
y macro

...
z macro

...
z endm
...

y endm
...
endm

With the case shown above, the macro "y" defini-
tion will be executed at the time the macro "x" is
called. In this case, however, it is not necessary to
specify a macro name for the outermost macro
definition ("x" in the above example) of the ENDM
line. Nesting can be done to the depth of your
choice.

Related items:

EQU, IFC, IFDEF, IFNDEF, IRP, IRPC, PURGE, SET

Limitation:

This pseudo-instruction can only be used in the
structured preprocessor sap88. It cannot be ac-
cepted in the asm88 and will cause an error if used.

Name:

DEFINE.....Character-string macro definition

Format:

DEFINE <character-string macro name>
[<substitute character-string>]

Functions:

This instruction performs a character-string macro
definition. The token identical to the character-
string macro name in the source after the DEFINE
statement will be replaced with a macro instruction
in the specified substitute character-string prior to
the evaluation of all the statements except the
IFDEF and IFNDEF statements. In the case that a
substitute character-string is not specified, it will be
replaced with a blank character-string. In addition,
a character-string macro name will be subject to be
evaluated in the IFDEF or IFNDEF statements.

Example:

define XMAX #128

cp a,XMAX
↓
cp a,#128

Related items:

IDEF, IFNDEF, UNDEF

Limitation:

This pseudo-instruction can only be used in the
structured preprocessor sap88. It cannot be ac-
cepted in the asm88 and will cause an error if used.

CREATING PROCEDURE OF ASSEMBLY SOURCE FILE EPSON II-21

3 PSEUDO-INSTRUCTIONS

Name:

LOCALDefinition of local label

Format:

LOCAL [<local label name>
[,<local label name>] *]

Functions:

This instruction declares a local label. When a
token with the name identical to that of a local
label occurs inside a macro definition, it will be
replaced in macros by a different label name,
which will be automatically generated at each
macro expansion. According to the rule of local
label generation, the numerals in four digits
starting with 0001 should follow the front character
string "L". The front character string can be
changed if specified at the start-up of the sap88.

Example:

macl macro
local x
cp a,#3
jr c,x
ld d,r0

x:
endm

macl
macl
↓
cp a,#3
jr c,L001
ld d,a

L001:
cp a,#3
jr c,L002
ld d,a

L002:

Related item:

MACRO

Limitation:

This pseudo-instruction can only be used in the
structured preprocessor sap88. It cannot be ac-
cepted in the asm88 and will cause an error if used.

Name:

PURGE.....Macro deletion

Format:

PURGE [<macro name>]

Functions:

Once this instruction is executed, the macro
definition of specified name that occur thereafter
will be deleted. When name is not specified, all the
macro definitions will be deleted. It is also possible
to specify undefined macro name.

Example:

purge add ; delete the macro add
add ba,#10 ; use the add instruction

Related item:

MACRO

Limitation:

This pseudo-instruction can only be used in the
structured preprocessor sap88. It cannot be ac-
cepted in the asm88 and will cause an error if used.

Name:

UNDEF.....Deletion of a character string macro

Format:

UNDEF <character string macro name>

Functions:

The character-string macro definition will be
deleted of the specified name that occur after this
instruction is executed. It is also possible to specify
undefined character-string macro name.

Example:

undef XMAX ; delete the character string macro XMAX

Related items:

DEFINE, IFDEF, IFNDEF

Limitation:

This pseudo-instruction can only be used in the
structured preprocessor sap88. It cannot be ac-
cepted in the asm88 and will cause an error if used.

II-22 EPSON CREATING PROCEDURE OF ASSEMBLY SOURCE FILE

3 PSEUDO-INSTRUCTIONS

Name:

IRP.....Repetition using character strings

Format:

IRP <parameter>, <argument> [, <argument>] *
<statement string>

ENDR

Functions:

With this instruction, arguments will be assigned
to parameters in sequence from the left and
expansion will be repeatedly performed up to the
ENDR line by the times equal to the number of the
arguments. If, at this time, a character string
identical to the parameter exists between the IRP
line and the ENDR line, such a character string will
be replaced with the character string keyed by the
argument.

All the parameters are not necessarily independent
as tokens. Even when they occur inside character
strings, they will be replaced with arguments. In
order to reduce substitution, it is advisable to use
special symbols for parameters so that too much
substitution can be evaded. All except a comma ","
and brackets " (" , ") ", " {" , "} ", " [" , "] " can be used
as special symbols.
For example :

irp w,10,20,30
dw w

endr

The above will be interpreted as :

d10 10
d20 20
d30 30

If you modify the symbols as follows, your input
will be correctly replaced:

irp &w,10,20,30
dw &w

endr

The blank characters before or after parameters or
arguments can be discarded. However, the blank
characters located inside parameters and argu-
ments are valid. Please take caution in this regard.

Each statement of IRP, IRPC and REPT can be
nested to the depth of your choice. The ENDR line
at this time will correspond to the inside IRP/
IRPC/REPT lines.

Example:

irp char,30,31,32,33,34,35,36,37,38,39
c_char: dw charh
endr

↓
c_30: dw 30h
c_31: dw 31h
c_32: dw 32h
c_33: dw 33h
c_34: dw 34h
c_35: dw 35h
c_36: dw 36h
c_37: dw 37h
c_38: dw 38h
c_39: dw 39h

Related items:

IRPC, MACRO, REPT

Limitation:

This pseudo-instruction can only be used in the
structured preprocessor sap88. It cannot be ac-
cepted in the asm88 and will cause an error if used.

CREATING PROCEDURE OF ASSEMBLY SOURCE FILE EPSON II-23

3 PSEUDO-INSTRUCTIONS

Name:

IRPC.....Repetition by characters

Format:

IRPC <parameter>, <argument character string>
<statement string>

ENDR

Functions:

With this instruction, the characters of argument
character strings will be assigned to parameters
one by one in sequence from the left. The expan-
sion will be repeatedly performed till the ENDR
line by the times equal to the number of characters
of arguments. If, at this time, the character strings
identical to the parameters exist between the IRPC
line and the ENDR line, such strings will be
replaced with the characters keyed by the argu-
ments.

All the parameters are not necessarily independent
as tokens. Even when they occur inside character
strings, they will be replaced with arguments. In
order to reduce substitution, it is advisable to use
special symbols so that excessive substitution can
be prevented. All symbols except a comma "," and
brackets "(" , ")", "{" , "}", "[" , "]" can be used as
special symbols for parameters and arguments. For
example :

irpc w,abc
dw 'w'

endr

The above will be interpreted as :

da 'a'
db 'b'
dc 'c'

If you modify the symbols as follows, your input
will be correctly replaced :

irpc &w,abc
dw '&w'

endr

The blank characters before or after the parameters
or arguments will be discarded. However, the
blank characters inside the parameters and argu-
ments are valid. Please take caution in this respect.
Each statement of IRP, IRPC and REPT can be
nested to the depth of your choice. The ENDR line
at this time will correspond to the inside IRP/
IRPC/REPT lines.

Example:

irp char,Hello, world!
dw 'char'

endr
↓
dw 'H'
dw 'e'
dw 'l'
dw 'l'
dw 'o'
dw ','
dw ' '
dw 'w'
dw 'o'
dw 'r'
dw 'l'
dw 'd'
dw '!'

Related items:

IRPC, MACRO, REPT

Limitation:

This pseudo-instruction can only be used in the
structured preprocessor sap88. It cannot be ac-
cepted in the asm88 and will cause an error if used.

II-24 EPSON CREATING PROCEDURE OF ASSEMBLY SOURCE FILE

3 PSEUDO-INSTRUCTIONS

Name:

REPT Repetition by the specified number of
times

Format:

REPT <operation expression>
<statement string>

ENDR

Functions:

The portion between the REPT line and the ENDR
line will be repeatedly expanded by the number of
times equal to the value of the operation expres-
sion. If there is any undefined name in the opera-
tion expression, the value of such a name will be
evaluated as "0".

Each statement of IRP, IRPC and REPT can be
nested to the depth of your choice. The ENDR line
at this time will correspond to the inside IRP/
IRPC/REPT lines.

Example:

rept 4 ; 4-bit shift
sll a

endr

Related items:

EQU, IRP, IRPC, SET

Limitation:

This pseudo-instruction can only be used in the
structured preprocessor sap88. It cannot be ac-
cepted in the asm88 and will cause an error if used.

3.9 Conditional Assembly Pseudo-
Instructions [sap88 only]

The conditional assembly pseudo-instructions
decide whether or not to perform the assembly
within the specified range by the evaluation result
of the conditional expression or whether the name
has been defined or not. The conditional assembly
pseudo-instructions are as follows:

IFC ~ ENDIF
IFDEF ~ ENDIF
IFNDEF ~ ENDIF

* These pseudo-instructions can only be used in
the structured preprocessor sap88. The sap88
outputs the source file in which the statements
subject for assembly are included. Further these
conditional assembly pseudo-instructions
cannot be accepted in the asm88 and will cause
an error if used.

Name:

IFC Conditional assembly by conditional
expression

Format:

IFC <conditional expression>
<statement string> [

ELESEC
<statement string>]

ENDIF

Functions:

This instruction evaluates a conditional expression.
If an expression is evaluated as "true", the state-
ments following the IFC line will become a subject
to be assembled until either an ELSEC line or an
ENDIF line appears. If it is evaluated as "false", the
statements following the IFC line will not be
considered a subject to be assembled. In the case
that there is an ELSEC line, the portion between the
ELSEC and ENDIF lines will become a subject to be
assembled if the conditional expression of the IFC
line is "false". If it is "true", the ELSEC line through
the ENDIF line will not become a subject for
assembly.

