
vii

Reference Manual
for SRC-3**

SPEL III Ver. 6.2
Rev. 4 EM99NS725F

R
eference M

anual for S
R

C
-3**

SP
E

L
 III V

er. 6.2

i

Reference Manual

SPEL III Ver. 6.2
Rev. 4

 Copyright 1986-1999 SEIKO EPSON CORPORATION. All rights reserved.

ii

WARRANTY The Robot and its optional parts are shipped to our customers only after being subjected to
the strictest quality controls, tests and inspections to certify its compliance with our high

performance standards.

Product's malfunction(s) resulting from normal handling operation will be repaired free of

charge up to 12 months after delivery.

However, customers will be charged for repairs in the following cases:

1. Damage or malfunction caused by improper use which is not described in the manual,

or careless use.

2. Malfunctions caused by customers' unauthorized disassembly.

3. Damage due to improper adjustments or unauthorized repair attempts.

4. Damage caused by natural disasters such as earthquake, flood, etc.

SERVICE CENTER Contact the following service center for robot repairs, inspections or adjustments.

Please have the model name, M. CODE, software version and a description of the problem

ready when you call.

MANUFACTURER SEIKO EPSON CORPORATION

Robots & FA Systems Department

Okaya Plant No. 2

1-16-15, Daiei-cho

Okaya-shi, Nagano-ken, 394

Japan

TEL: 81-266-23-0020 (switchboard)

81-266-24-2004 (direct)

FAX: 81-266-24-2017

NOTICE ■No part of this manual may be copied or reproduced without authorization.

■The content of this manual is subject to change without notice.

■We ask that you please notify us if you should find any errors in this manual or if you

have any comments regarding its content.

iii

INTRODUCTION

INTRODUCTION

This reference manual contains all of the information necessary to assist you in correctly

using robot programing language SPEL III. To optimize the performance of this preci-

sion assembly robot, we recommend that prior to operation you carefully read over both

this manual, and the accompanying user's manual.

This manual contains the following sections:

■ IMPORTANT (Read this section first)

■ HOW THIS MANUAL IS ORGANIZED

■ SUMMARY OF COMMANDS, STATEMENTS, AND FUNCTIONS

■ EXPLANATIONS OF COMMANDS, STATEMENTS, AND FUNCTIONS
(in alphabetical order)

■ ERROR CODES

This reference manual is for SPEL III Version 6.2. The version corresponds to the

model of robot controller.

SRC-300 : Version 6.2

SRC-310 : Version 5.3

SRC-310A : Version 6.2

SRC-320 : Version 6.2

SRC-320J : Version 6.2

NOTE

F

iv

IMPORTANT

In upgrading SPEL III from version 3, controller significant changes that affect pro-

graming and operation have been made. If you are using version 3, prior to programing,

be sure to take careful note of the following important changes:

Motor Engagement
Motors are not engaged automatically, when the controller is turned on or reset. To

engage the motors:

· Execute MOTOR ON command from Programing Unit, or

· Press MOTOR ON switch on Operating Unit, or

· Input motor power on signal to REMOTE3, or

· Execute MOTOR ON in the program.

Calibration
SPEL III is used to both INC robot which is equipped with incremental encoder and ABS

robot which is equipped with absolute encoder.

In case of INC robot, calibration by MCAL command is necessary when power is turned

on.

In case of ABS robot, calibration is not necessary.

HOME Command
The function of HOME command of this version is to move the robot to a HOME

(standby) position specified with HOMESET command. You can set a HOME position

anywhere to suit a specific application. Note that at delivery, a HOME position is not

defined. Executing HOME command without first defining a HOME position will thus

cause an error message to be displayed.

Motion Speed in the TEACH Mode

To assure safe operation, the robot moves at low speed in the TEACH mode, regardless

of SPEED command settings.

For further details, refer to POWER or LP, and SPEED command.

IMPORTANT

NOTE

F

v

HOW THIS MANUAL IS ORGANIZED

This manual describes each SPEL III command as follows:

Command Description Organization

COMMAND, STATEMENT, or FUNCTION SYMBOLS

FUNCTION

FORMAT

DESCRIPTION

RELATED
COMMANDS

EXAMPLE

FORMAT This manual explains the format of each command as follows:

Characters not These characters should be entered as they are shown.

Enclosed by [] For example, MOTOR ON, #endif, AOPEN "[filename]" AS #[file number]

[] Type of data. Data items are enclosed by [],

For example, ON [output bit number]

| | Any of the multiple data values enclosed by | | may be selected.

For example, LOAD {|PRG|}
|PNT |

{ } Contents enclosed by { } may be omitted.