Each statement of IFC, IFDEF and IFNDEF can be
nested to the depth of your choice. The ELSEC line
and the ENDIF line at this time will correspond to
the inside IFC/IFDEF/IFNDEF lines.

CREATING PROCEDURE OF ASSEMBLY SOURCE FILE EPSON II-25

3 PSEUDO-INSTRUCTIONS

As explained in the following, the conditional
expression comes in three cases :

1) <operation expression>
When only an operation expression is used, a
decision will be made as to whether the value
of the expression is "0" or not "0". If it is "0", the
value will be considered as "false". If it is not
"0", the value will be considered as "true". In the
case that there is any undefined name in the
operation expression, the value of such a name
will be evaluated as "0". For instance :

IFC ee

will be decided as equivalent to

IFC ee != 0

2) <operation expression> <relational operator>
<operation expression>
The values of each operation expression are
compared. If, at this time, there is any unde-
fined name in the operation expressions, the
value of the undefined name will be evaluated
as "0".
The following relational operators are available :

== "true" if the value of the left side is equal
to that of the right side

!= "true" if the value of the left side is not
equal to that of the right side

< "true" if the left side is smaller than the
right side

> "true" if the left side is larger than the
right side

<= "true" if the left side is smaller than, or
equal to the right side

>= "true" if the left side is larger than, or
equal to around the right side

3) [<conditional expression>] <logical operator>
<conditional expression>
A complex conditional expression can be
expressed using a logical operator. The logical
operation expressions include the following :

Unary operator:

! "true" if the conditional expression is
"false"

Binary operator:

&& "true" if the left side is "true" and the
right side is also "true"

|| "true" if the left side is "true" or the right
side is "true"

The operators will be classified as follows from
high to low precedence : either an operation
expression or a conditional expression enclosed by
a round bracket > a unary operator > an operator
of an ordinary operation expression > a relational
operator > &&> ||

The same operator precedence will take effect
inside a round bracket. A unary operator is defined
as a unary operator of an ordinary operation
expression and "!" of a logical operator.

In addition, "character string" can be used as an
operation expression.

When such character strings occurs on both sides
of a relational operator, a character string will be
compared to another character string. Otherwise,
the value of the length of character strings will be
compared.

Example:

table macro &1,&2
ifc narg == 1

ifc! USE_DEFAULT || DEFAULT_SIZE<64
&1: db 0(64)

elsec
&1: db 0(DEFAULT_SIZE)

endif
elsec

&1: db 0(&2)
endif

endm

Related items:

EQU, IFDEF, IFNDEF, SET

Limitation:

This pseudo-instruction can only be used in the
structured preprocessor sap88. It cannot be ac-
cepted in the asm88 and will cause an error if used.

II-26 EPSON CREATING PROCEDURE OF ASSEMBLY SOURCE FILE

3 PSEUDO-INSTRUCTIONS

Name:

IFDEF Conditional assembly by the name
either defined or undefined

Format:

IFDEF <name>
<statement string> [

ELSEC
<statement string>]

ENDIF

Functions:

If the name is defined by either the EQU statement
or the SET statement, or is a character-string macro
name which is defined by the DEFINE statement,
the statements following the IFDEF line will
become a subject to be assembled until either the
ELSEC line or ENDIF line occurs. If the name is
undefined, the statements following the IFDEF line
will not become a subject to be assembled. In the
case that there is an ELSEC line, the portion
between the ELSEC line and the ENDIF line
corresponding to the IFDEF line will become a
subject to be assembled if the name of the IFDEF
line is not defined. If the name is defined, the
ELSEC line through the ENDIF line will not
become a subject to be assembled.

Each statement of IFC, IFDEF and IFNDEF can be
nested to the depth of your choice. The ELSEC line
and the ENDIF line at this time corresponds to the
inside IFC/IFDEF/IFNDEF lines.

Example:

ifdef EXTRA_MEMORY
stack_start equ 4000h
stack_size equ 1000h
elsec
stack_start equ 3800h
stack_size equ 800h
endif

Related items:

DEFINE, EQU, IF, IFNDEF, SET

Limitation:

This pseudo-instruction can only be used in the
structured preprocessor sap88. It cannot be ac-
cepted in the asm88 and will cause an error if used.

Name:

IFNDEF Conditional assembly by the name
either undefined or defined

Format:

IFNDEF <name>
<statement string> [

ELSEC
<statement string>]

ENDIF

Functions:

If the name is not defined neither by the EQU
statement or SET statement, nor defined by the
DEFINE statement as a character-string macro
name, the statements following the IFNDEF line
will become a subject to be assembled until either
the ELSEC line or the ENDIF line occurs. If the
name is defined, the statements following the
IFNDEF line will not be processed as a subject to be
assembled. In addition, in the case that there is an
ELSEC line, the portion between the ELSEC line
and the ENDIF line corresponding to the IFNDEF
line will become a subject to be assembled if the
name of the IFNDEF line is defined. If not defined,
the portion will not become a subject to be assem-
bled.

Each statement of IFC, IFDEF and IFNDEF can be
nested to the depth of your choice. The ELSEC line
and the ENDIF line at that time will correspond to
the inside IFC/IFDEF/IFNDEF lines.

Example:

ifndef SMALL_MEMORY
stack_start equ 3800h
stack_size equ 800h
elsec
stack_start equ 4000h
stack_size equ 1000h
endif

Related items:

DEFINE, EQU, IF, IFNDEF, SET

Limitation:

This pseudo-instruction can only be used in the
structured preprocessor sap88. It cannot be ac-
cepted in the asm88 and will cause an error if used.

CREATING PROCEDURE OF ASSEMBLY SOURCE FILE EPSON II-27

3 PSEUDO-INSTRUCTIONS

3.10 Output List Control Pseudo-Instructions
The output list control pseudo-instructions are used for that can be easily referred, and are as following 7
types:

LINENO
SUBTITLE
SKIP
NOSKIP
LIST
NOLIST
EJECT

Name:

LINENO ... Change of line number for assem-
bly list file

Format:

LINENO <numeric expression>

Functions:

This instruction forcibly changes the line number
for the assembly list file to the following line
number set by the <numeric expression>. The line
number can be changed up to 65535, and starts
from 0 if it exceeds the upper limit.

Example:

lineno 99 ; line number begins from 100

Name:

SUBTITLE Subtitle setting to assembly list
file

Format:

SUBTITLE <character string>

Functions:

The SUBTITLE instruction is used for outputting
optional character string as subtitles onto the 4th
line of the list output. After the first page, SUBTI-
TLE appearing within the current page is used as
the subtitle of the following page and continue to
be used until a new SUBTITLE appears.
The character string should be enclosed by double
quotation marks.

Example:

subtitle "asm88 Special function library"

Name:

SKIP Suppresses all initialization codes
output that exceed 4 bytes to assembly
list file

Format:

SKIP

Functions:

When this instruction appears, even when there is
an initialization that exceeds a one line assembly
list file, that is, a size greater than 5 bytes in each of
the following instructions ASCII, DB, DL and DW,
it will output a 1 line code only to the assembly list
file and will suppress code outputs that do not fit
on the assembly list file. The NOSKIP instruction
serves to counter this function, however, SKIP is
set in the default.

Example:

noskip
db 1,2,3,4,5,6,7,8,9,0

; All the hexadecimal codes output to the
 assembly list file

skip
ascii "1234567890"

; ASCII codes output to list file as one
 line only

Related item:

NOSKIP

II-28 EPSON CREATING PROCEDURE OF ASSEMBLY SOURCE FILE

3 PSEUDO-INSTRUCTIONS

Name:

NOSKIP Outputs all initialization codes to
assembly list file

Format:

NOSKIP

Functions:

This instruction is used to reverse the function of
the SKIP instruction (default) that suppresses
output of codes exceeding 4 bytes to the assembly
list file. When this instruction appears, thereafter, if
initialization codes are set for each of the ASCII,
DB, DL and DW instructions, all of these codes will
be output onto the list.

Example:

noskip
db 1,2,3,4,5,6,7,8,9,0

; All the hexadecimal codes output to
 the assembly list file

skip
ascii "1234567890"

; ASCII codes output to list file as
 one line only

Related item:

SKIP

Name:

NOLIST ... Prohibition of assembly list file
output

Format:

NOLIST

Functions:

When this instruction appears, thereafter, the
assembly list file output will be prohibited. In
order to resume the assembly list file output, use
the LIST instruction. Further the line number is
updated if the assembly list file output has been
prohibited by NOLIST.

Related item:

LIST

Name:

LIST.....Assembly list file output

Format:

LIST

Functions:

When this instruction appears, thereafter, the
assembly list file will be output. In the default,
LIST is set.

Related item:

NOLIST

Name:

EJECT.....Form feed of assembly list file

Format:

EJECT

Functions:

When this instruction appears, the form feed with
the page header is inserted to the assembly list file
same as an auto form feed. This instruction itself is
shown in the first line of the page after form
feeding.

E0C88 Family Structured Assembler Manual

III REFERENCE Part III describes the start-up format, all the start-up flags that
can be used, error messages and so on as reference for each
software tool.

REFERENCE EPSON III-i

CONTENTS

Contents

Format of Explanation ... III-1

1 Structured Preprocessor <sap88> ... III-2

2 Cross Assembler <asm88>... III-4

3 Linker <link88> ... III-9

4 Symbol Information Generator <rel88> .. III-13

5 Symbolic Table File Generator <sym88> .. III-16

6 Binary/HEX Converter <hex88> ... III-18

Appendix

A List of sap88 Pseudo-Instructions ... III-20

B List of asm88 Pseudo-Instructions .. III-22

C Example for Mnemonic Notation .. III-24

REFERENCE EPSON III-1

FORMAT OF EXPLANATION

FORMAT OF EXPLANATION
The explanation for each software tool has been arranged by the items shown below.

PROGRAM NAME
Shows the program name.

SUMMARY
Functions of the software tool are explained.

INPUT/OUTPUT FILES
Shows the execution flow and input/output files.

START-UP FORMAT
Shows the start-up command format of the soft-
ware tool. This format includes the main compo-
nent elements of the command line; the name of
tool itself and all the flags that can be received in
the tool. The command cannot be started up if you
input invalid flags and/or arguments and forget
the necessary arguments.

Flags are listed in [] by a delimiter "-" and the
names. In principle, the flags are listed in alpha-
betical order. Flags that are composed of values
alone, are listed behind all other flags. In the case
of flags that accompany some values, the type of
concerned value as well is shown by one of the
below codes (assigned immediately following the
flag name).

That means, a word size integer value is assigned
to the flags -RAM, -ROM and -sig. The flags -all, -c,
-l, -q and -x do not have values. Character strings
are assigned to -o and -suf.
Be careful of flags which normally have a hyphen
placed immediately in front, appearing without
one. (Provided there is no particular specification
and a hyphen is assumed.)
When specifying the flag individually, RAM# in
the list shown above should be assigned as -RAM#.
Furthermore, flags without values can continu-
ously be specified by placing a "-" (hyphen) only
for the head of the flags to be specified, for
example, -clq.
The location and meaning of a non-flag argument
is indicated by a word within < and > (<files> in
the above example). Each meta-concept shows 0 or
1 or more arguments on the command line. When
inputting command lines, type all the command
line where meta-concepts appear in their position
on the concerned line. In the case of the asm88,
input one or more file names in the position shown
by <files>. Meta-concepts in brackets are optional
specifications. It is all right if they appear, and they
may appear more than once.

FLAGS
Functions of all flags are listed. In some cases,
supplementary explanations follow them depend-
ing on the situation.

ERROR MESSAGES
A list of error messages displayed during execu-
tion.

RETURN VALUE
When execution has been completed, each tool
returns either of two values, "success" or "failure".
This item describes the conditions under which
either of the two are returned by the tool. Gener-
ally, the return value of "success" indicates that the
tool executed all the necessary file processing.
This return value is used to evaluate an execution
result of the tool when executing batch processing.

EXAMPLE
Here is an example using the software tool.

NOTE
Here notes for use are described.

The hash mark # shows word size (2-byte) integers.
Double hash marks ## show long word size (4-
byte) integers. When integers begin with 0x or 0X
they may be interpreted as hexadecimal numbers.
When they begin with O as octal numbers and in
other cases as decimal numbers, they can option-
ally be preceded by either plus + or minus - signs.
A caret "^" immediately follows the value code, of
formats of the type where there are two or more
assignments per flag such that the values are
stacked.
For example, the asm88 utility format is as follows:

asm88 -[all c l o* q RAM# ROM#
sig# suf* x] [drive:]< files>

We know that the asm88 receives the following 10
different sorts of flags.

Code Types of value
* Character string
Integer (word size)
Integer (long word size)
? Single character

III-2 EPSON REFERENCE

1 STRUCTURED PREPROCESSOR <sap88>

1 Structured Preprocessor <sap88>
PROGRAM NAME

sap88.exe

SUMMARY

The structured preprocessor sap88 adds the macro functions to the cross assembler asm88.
The sap88 expands the macro and structured control statements included in the specified E0C88 assembly
source file into a format that can be assembled by the asm88, and outputs it. At this time, the sap88 also
executes the processing for including of the modularized E0C88 assembly source files and conditional
assembly.
When file name has not been specified, the sap88 reads from the standard input (console).

INPUT/OUTPUT FILE

• Execution flow • Input file
Structured assembly source file: file_name.s
This is a structured assembly source file which is
created by an editor such as EDLIN.

• Output file
Assembly source file: file_name.ms
This is the output file in which the macros in the
structured assembly source file are expanded into
the E0C88 instructions that can be assembled by
the asm88. This file becomes an input file of the
asm88. The output file extension should be made
as ".ms".

START-UP FORMAT

sap88 -[d*^ l* o* q] [drive:] <file>

flags:
Character strings enclosed with [] mean flags. Explanations for each flag are discussed later.

drive:
In case the input file is not in current drive, input the drive name in front of the input file name. It can be omitted if the
input file is in current drive.

file:
Specify the file name to be input to the sap88. This file name can be input using either capital letters or small letters.
When <file> has not been specified, the sap88 reads from the standard input.

Note: The extension for the structured assembly source file should be made as ".s".

Assembly source file

file_name.ms

Structured assembly source files

sap88

file_name.s

sap88 execution flow

REFERENCE EPSON III-3

1 STRUCTURED PREPROCESSOR <sap88>

FLAGS

The sap88 can accept the following flags. The flags should be input with small letters.

ERROR MESSAGES

RETURN VALUE

The sap88 returns "success" if there is no syntax error in the input file. If there is a syntax error, "failure" is
returned even if the contents of the input file are correct.

EXAMPLE

Expands the structured assembly source file "sample.s" to the assembly source file "sample.ms".
C>sap88 -o sample.ms sample.s

NOTE

If there is no syntax error in a macro statement, the sap88 expands it normally even though it contains
illegal operands such as wrong register names. This error will be detected by the assembler asm88.

Character-string

macro definition

Front character string

specification

Creating output file

Suppression of start-up message

A character-string macro is defined prior to reading in an input file.

"*" has the following format:

 <character-string macro name> = <substitution character string>

If the substitution character string is not defined and only the

 <character-string macro name>

is defined, only the character-string macro will be defined and the substitution character

string will become a blank character string. The character-string macros using the

-d flag can be defined up to a maximum of 20.

The front character string of a label name that is created at the time of the expansion of

the structured control statement is designated. It is "L" in default.

An output file name is turned to *. The default status is standard output.

Does not output any message related to processing of the structured preprocessor.

Function ExplanationFlag

-d*^

-l*

-o*

-q

unexpected EOF in ~

can't include ~

illegal ~

illegal define

illegal expression at ~

illegal undef

The file is terminated in the middle of ~.

~ cannot be included.

~ is incorrect.

"define" statement is incorrect.

~ in the expression is incorrect.

"undef" statement is incorrect.

Error message Description

III-4 EPSON REFERENCE

2 CROSS ASSEMBLER <asm88>

2 Cross Assembler <asm88>
PROGRAM NAME

asm88.exe

SUMMARY

The cross assembler asm88 converts an assembly source file to machine language by assembling the
assembly source file in which the macros are expanded by the structured preprocessor sap88. The asm88 is
a high speed assembler whose functions have been simplified to increase speed, and all the added
functions, such as macro and conditional assembly, are supplemented with another utility (sap88).
The asm88 deals with the relocatable assembly for modular development.
In the relocatable assembly, the relocatable object file to link up with the other modules using the linker
link88 is created.
In addition, the asm88 can directly input an assembly source file and in such case, the source program can
be described in free format as the following format.

Label: Mnemonic Operand ;Comment

In the above format, ":" indicates the end of the label and ";" indicates the beginning of the comment.
It is possible to format freely by using these separators.

The asm88 also outputs three types of lists for the programmer, an assembly list, an error list and a cross-
reference list. The assembly list is composed of a line number, address and a machine code corresponding
to each source statement. The line number is output as a decimal number and the address and machine
code as a hexadecimal number. When errors occur during assembly, an error list file is created that is
composed of a file name, the line number that generated the error, the error level and an English error
message.
Also in the assembly list file, a mark "* " is placed at the line number in which an error has been generated.
It has also been designed such that the relationship between the definitions and the references of the
symbols within the files can be easily understood by a cross-reference list. Since these are created as
individual files, file management has also been simplified. Processing can continue even when an error
occurs, provided it is not a fatal error.

INPUT/OUTPUT FILES

asm88 execution flow

Relocatable
object file

Assembly
source files

file_name.ms

Error
list file

Cross reference
list file

file_name.x

Assembly
list file

file_name.e file_name.o file_name.l

asm88

• Execution flow
The asm88 inputs assembly source
files and outputs relocatable object
files, an assembly list file, a cross
reference list file and an error list file
after assembly.

REFERENCE EPSON III-5

2 CROSS ASSEMBLER <asm88>

• Input file
Assembly source file: file_name.ms
This is an assembly source file created by the sap88. In the default of the asm88, ".ms" is set as the input
file extension. Although the extension can be changed by specifying an option, do not change the
default setting if unnecessary.

• Output files

1. Relocatable object file: file_name.o
This is the file output from the asm88 after converting the assembly source file to the relocatable E0C88
machine language by the relocatable assembly. This file becomes an input file for the linker link88.

2. Assembly list file: file_name.l
This is the file in which the machine language converted by assembly and the address are output as a
list corresponding to each source statement. The addresses are output as relative addresses that the
head of the CODE section or the DATA section in the file assume as "000000H". The creating of this file
can be prohibited by a start-up flag.

3. Cross reference list file: file_name.x
This is a list of addresses in which a symbol has been defined and referred. Creating this file can be
prohibited by a start-up flag.

4. Error list file: file_name.e
This is a list of errors that have been generated during assembly.

START-UP FORMAT

asm88 -[all c l o* q RAM# ROM# sig# suf* x] [drive:] <files>

flags:
Character strings enclosed with [] mean flags. Explanations for each flag are discussed later.

drive:
In case the input file is not in current drive, input the drive name in front of the input file name. It can be omitted if the
input file is in current drive.

files:
Specify the file name to be input to the asm88. This file name can be input using either capital letters or small letters,
and specifying two or more source files is possible. An error will occur when <files> are not specified.

Note: Up to eight characters are available for the source file name. Furthermore, the extension ".ms" must
be input.