For explanations of omissions, refer to DESCRIPTION comments.

For example, LOAD {|PRG|}
|PNT |

In this case, any of the following three may be described,
LOAD
LOAD PRG
LOAD PNT

{ }n When n is replaced by an integer, the data enclosed by { } can be written out

n times.

When n is not replaced by an integer, the enclosed data can be written out

indefinitely.

~ Indicates continuation to the next line, or from the preceding line.

HOW THIS MANUAL IS ORGANIZED

vi

HOW THIS MANUAL IS ORGANIZED

SYMBOLS This manual uses the following symbols:

> May be used as a command

S May be used as a statement

F Function

INC Dedicated for INC robot equipped with incremental encoder.

When executing for ABS robot equipped with absolute encoder Error 123

will occur.

vii

SUMMARY OF COMMANDS, STATEMENTS, AND FUNCTIONS

SUMMARY OF COMMANDS, STATEMENTS, AND FUNCTIONS

The following is a summary of SPEL III commands, statements, and functions. Pay particu-
lar attention to the commands, statements, and functions that are preceded by one or both of
the following symbols:

★ : All first time our robot users should read this explanation
☆ : Commands, statements, or functions that are either new, or have been changed

Commands, Statements, and Functions Related to System Management

☆★ POWER, LP Specification/Cancellation of low power mode in TEACH mode

CONSOLE, CNSOL Specifies console to be used in AUTO mode

★ RESET Resets controller

SETENV Specifies, cancels and displays environment variable

FREE Displays available memory
PRGSIZE Changes and displays program area size
PNTSIZE, PSIZE Specifies and displays number of usable position data
LIBSIZE, SIZE Specifies and displays number of usable backup variables and available

memory

SYSINIT Initializes main memory

TON Displays task status
TOFF Stops displaying program line numbers

TSTAT Displays task status
☆ STAT() Returns status of controller or other controller connected through RS-232C

★ VER Displays system management data
VERINIT Initializes system management data
MKVER Saves the backup data of various setting and all the data in main memory onto

file memory
SETVER Restores the data which is filed by MKVER command to corresponding

memory area

DATE Specifies and displays current date
☆ DATE$(0) Returns current date

TIME Specifies and displays current time

viii

SUMMARY OF COMMANDS, STATEMENTS, AND FUNCTIONS

☆ TIME$(0) Returns current time
HOUR Displays controller accumulated operating time
TIME() Returns controller accumulated operating time
ERRHIST Displays error history
LINEHIST Displays line number history

CALIB Replaces current arm orientation pulse value with current CALPLS values
CALPLS Specifies and displays position and orientation pulse used for calibration

HOFS Specifies and displays offset pulse used for software zero point correction

! Executes MS-DOS Command

Commands, Statements, and Functions Related to Robot Control

MCAL Executes machine calibration
MCORDR Specifies and displays the moving axis order in machine calibration
MCORG Calculates the parameter for machine calibration
MCOFS Specifies and displays the parameter for machine calibration
HTEST Displays HTEST values

★ MOTOR Turns motor power on and off
★ SFREE Cuts power to motor
★ SLOCK Reengages axis (from "servo free" condition)

★ JUMP Executes arch motion jump
ARCH Specifies and displays JUMP arch parameters

★ LIMZ Specifies and displays axis #3 height for JUMP
SENSE Specifies and displays input condition that, if satisfied, complete the JUMP in

progress by stopping robot above target position
JS(0) Returns whether or not SENSE condition has been satisfied after JUMP

SENSE has completed

★ GO Executes simultaneous four axis PTP motion
★ PASS Executes PTP motion, passing near specified points

PULSE Executes simultaneous four axis PTP motion
TGO Executes PTP relative motion, in the selected tool coordinate system
TMOVE Executes linear interpolation relative motion, in the selected tool coordinate

system
TILL Specifies and displays input condition that, if satisfied, complete the JUMP,

GO, or MOVE in progress by decelerating and stopping robot at an intermedi-
ate travel position

★ ! ... ! Processes input/output statements in parallel to executing motion commands

ix

SUMMARY OF COMMANDS, STATEMENTS, AND FUNCTIONS

☆★ SPEED Specifies and displays speed for PTP motion
★ TSPEED Specifies and displays maximum speed for PTP motion in TEACH mode