FLAGS

The asm88 can accept the following flags.
-ROM# and -RAM# should be input using capital letters and the others should be input using small letters.

All symbols output

Differentiation between capital

and small letters within source

program

Prohibition of assembly list

generation

Creating output file

Outputs all symbols including local symbols to a symbol table. In default, only global

symbols and undefined symbols are output.

Differentiates capital and small letters within the input source. Since capital and small

letters are not differentiated in default, ABC and abc are handled as the same symbol.

When this flag is specified, the CPU instructions and the register names must be

described using small letters.

Prohibits the creation of an assembly list file. In default, an assembly list file with the

extension ".l" is created.

Creates output files with the name "*". In default, the output file name is the same as

the input file and the extension becomes ".o" when the input file extension is ".ms".

When the input file extension is other than ".ms", the default output file name becomes "xeq".

Example: When creating "out.o" from "sample.ms", specify as below.

 asm88 -o out.o sample.ms

Function ExplanationFlag

-all

-c

-l

-o*

III-6 EPSON REFERENCE

2 CROSS ASSEMBLER <asm88>

When one or more <files> without the -o flag are specified and the file name extension of the input file
name is the suffix of the default file name, the asm88 outputs the object files with the same name as the
input files and the extention ".o".

asm88 file1.ms file2.ms files3.ms

By inputting the above, the three object files file1.o, file2.o and file3.o are automatically created. Be aware
that the -o flag will not function, when multiple files have been specified for <files>.

ERROR MESSAGE

• Fatal errors

Suppression of start-up message

RAM capacity setting

ROM capacity setting

Setting character numbers

of symbols

Change of input file extension

Prohibition of cross reference

list file creation

Does not output any messages related to the assembly processing.

Sets the RAM capacity in byte units with #. When the total size of the DATA section

exceeds the value set by this flag, an error is output.

Example: When the internal RAM capacity is set in 2K (2048 bytes), specify as below.

 asm88 -RAM 2048 sample.ms

Sets the ROM capacity in byte units with #. When the total size of the CODE section

exceeds the value set by this flag, an error is output.

Example: When the internal ROM capacity is set in 16K (16384 bytes), specify as below.

 asm88 -ROM 16384 sample.ms

Character numbers of symbols that are significant can be set with a # value.

In default the # is set to 15 characters.

Changes the extension of the input file to * (a separator "." is not included).

The default is ".ms".

Example: When the extension of an input source file (sample.ms) is changed to ".bs",

specify as below.

 asm88 -suf bs sample.bs

Prohibits the creation of a cross reference list file. In default, a cross reference list file

with the extension ".x" is created.

Function ExplanationFlag

-q

-RAM#

-ROM#

-sig#

-suf*

-x

can't create <file>

can't open <file>

can't read tmp file

can't write tmp file

namelist full

no i/p file

insufficient memory

can't seek on vmem file

can't seek to end of vmem file

no swoppable page

read error on vmem file

write error on vmem file

<file> cannot be created.

<file> cannot be opened.

Temporary file cannot be read.

Temporary file cannot be written.

Name list table is full.

There is no input file specification.

There is not enough memory.

Seeking of virtual memory file has failed.

Cannot reach the end of virtual memory file.

There is no swap space.

Reading of virtual memory file has failed.

Writing to virtual memory file has failed.

Error message Description

REFERENCE EPSON III-7

2 CROSS ASSEMBLER <asm88>

• Severe errors

<numeric label> already defined

<identifier> wrong type

<token> expected

' missing

attempted division by zero

attempt to redefine <identifier>

constant expected

end expected

encountered too early end of line

field overflow

invalid branch address

invalid byte relocation

invalid character

invalid flag

invalid operand

invalid relocation item

invalid register

invalid register pair

invalid symbol define

invalid word relocation

new origin incompatible with current psect

non terminated string

<identifier> not defined

missing numeric expression

cars or jrs out of range

carl or jrl out of range

operand expected

psect name required

phase error <identifier>

CODE or DATA missing

ROM capacity overflow

RAM capacity overflow

relocation error in expression

<identifier> reserved word

syntax error <token> expected

syntax error <token> unexpected

syntax error - invalid identifier <identifier>

syntax error <token> invalid in expression

system error < > <token>

unsupported instruction

unsupported operand

The numeric label has been defined previously.

An illegal identifier has appeared.

A token is needed.

A quotation mark is missing.

Attempt has been made to divide by zero.

Attempt has been made to redefine an identifier.

A constant expression is required.

There is no end instruction.

The line has terminated in the middle.

The field to be secured has overflowed.

An external defined symbol is used for the operand of the short branch instruction.

The byte relocation is invalid.

Three is an illegal character.

The flag is invalid.

The operand is invalid.

The relocation item is invalid.

The register is invalid.

The register combination is invalid.

The symbol definition is invalid.

The word relocation is invalid.

There is an absolute origin within the relocatable section (relocatable mode).

The termination of a string cannot be located.

Undefined identifier has appeared.

A numeric expression is missing.

Branch destination by cars or jrs is out of range.

Branch destination by carl or jrl is out of range.

There is no operand.

A section name must be specified.

The label address is different between pass 1 and pass 2.

There is no section setting pseudo-instruction.

ROM capacity has overflowed.

RAM capacity has overflowed.

A relocation error has appeared within the expression.

<identifier> is a reserved word.

Syntax error due to insufficient token(s)

Syntax error due to excess token(s)

Syntax error due to an illegal identifier

Syntax error due to an illegal token

System error due to an illegal token

Unsupported instruction has appeared.

Unsupported operand has appeared.

Error message Description

III-8 EPSON REFERENCE

2 CROSS ASSEMBLER <asm88>

• Warning errors

RETURN VALUE

When there is no syntax error within the input file nor pass 2 error, and all the processing is successfully
completed, the asm88 returns "success".

EXAMPLE

Performs relocatable assembly of the file "sample.ms" to simultaneously obtain the list file "sample.l".
C>asm88 sample.ms

directive is ignored in relocatable mode

possibly missing relocatability

constant overflow

expected operator

The pseudo-instruction is skipped because it is in the relocatable mode.

Relocatability may lose.

Seven or more digits has been defined for the name.

There is no operator (BOC, LOC, POD, LOD).

Error message Description

REFERENCE EPSON III-9

3 LINKER <link88>

3 Linker <link88>
PROGRAM NAME

link88.exe

SUMMARY

The link88 links multi-section relocatable object files for the E0C88 and creates an absolute object file. The
absolute object file is used to create a program data HEX file that is used for debugging with the ICE88 or
EVA88 by inputting to the binary/HEX converter hex88. It will also be used to create absolute symbol
information (rel88) after linking the relocatable assembled file.

The basic functions of the link88 process are as follows.

1) The global flag controls the overall link88 process.

2) It defines the new CODE section and DATA section by the addition of a flag and a file.

3) It relocates sections, rearranging them in optional locations of the physical memory and permits them
to be mutually "stacked" (chaining) in appropriate storage boundaries.

4) Each object file input affects the current CODE section and DATA section.

5) The final output starts with the header, thereafter (in the named order) all CODE sections, all DATA
sections, symbolic table and the relocation stream for all CODE sections and all DATA sections. The
respective component elements for these sorts of outputs are controlled through use of the appropriate
global flag which will be described later.

6) Since all the sections are continuous in the linker output, the binary/HEX converter hex88 must be used
for writing the section into the appropriate physical location, in order to execute it in a special location
within the memory.

The E0C88 has a 24-bit wide address space (maximum 16M bytes). It splits that address space into a 32K-
byte bank (code section) or a 64K-byte page (data section) by controlling the most significant 8-bit by
registers such as the code bank register (CB) and the expanded page registers (EP, XP and YP) in an effort
to expand the access performance within that range. It is possible to access an optional bank or page from
an optional bank or page by rewriting the content of the register, thus permitting easy management of such
things as large programs and data bases. However, since the register will not be automatically renewed,
even if the bank and the register are crossed, a load module image permitting the 16M-byte address space
to be described linearly cannot be created.

The E0C88 adopts a multi-segment system for linking relocatable objects, in order to create load images to
be laid out in the optional physical addresses of the address spaces managed by it.

This is a technique in which "All the spaces are split into optional sections of 64K-byte (page) or 32K-byte
(bank) units and the address information necessary for the memory layout determines all the address
information in accordance with the assignment to each segment unit."
In this technique, since the creation of continuous data objects whose size exceeds 64K bytes (page) and
32K bytes (bank) for one section is not permitted, a limitation is imposed whereby the total size for the
CODE sections included in the modules of assembly units cannot exceed 32K bytes and the total size for
the DATA section cannot exceed 64K bytes. This restriction reflects the address restriction of the CPU itself
and even if a diagnosis of a data overflow generated during assembly were overlooked, it is set up such
that it would be rediagnosed during linking.
However, it outputs an error when the size exceeds 64K bytes in default, but does not output when the size
exceeds 32K bytes. Consequently, a flag must be specified for judgment when the size exceeds 32K bytes.

III-10 EPSON REFERENCE

3 LINKER <link88>

INPUT/OUTPUT FILES

• Execution flow • Input files

1. Relocatable object file: file_name.o
This is a relocatable file in machine language
that is output through relocatable assembly
with the cross assembler asm88.

2. Link command parameter file: file_name.lcm
This is a link command parameter file that is
directly described by the user.

• Output file
Absolute object file: file_name.a
This is a multi-section object file created by
the link88.

Relocatable
object files

Link command
parameter file

link88<file_name.lcm

Absolute object file

file_name.a

file_name.lcm file_name.o

Note: Multi-section object file is an absolute object image whose format is composed of a global header, a
section descriptor, objects within all CODE sections, objects within all DATA sections, objects within
all DEBUG sections, objects within all ZPAG section, a symbolic table, a debug symbolic table, and
all relocation information.

START-UP FORMAT

link88 -[c cd +dead max## o* q] <sections>

<sections> includes one or more following contents.

-[+code +data m## p##] [drive:]

flags:
Character string enclosed with [] mean flags. Flags within the first [] are global flags and flags within the [] included
in <sections> are local flags.

drive:
In case of the relocatable object files or the libraries are not in current drive, input the drive name in front of these file
names. It can be omitted if these files are in current drive.

Note: The extension for the relocatable object files should be made as ".o".

link88 execution flow

REFERENCE EPSON III-11

3 LINKER <link88>

FLAGS

The link88 can accept the following flags. The flags should be input with small letters.

• Global flags

When the arguments on the command line are not transferred to the link88, the list of flags and files that
become arguments of the link88 are transferred from standard input. When a "-" (hyphen) first appears in
the argument list of the command line, a standard input is incorporated into the argument list in place of
the "-". The occurrences of "-" following thereafter are disregarded.
The specified <files> are linked in that order.

• Local flags

Flags for sections

A new section of a specified format is not actually created, when the final section of that format has a zero
size. However, a new local flag is processed and overwrites the preceding value. These two flags must
immediately precede the local flag set to appropriately process the flags and to decide to what flag is to be
applied.

Flags used only together with +code or +data

Distinction between capital

and small letters within symbols

Deletion of DATA code part

Listing of undefined symbols

Setting of maximum section size

Setting of output file name

Skip start-up message

Distinguishes capital and small letters used for symbols within the relocatable object file.

In default, they are not distinguished, therefore ABC and abc are handled as the same symbol.

Does not output the code part for the DATA section. -cd is used to create modules that define

only symbol values for such purposes as specification of the addresses for the common library.

Outputs a list of dead wood symbols on the CRT, that is, symbols that have been

defined, but are not referred as absolute.

Sets the maximum section size at ## bytes. The default value is FFFFFFH (16M bytes).

This value is used when sections are linked. When it exceeds this value, an error will occur.

Writes the output module on the file *. The default output file name is xeq.

Does not output any message related to link processing.

Function ExplanationFlag

-c

-cd

+dead

-max##

-o*

-q

Beginning CODE section

Beginning DATA section

Begins a new CODE section, then processes the local flag for that section.

Begins a new DATA section, then processes the local flag for that section.

Function ExplanationFlag

+code

+data

Setting of individual

section size

Physical address setting

Sets the maximum size of the individual segment as ## bytes. The default size is 8000H

(CODE section) or 10000H (DATA section). An error will occur if the section size

exceeds this setting value.

Sets the physical address of the beginning of the section as ##.

Function ExplanationFlag

-m##

-p##

III-12 EPSON REFERENCE

3 LINKER <link88>

ERROR MESSAGES

RETURN VALUE

When an error message is not output to the standard output, in other words, no undefined symbol remains
and all reads and writes have succeeded, the link88 returns "success". If not, it returns "failure".

EXAMPLE

Links the sample.o by the link88 via standard input.
A>link88
-o c88xxx.a +code -p0x100 +data -p0x8000
sample.o
^Z
A>
A>link88 < sample.lcm

bad file format: 'FILE NAME'

bad relocation item

bad symbol number: 'NUMBER'

can't create 'FILE NAME'

can't create tmp file

can't open: 'FILE NAME'

can't read binary header: 'FILE NAME'

can't read file header: 'FILE NAME'

can't read symbol table: 'FILE NAME'

can't read tmp file

can't write output file

can't write tmp file

field overflow

inquiry phase error: 'SYMBOL NAME'

link: early EOF in pass2

multiply defined 'SYMBOL NAME'

no object files

no relocation bits: 'FILE NAME'

'SECTION NAME' overflow

phase error: 'SYMBOL NAME'

previous reference blocked: 'SYMBOL NAME' range error

read error in pass2

undefined 'SYMBOL NAME'

Format of the input file 'FILE NAME' is incorrect.

There is long integer type relocation information.

'NUMBER' is detected as illegal symbol code.

The file 'FILE NAME' cannot be created.

Temporary file cannot be created.

The input file 'FILE NAME' cannot be opened.

Header of the file 'FILE NAME' cannot be read.

First two bytes of the file 'FILE NAME' cannot be read.

Symbol table cannot be read from the file 'FILE NAME'.

Temporary file cannot be read.

Cannot write into output file.

Cannot write into temporary file.

Branch destination by cars or jrs is out of range.

Symbol value of the 'SYMBOL NAME' is different between pass 1

and pass 2.

Unexpected EOF is detected during pass 2 processing.

'SYMBOL NAME' is multiply defined.

No input object files exist.

The relocation information corresponding to the file 'FILE NAME' is

suppressed.

The section size in the 'SECTION NAME' exceeds the upper limit value.

Symbol value of the 'SYMBOL NAME' is different between pass 1

and pass 2.

The information related relocation bit width is unmatched.

Read error is generated during pass 2 processing.

'SYMBOL NAME' has not been defined.

Error message Description

REFERENCE EPSON III-13

4 SYMBOL INFORMATION GENERATOR <rel88>

4 Symbol Information Generator <rel88>
PROGRAM NAME

rel88.exe

SUMMARY

The rel88 checks the multi-section relocatable objects. The files that become the object of such checks are
relocatable object files output by the cross assembler asm88 and absolute object files output by the link88.
The rel88 can be used to check the size and configuration of relocatable object files and to output symbol
information in absolute object files output from the link88.

INPUT/OUTPUT FILES

• Input file
Absolute object file: file_name.a
Inputs an absolute object file created by the
link88.

• Output file
Standard output or
Symbol information reference file: file_name.ref
The rel88 outputs a symbol information
reference file that is allocated in the physical
address from the absolute object file.

rel88 execution flow

START-UP FORMAT

rel88 -[a +dec d g +in +sec v] [drive:] <files>

flags:
Character strings enclosed with [] mean flags. Explanations for each flag are discussed later.

drive:
In case an input file is not in current drive, input the drive name in front of the input file name. It can be omitted if an
input file is in current drive.

files:
Specify the file name to be input into the rel88. This file name can be input using either capital or small letters and
specifying two or more files is possible. An error will occur when <files> is not specified.

Symbol information
reference file

file_name.ref

file_name.a

Absolute object file

rel88>file_name.ref

Standard output

• Execution flow

III-14 EPSON REFERENCE

4 SYMBOL INFORMATION GENERATOR <rel88>

FLAGS

The rel88 can accept the following flags. The flags should be input with small letters.

<files> are zero, or one or more files and they must have a multi-section format. When two or more files are
specified, the name of each file or module precedes the information that is output pertaining to it. Each
name is followed by a colon and a new-line. When there is no <files> specification, or when a "-" appears
on the command line, xeq is used as an input file.

ERROR MESSAGE

RETURN VALUE

When a diagnostic message has not been created (in other words, when all the reads have succeeded and
all the file formats are valid), rel88 returns "success".

Sorting of symbol names

Decimal output

Output of defined symbols

Output only global symbols

Standard input

Physical address and size of

multi-section

Sorting by symbol values

Sorts outputs in alphabetical order of the symbol names.

Outputs symbol values and segment sizes in decimal numbers.

The default is a hexadecimal number.

Outputs all defined symbols within each file, one per line. The symbol value, the

"relocation code" showing to what the value is related and the symbol name are entered

on each line. Values are output in the number of digits needed to indicate the integers in

the E0C88. The meanings of the relocation codes in the outputs are as follows.

 • C indicates CODE relativity

 • D indicates DATA relativity

 • A indicates absolute (not relocatable)

 • ? indicates rel88 cannot recognize it.

Small letters are used to indicate local symbols.

Capital letters are used for global symbols.

Outputs global symbols only.

Takes <files> from standard input and adds them to command line.

Redirecting is also possible and is valid when many files are specified.

Outputs the physical address and size of each section of multi-segment output files.

Sorts the inside of section by symbol values. The aforementioned -d flag is tacitly

specified. Symbols that have the same value are sorted in alphabetic order. Absolute

(non-relocatable) symbols are displayed first and are followed by CODE relative

symbols and DATA relative symbols.

Function ExplanationFlag

-a

+dec

-d

-g

+in

+sec

-v

can't read binary header

can't read header

can't read symbol table

Reading of the object header excluding magic number and configuration

byte has failed.

Reading of the first two bytes of the object header (magic number and

configuration byte) has failed.

Reading of the symbolic table in the object has failed.

Error message Description

REFERENCE EPSON III-15

4 SYMBOL INFORMATION GENERATOR <rel88>

EXAMPLE

Obtains a list of all the symbols within the module in alphabetic order in hexadecimal numbers.
C>rel88 -a alloc.o
0x0074C _alloc
0x0000D _exit
0x01feC _free
0x00beC _nalloc
0x0000D _sbreak
0x0000D _write

NOTE

When no symbol is in the object or local symbols only exist, rel88 outputs a "no memory" message. How-
ever, the local symbols are registered in the symbolic table by setting the -all flag of the asm88 (all symbols
output). If you wish to refer to all symbols, set the -all flag of the asm88.

III-16 EPSON REFERENCE

5 SYMBOLIC TABLE FILE GENERATOR <sym88>

5 Symbolic Table File Generator <sym88>
PROGRAM NAME

sym88.exe

SUMMARY

The symbolic table file generator sym88 converts a symbolic information file (file_name.ref) generated in
file redirect with the symbol information generating utility rel88 to a symbolic table file (file_name.sy) that
can be referenced in the ICE88. Loading the symbolic table file and the corresponding relocatable assembly
program file in the ICE88 makes symbolic debugging possible.