☆★ ACCEL Specifies and displays acceleration for PTP motion
★ WEIGHT Specifies and displays parameters for calculating PTP motion maximum ac-

celeration

ARC Executes arc interpolation motion in a horizontal plane
CARC Executes arc interpolation motion in a horizontal plane, without decelerating,

specified final position
MOVE Executes simultaneous four axis linear interpolation motion, with deceleration

and stop at specified position
CMOVE Executes simultaneous four axis linear interpolation motion, without deceler-

ating, through specified position
CURVE Creates a file for free curve CP control motion
CVMOVE Executes free curve CP control motion file generated by CURVE

☆ SPEEDS Specifies and displays speed for CP motion
☆ ACCELS Specifies and displays acceleration for CP motion

TSPEEDS Specifies and displays maximum speed for CP motion in TEACH mode

HOME Executes motion to home (standby) position
HOMESET Specifies and displays home position and orientation pulse
HORDR Specifies and displays HOME axis motion order

★ PALET Defines and displays pallets
★ PALETn() Return position on specified pallet corresponding to specified division number

★ SEL Selects and displays step jog feed travel settings
SET Specifies step jog feed travels

FINE Sets the allowable range for positioning completion checkout
★ QP Switches quick pause mode on or off and displays current mode status

JRANGE Defines permissible working range of specified axis in pulses
RANGE Defines permissible working range of each axis in pulses, and displays current

permissible ranges
XYLIM Specifies and displays allowable X and Y axis coordinate motion range

CX(P)
CY(P)

Returns X, Y, Z, or U axis coordinate value of specified point
CZ(P)
CU(P)
PLS() Returns pulse value of specified axis
AGL() Returns joint angle for selected rotational axis, or position for selected linear axis

SELRB Selects positioning device

x

SUMMARY OF COMMANDS, STATEMENTS, AND FUNCTIONS

Commands and Statements Related to Editing

★ NEW Deletes source program in source program area
★ CLEAR Clears position data

★ LIST Displays source program
★ DELETE, DELET Deletes program line(s)
★ RENUM Renumbers program lines

★ PLIST, PLI Displays position data
★ PDEL Deletes specified position data
★ Pn=Position Specification Defines point

EDIT Switches to edit mode
FIND Searches for string

Commands, Statements, and Functions Related to Input/Output

★ ON Switches specified output bit on
★ OFF Switches output bit off

OPORT() Returns output bit status
★ SW() Returns input bit status

IN() Returns input status of input port
INBCD() Returns input status of input port as BCD

☆ INBIN() Returns the value of inpout port specified by starting port number and number
of ports

☆ INBIT() Returns the bit number which is turned on among input ports specified by start-
ing port number and number of ports

OUT Sends data to output port
OPBCD Outputs BCD data to output port

ON $ Switches robot memory I/O on
OFF $ Switches robot memory I/O off
SW($) Returns memory I/O bit status
IN($) Returns input status of memory I/O port
OUT $ Sends data to memory I/O port
ZEROFLG(0) Returns value of memory I/O previous to it last being switched on or off

★ WAIT Specifies timer interval, stops program execution until specified condition is
satisfied

TMOUT Specifies time out interval for WAIT
TW(0) Returns status of WAIT condition and WAIT time interval

xi

SUMMARY OF COMMANDS, STATEMENTS, AND FUNCTIONS

INPUT Inputs data from console keyboard
★ PRINT Outputs data to console display

LINE INPUT Stores one line of data from console to string variable
CONFIG, CNFG Sets configuration parameters for RS-232C communication port
INPUT # Inputs data from communication port
PRINT # Outputs data to communication port
LINE INPUT # Stores one line of data from communication port to string variable
LOF() Returns number of data lines stored in RS-232C buffer

OPU PRINT Outputs characters to operating unit

DSW() Returns remote input status as a decimal

PEEK() Reads data from I/O channel
POKE Writes data to I/O channel

Commands and Statements Related to Coordinate Changes

ARM Selects and displays arm number
ARMSET Specifies and displays auxiliary arm

TOOL Selects and displays tool coordinate system
TLSET Defines and displays tool coordinate system

LOCAL Defines and displays local coordinate system
LOCAL0 Defines robot's basic coordinate system Local0
BASE Defines and displays local coordinate system
BASE 0 Defines robot's basic coordinate system Local0

☆ BASE() Returns value of local coordinate system

Statements and Functions Related to Program Control

★ FUNCTION...FEND Defines function
★ END Terminates program execution

★ FOR...NEXT Executes series of statements specified number of times
★ GOSUB...RETURN Branches to, executes, and returns from subroutine
★ GOTO Branches to specified line number

☆ ONGOTO Branches to specified line number or label depending on the value of the vari-
able