INPUT/OUTPUT FILE

• Execution flow • Input file
Symbol information reference file: file_name.ref
Inputs a symbol information reference file created
by the rel88.

• Output file
Symbolic table file: file_name.sy
The sym88 converts a symbol information file into a
format that can be loaded to the ICE88 and outputs
a symbolic table file.

START-UP FORMAT

sym88 <file>

file:
Specify the symbol information file (.ref) to be input to the sym88.
This file name can be input using either capital letters or small letters.
An error will occur when <file> is not specified.

ERROR MESSAGE

RETURN VALUE

The sym88 returns "success" if there is no error in the input file and an output file is created. If there is an
error in the input file or internal created file, "failure" is returned.

Symbolic table file

file_name.sy

file_name.ref

Symbol information
reference file

sym88

sym88 execution flow

No Input File Input file ".ref" has not been specified.

Error message Description

REFERENCE EPSON III-17

5 SYMBOLIC TABLE FILE GENERATOR <sym88>

EXAMPLE

Converts the symbol information reference file sample.ref into the symbolic table file sample.sy.
A:/>rel88 sample.ref

NOTES

1. Drives and directories for input files can not be specified in the startup command of the sym88.
Therefore, be sure to start up the sym88 after setting the directory of the input file as the current
directory.

2. The sym88 does not check the format of the input file. Therefore, the symbol information file to be input
to the sym88 must only be generated using the symbol information generating utility rel88 with the
flags shown below.
A:/>rel88 -v +sec sample.a>sample.ref

III-18 EPSON REFERENCE

6 BINARY/HEX CONVERTER <hex88>

6 Binary/HEX Converter <hex88>
PROGRAM NAME

hex88.exe

SUMMARY

The hex88 converts an absolute object file created by the link88 into a hexadecimal data conversion format
(program data HEX file). This system adopted Motorola S record format. An absolute object file is read
from the <ifile>. When an <ifile> is not assigned, or when an assigned file name is a "-" (hyphen), file xeq is
read.
Further, S2 format in Motorola S record (can convert up to 3-byte address) is used since the E0C88 has a
maximum 16M-byte address space (000000–FFFFFFH).

INPUT/OUTPUT FILES

• Execution flow
The hex88 is a tool to convert an absolute
object file output from the linker (link88) into
a program data HEX file in hexadecimal
format. The execution flow is shown below.

• Input file
Absolute object file: file_name.a
File to be input into the hex88 is an absolute
object file output from linker.

• Output file
Standard output
or Program data HEX file: file_name.sa
The hex88 converts an absolute object file to
an ASCII file that can be input to the unused
area filling utility fil88XXX.

START-UP FORMAT

hex88 -[o*] [drive:] <ifile>

flag:
Character string enclosed with [] means flag. Explanations for the flag is discussed later.

drive:
In case an absolute object file is not in current drive, input the drive name in front of the file name. It can be omitted if
an input file is in current drive.

ifile:
Specify the file name input to the hex88. This file name can be input using either capital or small letters. When an
<ifile> is not assigned, or when an assigned file name is a "-" (hyphen), file xeq is read.

Note: The extension for the absolute object file should be made as ".a".

Program data HEX file

file_name.sa

file_name.a

Absolute object file

hex88

Standard output

hex88 execution flow

REFERENCE EPSON III-19

6 BINARY/HEX CONVERTER <hex88>

FLAG

The hex88 can accept the following flag. The flag should be input with small letters.

ERROR MESSAGE

RETURN VALUE

If an error message is not printed, in other words if all the records have meanings, and all the reading and
writing is successful, the hex88 returns "success". Otherwise, the hex88 returns "failure".

EXAMPLE

Converts the absolute object file sample.a into the program data HEX file in the Motorola S2 format.
A>hex88 -o sample.sa sample.a

Output file specification Writes the output module for the file *.

The default is standard output. (hex88 fixed setting flag)

Function ExplanationFlag

-o*

bad file format

can't read <input file>

can't write <output file>

Input file format is incorrect.

Reading of the <input file> has failed.

Writing to the <output file> has failed.

Error message Description

III-20 EPSON REFERENCE

APPENDIX A LIST OF sap88 PSEUDO-INSTRUCTIONS

Appendix A List of sap88 Pseudo-Instructions
SOURCE FILE INSERTION PSEUDO-INSTRUCTION

Pseudo-instruction Function and format
INCLUDE Another file insertion

INCLUDE <file name>

MACRO RELATED PSEUDO-INSTRUCTIONS

Pseudo-instruction Function and format
MACRO~ENDM Macro definition

<macro name> MACRO [<parameter> [, <parameter>] *]
<statement string>
[EXITM]
<statement string>

[<macro name>] ENDM

DEFINE Character-string macro definition
DEFINE <character-string macro name> [<substitute character-string>]

LOCAL Definition of local label
LOCAL [<local label name> [,<local label name>] *]

PURGE Macro deletion
PURGE [<macro name>]

UNDEF Deletion of a character string macro
UNDEF <character-string macro name>

IRP~ENDR Repetition by character strings
IRP <parameter>, <argument> [, <argument>] *

<statement string>
ENDR

IRPC~ENDR Repetition by characters
IRPC <parameter>, <argument character string>

<statement string>
ENDR

REPT~ENDR Repetition by the specified number of times
REPT <operation expression>

<statement string>
ENDR

REFERENCE EPSON III-21

APPENDIX A LIST OF sap88 PSEUDO-INSTRUCTIONS

CONDITIONAL ASSEMBLY PSEUDO-INSTRUCTIONS

Pseudo-instruction Function and format
IFC~ENDIF Conditional assembly by conditional expression

IFC <conditional expression>
<statement string> [

ELESEC
<statement string>]

ENDIF

IFDEF~ENDIF Conditional assembly by the name either defined or undefined
IFDEF <name>

<statement string> [
ELSEC

<statement string>]
ENDIF

IFNDEF~ENDIF Conditional assembly by the name either undefined or defined
IFNDEF <name>

<statement string> [
ELSEC

<statement string>]
ENDIF

III-22 EPSON REFERENCE

APPENDIX B LIST OF asm88 PSEUDO-INSTRUCTIONS

Appendix B List of asm88 Pseudo-Instructions
SECTION SETTING PSEUDO-INSTRUCTIONS

Pseudo-instruction Function and format
CODE Definition of CODE section

CODE

DATA Definition of DATA section
DATA

DATA DEFINITION PSEUDO-INSTRUCTIONS

Pseudo-instruction Function and format
DB Reserve/constant setting of the byte unit data area

DB <expression> {,<expression>}*
DB <expression> (<numeric expression>) {,<expression> (<numeric expression>)}*
DB [<numeric expression>] {,[<numeric expression>]}*

DW Reserve/constant setting of the word (2-byte) unit data area
DW <expression> {,<expression>}*
DW <expression> (<numeric expression>) {,<expression> (<numeric expression>)}*
DW [<numeric expression>] {,[<numeric expression>]}*

DL Reserve/constant setting of the long word (4-byte) unit data area
DL <expression> {,<expression>}*
DL <expression> (<numeric expression>) {,<expression> (<numeric expression>)}*
DL [<numeric expression>] {,[<numeric expression>]}*

ASCII ASCII text storing in memory
ASCII character expression {, character expression}*

character expression = character string | character constant | byte constant

PARITY Setting/resetting of parity bit
PARITY <operand>

SYMBOL DEFINITION PSEUDO-INSTRUCTIONS

Pseudo-instruction Function and format
EQU Name value setting

<name> EQU <expression>

SET Name value setting
<name> SET <expression>

LOCATION COUNTER CONTROL PSEUDO-INSTRUCTION

Pseudo-instruction Function and format
ORG Changing of location counter value

ORG <expression>

REFERENCE EPSON III-23

APPENDIX B LIST OF asm88 PSEUDO-INSTRUCTIONS

EXTERNAL DEFINITION AND EXTERNAL REFERENCE PSEUDO-INSTRUCTIONS

Pseudo-instruction Function and format
EXTERNAL Symbol external definition declaration

EXTERNAL <symbol> {,<symbol>}*

PUBLIC Global declaration of symbol
PUBLIC <symbol> {,<symbol>}*

OUTPUT LIST CONTROL PSEUDO-INSTRUCTIONS

Pseudo-instruction Function and format
LINENO Change of line number for assembly list file

LINENO <numeric expression>

SUBTITLE Subtitle setting to assembly list file
SUBTITLE <string>

SKIP Suppresses all initialization codes output that exceed 4 bytes to assembly list file
SKIP

NOSKIP Outputs all initialization codes to assembly list file
NOSKIP

LIST Assembly list file output
LIST

NOLIST Prohibition of assembly list file output
NOLIST

EJECT Form feed of assembly list file
EJECT

ASSEMBLY TERMINATION PSEUDO-INSTRUCTION

Pseudo-instruction Function and format
END Assembly stop

END {<label>}

III-24 EPSON REFERENCE

APPENDIX C EXAMPLE FOR MNEMONIC NOTATION

Appendix C Example for Mnemonic Notation
The examples for mnemonic notation in each addressing mode are shown in the below.

Addressing Constant Name Label (default) Default definition

name equ 50h label: address 00ffh

#nn eg.) ld a,#0ffh eg.) ld a,#name eg.) ld a,#label -----

0 to 255

#mmnn eg.) ld ba,#1000h eg.) ld ba,#name eg.) ld ba,#label -----

0 to 65535

[br:ll] eg.) ld b,[br:0ffh] eg.) ld b,[br:name] eg.) ld b,[br:label] [br:low lod label]

0 to 255

[hhll] eg.) ld 1,[1000h] eg.) ld l,[name] eg.) ld l,[label] [lod label]

0 to 65535

[ix+dd] eg.) ld [ix+10h],a eg.) ld [ix+name],a ----- -----

[iy+dd]

[sp+dd]

-128 to 127

#hh eg.) ld br,#0ffh eg.) ld br,#name eg.) ld br,#label high lod label

0 to 255

#pp eg.) ld ep,#05h eg.) ld ep,#name eg.) ld ep,#label pod label

0 to 255

#bb eg.) ld nb,#05h eg.) ld nb,#name eg.) ld nb,#label boc label

0 to 255

rr eg.) jrs 10h eg.) jrs name eg.) jrs label loc label

-128 to 127

[kk] eg.) jp [10h] eg.) jp [name] eg.) jp [label] [low lod label]

0 to 255

qqrr eg.) jrl 1000h eg.) jrl name eg.) jrl label loc label

-32768 to 32767

 • Meaning of the above mentioned default
definitions are as follows:
For example, when "jrl label" has been de-
scribed, the cross assembler asm88 judges as "jrl
loc label".

jrl label → jrl loc label

The program sequence is long jumped to the
logical address converted from the physical
address.

 • An error occurs when the operand exceeding
the above mentioned addressing range has been
specified, or when it is judged to exceed it.

 • In programming, pay attention to the following
points when using the short branch or long
branch instruction.

jrs(l) 10H Jumps to the address at
a distance of (10+1)H
from current address

jrs(l) $+10H ... Jumps to the address at
a distance of 10H from
current address

Except for the above, notations described in the
"E0C88 Core CPU Manual" can be used as is.

AMERICA

EPSON ELECTRONICS AMERICA, INC.

- HEADQUARTERS -
1960 E. Grand Avenue
EI Segundo, CA 90245, U.S.A.
Phone: +1-310-955-5300 Fax: +1-310-955-5400

- SALES OFFICES -

West
150 River Oaks Parkway
San Jose, CA 95134, U.S.A.
Phone: +1-408-922-0200 Fax: +1-408-922-0238

Central
101 Virginia Street, Suite 290
Crystal Lake, IL 60014, U.S.A.
Phone: +1-815-455-7630 Fax: +1-815-455-7633

Northeast
301 Edgewater Place, Suite 120
Wakefield, MA 01880, U.S.A.
Phone: +1-781-246-3600 Fax: +1-781-246-5443

Southeast
3010 Royal Blvd. South, Suite 170
Alpharetta, GA 30005, U.S.A.
Phone: +1-877-EEA-0020 Fax: +1-770-777-2637

EUROPE

EPSON EUROPE ELECTRONICS GmbH

- HEADQUARTERS -
Riesstrasse 15
80992 Munich, GERMANY
Phone: +49-(0)89-14005-0 Fax: +49-(0)89-14005-110

- GERMANY -
SALES OFFICE
Altstadtstrasse 176
51379 Leverkusen, GERMANY
Phone: +49-(0)2171-5045-0 Fax: +49-(0)2171-5045-10

- UNITED KINGDOM -
UK BRANCH OFFICE
Unit 2.4, Doncastle House, Doncastle Road
Bracknell, Berkshire RG12 8PE, ENGLAND
Phone: +44-(0)1344-381700 Fax: +44-(0)1344-381701

- FRANCE -
FRENCH BRANCH OFFICE
1 Avenue de l' Atlantique, LP 915 Les Conquerants
Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE
Phone: +33-(0)1-64862350 Fax: +33-(0)1-64862355

ASIA

- CHINA -
EPSON (CHINA) CO., LTD.
28F, Beijing Silver Tower 2# North RD DongSanHuan
ChaoYang District, Beijing, CHINA
Phone: 64106655 Fax: 64107319

SHANGHAI BRANCH
4F, Bldg., 27, No. 69, Gui Jing Road
Caohejing, Shanghai, CHINA
Phone: 21-6485-5552 Fax: 21-6485-0775

- HONG KONG, CHINA -
EPSON HONG KONG LTD.
20/F., Harbour Centre, 25 Harbour Road
Wanchai, HONG KONG
Phone: +852-2585-4600 Fax: +852-2827-4346
Telex: 65542 EPSCO HX

- TAIWAN -
EPSON TAIWAN TECHNOLOGY & TRADING LTD.
10F, No. 287, Nanking East Road, Sec. 3
Taipei, TAIWAN
Phone: 02-2717-7360 Fax: 02-2712-9164
Telex: 24444 EPSONTB

HSINCHU OFFICE
13F-3, No. 295, Kuang-Fu Road, Sec. 2
HsinChu 300, TAIWAN
Phone: 03-573-9900 Fax: 03-573-9169

- SINGAPORE -
EPSON SINGAPORE PTE., LTD.
No. 1 Temasek Avenue, #36-00
Millenia Tower, SINGAPORE 039192
Phone: +65-337-7911 Fax: +65-334-2716

- KOREA -
SEIKO EPSON CORPORATION KOREA OFFICE
50F, KLI 63 Bldg., 60 Yoido-dong
Youngdeungpo-Ku, Seoul, 150-763, KOREA
Phone: 02-784-6027 Fax: 02-767-3677

- JAPAN -
SEIKO EPSON CORPORATION
ELECTRONIC DEVICES MARKETING DIVISION

Electronic Device Marketing Department
IC Marketing & Engineering Group
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5816 Fax: +81-(0)42-587-5624

ED International Marketing Department Europe & U.S.A.
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5812 Fax: +81-(0)42-587-5564

ED International Marketing Department Asia
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5814 Fax: +81-(0)42-587-5110

International Sales Operations

In pursuit of “Saving” Technology, Epson electronic devices.
Our lineup of semiconductors, liquid crystal displays and quartz devices

assists in creating the products of our customers’ dreams.
Epson IS energy savings.

ELECTRONIC DEVICES MARKETING DIVISION

� EPSON Electronic Devices Website

http://www.epson.co.jp/device/
First issue JULY 1993, Printed JUNE 1999 in Japan M A

	䤀 唀匀䔀刀✀匀 䜀唀䤀䐀䔀
	㄀ 伀唀吀䰀䤀一䔀 伀䘀 倀䄀䌀䬀䄀䜀䔀
	㄀⸀㄀ 䤀渀琀爀漀搀甀挀琀椀漀渀
	㄀⸀㈀ 匀琀愀渀搀愀爀搀 䘀氀漀瀀瀀礀 䐀椀猀欀
	㄀⸀㌀ 伀甀琀氀椀渀攀 漀昀 匀漀昀琀眀愀爀攀 吀漀漀氀猀
	㄀⸀㌀⸀㄀ 匀琀爀甀挀琀甀爀攀搀 瀀爀攀瀀爀漀挀攀猀猀漀爀 㰀猀愀瀀㠀㠀㸀
	㄀⸀㌀⸀㈀ 䌀爀漀猀猀 愀猀猀攀洀戀氀攀爀 㰀愀猀洀㠀㠀㸀
	㄀⸀㌀⸀㌀ 䰀椀渀欀攀爀 㰀氀椀渀欀㠀㠀㸀
	㄀⸀㌀⸀㐀 伀琀栀攀爀 甀琀椀氀椀琀椀攀猀
	㄀⸀㌀⸀㔀 䈀愀琀挀栀 昀椀氀攀猀

	㈀ 䐀䔀嘀䔀䰀伀倀䴀䔀一吀䄀䰀 䔀一嘀䤀刀伀一䴀䔀一吀 䄀一䐀 䤀一匀吀䄀䰀䰀
	㈀⸀㄀ 匀礀猀琀攀洀 䌀漀渀昀椀最甀爀愀琀椀漀渀
	㈀⸀㈀ 䤀渀猀琀愀氀氀愀琀椀漀渀
	㈀⸀㈀⸀㄀ 䤀渀猀琀愀氀氀攀爀
	㈀⸀㈀⸀㈀ 䤀渀猀琀愀氀氀愀琀椀漀渀 瀀爀漀挀攀搀甀爀攀

	㌀ 倀刀伀䜀刀䄀䴀 䐀䔀嘀䔀䰀伀倀䴀䔀一吀 倀刀伀䌀䔀䐀唀刀䔀匀
	㌀⸀㄀ 䐀攀瘀攀氀漀瀀洀攀渀琀 䘀氀漀眀
	㌀⸀㈀ 䌀爀攀愀琀椀渀最 匀漀甀爀挀攀 䘀椀氀攀
	㌀⸀㈀⸀㄀ 䐀攀瘀攀氀漀瀀洀攀渀琀 甀猀椀渀最 愀猀猀攀洀戀氀攀爀 氀愀渀最甀愀最攀

	㌀⸀㌀ 䄀猀猀攀洀戀氀礀
	㌀⸀㌀⸀㄀ 匀琀爀甀挀琀甀爀攀搀 瀀爀攀瀀爀漀挀攀猀猀漀爀 ⠀猀愀瀀㠀㠀⤀
	㌀⸀㌀⸀㈀ 䌀爀漀猀猀 愀猀猀攀洀戀氀攀爀 ⠀愀猀洀㠀㠀⤀
	㌀⸀㌀⸀㌀ 匀琀愀爀琀椀渀最 猀愀瀀㠀㠀 愀渀搀 愀猀洀㠀㠀
	㌀⸀㌀⸀㐀 䈀愀琀挀栀 瀀爀漀挀攀猀猀椀渀最 昀漀爀 爀攀氀漀挀愀琀愀戀氀攀 愀猀猀攀洀戀氀礀 ⠀爀愀㠀㠀⸀戀愀琀⤀
	㌀⸀㌀⸀㔀 刀攀氀漀挀愀琀愀戀氀攀 漀戀樀攀挀琀 昀椀氀攀
	㌀⸀㌀⸀㘀 䄀猀猀攀洀戀氀礀 氀椀猀琀 昀椀氀攀
	㌀⸀㌀⸀㜀 䌀爀漀猀猀 爀攀昀攀爀攀渀挀攀 氀椀猀琀
	㌀⸀㌀⸀㠀 䔀爀爀漀爀 氀椀猀琀
	㌀⸀㌀⸀㤀 䔀砀愀洀瀀氀攀 漀昀 愀猀猀攀洀戀氀礀 攀砀攀挀甀琀椀漀渀