CALL Calls function procedure as subroutine
★ IF..THEN..ELSE..ENDIF Conditional statement execution

xii

SUMMARY OF COMMANDS, STATEMENTS, AND FUNCTIONS

SELECT...SEND Specifies branching formula and corresponding branch instruction sequences
WHILE...WEND Executes specified statements while specified condition is satisfied

☆ TRAP Defines the interrupt process
ONERR...RETURN Defines error processing
ERA(0) Returns axis number on which error occurred
ERL(0) Returns line number in which error occurred
ECLR Clears error status
ERR(0) Returns error number
ERT(0) Returns task number at which error occurred
ERRMSG$() Returns error message corresponding to specified error number

Commands and Statements Related to Program Execution

★ COMPILE, COM Translates source program into an executable program
★ XQT Executes program
★ PAUSE Temporarily stops program execution

RUN Compiles and executes source program

HTASK Specifies tasks to be temporarily stopped by PAUSE command or PAUSE input
HALT Temporarily stops execution of task in progress
QUIT Stops tasks that are currently being executed, or have been temporarily stopped
RESUME Resumes execution of tasks temporarily stopped by HALT
MYTASK(0) Returns number of mytask

CHAIN Loads into main memory and executes object program and position data files

PRGNO Determines whether to apply up-down count or binary coding to program
number selection through remote connector (REMOTE 2)

Pseudo Statements

#define Defines identifier to be replaced by specified replacement string
#ifdef...#endif Conditional compiling
#ifndef...#endif Conditional compiling
#include Pulls in specified file and compiles

Commands and Statements Related to File Management

FORMAT, FRMT Formats file memory

FILES Displays name and size of files in file memory

xiii

SUMMARY OF COMMANDS, STATEMENTS, AND FUNCTIONS

WIDTH Specifies number of characters per line and lines per screen displayed on
programing unit CRT

★ DIR Displays contents of directory
CHDIR, CD Changes and displays current directory
MKDIR, MD Creates sub directory
RMDIR, RD Removes (deletes) sub directory
RENDIR Changes directory name
PATH Specifies, cancels and displays path for executing batch file

★ DLOAD, DLO Loads specified files into main memory
★ DSAVE, DSA Saves main memory source program and position data files in file memory

MERGE Transfers programing unit data into the main memory and merges them with
main memory data

DMERGE Loads specified file(s) into main memory and merges them with source pro-
gram or position data

TYPE Displays contents of file
★ KILL Deletes files
★ DEL, ERASE Deletes files

COPY Copies files
RENAME,REN,NAME Changes file name
LINK Links two or more object files

AOPEN...CLOSE Opens file for appending data
ROPEN...CLOSE Opens file for readout
WOPEN...CLOSE Opens file for writing to it

VLOAD Loads variable data
VSAVE Saves variable data

Commands and Statements Related to Variables

BYTE Defines 1-byte integer type variables
INTEGER Defines 2-byte integer type variables
LONG Defines 4-byte integer type variables

REAL Defines 4-byte REAL type variables
DOUBLE Defines 8-byte REAL type variables

STRING Defines string variables

SYS Declares backup variables

xiv

SUMMARY OF COMMANDS, STATEMENTS, AND FUNCTIONS

LIBRARY Displays backup variables in memory
CLRLIB Clears backup variables

ENTRY Declares global variables
EXTERN Declares reference to global variables

VARIABLE Displays variables

Functions Related to Numeric Values

OPORT() Returns output bit status
★ SW() Returns input bit status

IN() Returns input status of input port
INBCD() Returns input status of input port as BCD

SW($) Returns memory I/O bit status
IN($) Returns input status of memory I/O port
ZEROFLG(0) Returns value of memory I/O previous to it last being switched on or off

CTR() Counter
CTRESET Counter reset
TMR() Timer function
TMRESET Resets timer
TIME() Returns controller accumulated operating time

JS(0) Returns whether or not SENSE condition has been satisfied after JUMP
SENSE has completed

★ PALETn() Return position on specified pallet corresponding to specified division number
CX(P)
CY(P)

Returns X, Y, Z, or U axis coordinate value of specified point
CZ(P)
CU(P)
PLS() Returns pulse value of specified axis
AGL() Returns joint angle for selected rotational axis, or position for selected linear

axis

ERA(0) Returns axis number on which error occurred
ERL(0) Returns line number in which error occurred
ERR(0) Returns error number
ERT(0) Returns task number at which error occurred

xv

SUMMARY OF COMMANDS, STATEMENTS, AND FUNCTIONS

TW(0) Returns status of WAIT condition and WAIT time interval

MYTASK(0) Returns number of mytask

LOF() Returns number of data lines stored in RS-232C buffer

DSW() Returns remote input status as a decimal
STAT() Returns status of controller or other controller connected through RS-232C