	㌀⸀㐀 䰀椀渀欀
	㌀⸀㐀⸀㄀ 䰀椀渀欀椀渀最 洀漀搀甀氀攀猀
	㌀⸀㐀⸀㈀ 匀攀挀琀椀漀渀 挀漀渀琀爀漀氀
	㌀⸀㐀⸀㌀ 䴀漀搀甀氀攀 愀氀氀漀挀愀琀椀漀渀 椀渀昀漀爀洀愀琀椀漀渀
	㌀⸀㐀⸀㐀 匀琀愀爀琀椀渀最 氀椀渀欀㠀㠀
	㌀⸀㐀⸀㔀 䈀愀琀挀栀 瀀爀漀挀攀猀猀椀渀最 昀漀爀 氀椀渀欀椀渀最 ⠀氀欀㠀㠀⸀戀愀琀⤀
	㌀⸀㐀⸀㘀 䄀戀猀漀氀甀琀攀 漀戀樀攀挀琀 昀椀氀攀
	㌀⸀㐀⸀㜀 䔀砀攀挀甀琀椀漀渀 攀砀愀洀瀀氀攀 漀昀 氀椀渀欀椀渀最

	㌀⸀㔀 䌀爀攀愀琀椀渀最 倀爀漀最爀愀洀 䐀愀琀愀 䠀䔀堀 䘀椀氀攀
	㌀⸀㔀⸀㄀ 倀爀漀最爀愀洀 搀愀琀愀 䠀䔀堀 昀椀氀攀
	㌀⸀㔀⸀㈀ 䌀爀攀愀琀椀渀最 瀀爀漀最爀愀洀 搀愀琀愀 䠀䔀堀 昀椀氀攀 甀猀椀渀最 栀攀砀㠀㠀
	㌀⸀㔀⸀㌀ 䴀漀琀漀爀漀氀愀 匀㈀ 昀漀爀洀愀琀

	㌀⸀㘀 匀礀洀戀漀氀 䤀渀昀漀爀洀愀琀椀漀渀
	㌀⸀㘀⸀㄀ 䌀爀攀愀琀椀渀最 猀礀洀戀漀氀 椀渀昀漀爀洀愀琀椀漀渀 ⠀爀攀氀㠀㠀⤀
	㌀⸀㘀⸀㈀ 䌀爀攀愀琀椀渀最 猀礀洀戀漀氀椀挀 琀愀戀氀攀 昀椀氀攀 ⠀猀礀洀㠀㠀⤀

	䤀䤀 䌀刀䔀䄀吀䤀一䜀 倀刀伀䌀䔀䐀唀刀䔀 伀䘀 䄀匀匀䔀䴀䈀䰀夀 匀伀唀刀䌀䔀 䘀䤀䰀䔀
	㄀ 伀唀吀䰀䤀一䔀
	㄀⸀㄀ 䘀椀氀攀 一愀洀攀
	㄀⸀㈀ 匀漀甀爀挀攀 䘀椀氀攀 䐀椀昀昀攀爀攀渀挀攀猀 䐀攀瀀攀渀搀椀渀最 漀渀 猀愀瀀㠀㠀 愀渀搀 愀猀洀㠀㠀
	㄀⸀㌀ 䴀愀挀爀漀 䤀渀猀琀爀甀挀琀椀漀渀猀

	㈀ 䜀䔀一䔀刀䄀䰀 䘀伀刀䴀䄀吀 伀䘀 匀伀唀刀䌀䔀 䘀䤀䰀䔀
	㈀⸀㄀ 匀礀洀戀漀氀
	㈀⸀㈀ 䴀渀攀洀漀渀椀挀
	㈀⸀㌀ 伀瀀攀爀愀渀搀
	㈀⸀㐀 䌀漀洀洀攀渀琀
	㈀⸀㔀 一甀洀攀爀椀挀愀氀 䔀砀瀀爀攀猀猀椀漀渀
	㈀⸀㘀 䌀栀愀爀愀挀琀攀爀猀
	㈀⸀㜀 䄀匀䌀䤀䤀 䌀栀愀爀愀挀琀攀爀 匀攀琀
	㈀⸀㠀 䔀砀瀀爀攀猀猀椀漀渀猀
	㈀⸀㤀 伀瀀攀爀愀琀漀爀猀
	㈀⸀㄀　 䤀渀猀琀爀甀挀琀椀漀渀 匀攀琀
	㈀⸀㄀㄀ 刀攀最椀猀琀攀爀 一愀洀攀
	㈀⸀㄀㈀ 䄀搀搀爀攀猀猀椀渀最 䴀漀搀攀
	㈀⸀㄀㌀ 䔀砀愀洀瀀氀攀 昀漀爀 䴀渀攀洀漀渀椀挀 一漀琀愀琀椀漀渀

	㌀ 倀匀䔀唀䐀伀ⴀ䤀一匀吀刀唀䌀吀䤀伀一匀
	嘀椀攀眀 漀昀 琀栀攀 攀砀瀀氀愀渀愀琀椀漀渀
	㌀⸀㄀ 匀攀挀琀椀漀渀 匀攀琀琀椀渀最 倀猀攀甀搀漀ⴀ䤀渀猀琀爀甀挀琀椀漀渀猀
	㌀⸀㈀ 䐀愀琀愀 䐀攀昀椀渀椀琀椀漀渀 倀猀攀甀搀漀ⴀ䤀渀猀琀爀甀挀琀椀漀渀猀
	㌀⸀㌀ 匀礀洀戀漀氀 䐀攀昀椀渀椀琀椀漀渀 倀猀攀甀搀漀ⴀ䤀渀猀琀爀甀挀琀椀漀渀猀
	㌀⸀㐀 䰀漀挀愀琀椀漀渀 䌀漀甀渀琀攀爀 䌀漀渀琀爀漀氀 倀猀攀甀搀漀ⴀ䤀渀猀琀爀甀挀琀椀漀渀
	㌀⸀㔀 䔀砀琀攀爀渀愀氀 䐀攀昀椀渀椀琀椀漀渀 愀渀搀 䔀砀琀攀爀渀愀氀 刀攀昀攀爀攀渀挀攀 倀猀攀甀搀漀ⴀ䤀渀猀琀爀甀挀琀椀漀渀猀
	㌀⸀㘀 匀漀甀爀挀攀 䘀椀氀攀 䤀渀猀攀爀琀椀漀渀 倀猀攀甀搀漀ⴀ䤀渀猀琀爀甀挀琀椀漀渀 嬀猀愀瀀㠀㠀 漀渀氀礀崀
	㌀⸀㜀 䄀猀猀攀洀戀氀礀 吀攀爀洀椀渀愀琀椀漀渀 倀猀攀甀搀漀ⴀ䤀渀猀琀爀甀挀琀椀漀渀
	㌀⸀㠀 䴀愀挀爀漀ⴀ刀攀氀愀琀攀搀 倀猀攀甀搀漀ⴀ䤀渀猀琀爀甀挀琀椀漀渀猀 嬀猀愀瀀㠀㠀 漀渀氀礀崀
	㌀⸀㤀 䌀漀渀搀椀琀椀漀渀愀氀 䄀猀猀攀洀戀氀礀 倀猀攀甀搀漀ⴀ䤀渀猀琀爀甀挀琀椀漀渀猀 嬀猀愀瀀㠀㠀 漀渀氀礀崀
	㌀⸀㄀　 伀甀琀瀀甀琀 䰀椀猀琀 䌀漀渀琀爀漀氀 倀猀攀甀搀漀ⴀ䤀渀猀琀爀甀挀琀椀漀渀猀

	䤀䤀䤀 刀䔀䘀䔀刀䔀一䌀䔀
	䘀伀刀䴀䄀吀 伀䘀 䔀堀倀䰀䄀一䄀吀䤀伀一
	㄀ 匀琀爀甀挀琀甀爀攀搀 倀爀攀瀀爀漀挀攀猀猀漀爀 㰀猀愀瀀㠀㠀㸀
	㈀ 䌀爀漀猀猀 䄀猀猀攀洀戀氀攀爀 㰀愀猀洀㠀㠀㸀
	㌀ 䰀椀渀欀攀爀 㰀氀椀渀欀㠀㠀㸀
	㐀 匀礀洀戀漀氀 䤀渀昀漀爀洀愀琀椀漀渀 䜀攀渀攀爀愀琀漀爀 㰀爀攀氀㠀㠀㸀
	㔀 匀礀洀戀漀氀椀挀 吀愀戀氀攀 䘀椀氀攀 䜀攀渀攀爀愀琀漀爀 㰀猀礀洀㠀㠀㸀
	㘀 䈀椀渀愀爀礀⼀䠀䔀堀 䌀漀渀瘀攀爀琀攀爀 㰀栀攀砀㠀㠀㸀
	䄀瀀瀀攀渀搀椀砀
	䄀 䰀椀猀琀 漀昀 猀愀瀀㠀㠀 倀猀攀甀搀漀ⴀ䤀渀猀琀爀甀挀琀椀漀渀猀
	䈀 䰀椀猀琀 漀昀 愀猀洀㠀㠀 倀猀攀甀搀漀ⴀ䤀渀猀琀爀甀挀琀椀漀渀猀
	䌀 䔀砀愀洀瀀氀攀 昀漀爀 䴀渀攀洀漀渀椀挀 一漀琀愀琀椀漀渀