SIN() Returns sine of specified angle
COS() Returns cosine of specified angle
TAN() Returns tangent of specified angle
ATAN() Returns arctangent of specified value
ATAN2() Returns arctangent of y/x
SQR() Returns square root
ABS() Returns absolute value
SGN() Returns sign of specified numeric value
INT() Returns largest integer that is less than or equal to specified value

NOT() Returns inverted value of integer bit
LSHIFT() Shifts numeric value data to left
RSHIFT() Shifts numeric value data to right

Statements and Functions Related to Strings

ASC() Returns ASCII code (numeric value) for first character of specified string
CHR$() Returns character that corresponds to specified ASCII code

LEFT$() Returns the leftmost characters of specified string
MID$() Returns specified number of characters of specified string beginning from

specified start position
RIGHT$() Returns the rightmost characters of specified string
LEN() Returns number of characters of specified string
SPACE$() Returns a string consisting of specified number of spaces

STR$() Returns specified numeric value as a numeric string
VAL() Returns numeric value of specified numeric string
ERRMSG$() Returns error message corresponding to specified error number

Commands Related to Operating Unit

OPU PRINT Outputs characters to operating unit
CHARSIZE Specifies character size (on operating unit)

xvi

SUMMARY OF COMMANDS, STATEMENTS, AND FUNCTIONS

CLS Erases characters (on operating unit)
NORMAL Specifies normal display mode for displayed characters
REVERSE Specifies reverse display mode for displayed characters
CURSOR Specifies cursor display on or off (on operating unit)
OPUNIT Operation mode selection of operating unit
DSW() Returns remote input status as a decimal

New or Altered commands in this version

Please read this page if you have used SPEL III Ver. 4.2/5.2.

1. New commands

BASE() Returns value of local coordinate system.

DATE$(0) Returns current date.
TIME$(0) Returns current time.

INBIN() Returns the value of inpout port specified by starting port number and number
of ports

INBIT() Returns the bit number which is turned on among input ports specified by start-
ing port number and number of ports

ONGOTO Branches to specified line number or label depending on the value of the vari-
able

POWER Same function with LP ON/OFF. Command changed to POWER LOW/
HIGH, made the motor power mode setting easy to understand. LP ON/OFF
is also available.

2. Function added/altered commands

ACCEL
ACCELS The limited value displayed when a motion command is executed in low
SPEED power state changed to be easy to understand.
SPEEDS

STAT() Contents of bit 19, 22, and 23 of address 0, and bit 5 and 6 of address 1 are
added.

TRAP Interrupt process by safe guard open/close is added.

1

Command Description

!
!

FUNCTION Executes MS-DOS command

FORMAT ! [MS-DOS command]

DESCRIPTION Executes MS-DOS command while running SPEL Editor.

After MS-DOS command is executed, displays the following:

Push any key

After pressing any key, ! command completes by returning a prompt.

If COMMAND.COM processor is necessary to execute the specified MS-DOS command,
but is not in the PC's current drive, an error occurs.

>

2

Command Description

> S! ... !
Parallel Processing

FUNCTION Processes input/output statements in parallel to executing motion commands

FORMAT [motion command] ! [parallel processing statement] !

DESCRIPTION Begins processing of statements bracketed by ! ... ! simultaneous to beginning motion
command travel. The following may be used as parallel processing statements, either as
single statement or as multiple statements.

Dn Used to specify parallel processing execution timing, n is a real
number from 0 to 100.
Statements subsequent to Dn begin execution when n % of mo-
tion command travel has been completed.
For JUMP, % travel does not include axis #3 (vertical) motion.
Dn may appear a maximum of 6 times in a ! ... ! statement.

ON/OFF n Turns output bit number n on or off

ON/OFF $n Turns memory I/O bit number n on or off

OUT p,d Outputs output data d to output port p

OUT $p,d Outputs output data d to memory I/O port p

WAIT t Delays execution of next statement t seconds

WAIT SW(n)=i Delays execution of next statement until input bit n is i (1=on,
0=off) condition

WAIT SW($n)=i Delays execution of next statement until memory I/O bit n is i
(1=on, 0=off) condition

PRINT/ INPUT Outputs data to (and inputs data from) console

PRINT # /INPUT # Outputs data to (and inputs data from) communication port

In parallel processing statements, specifying time interval for ON or OFF is not allowed.
For example, attempting to compile JUMP !P1 ON 5,3! would result in Error 14.

3

Command Description

MOVE P1 !D10;ON 5;WAIT 0.5;OFF 5! 'Parallel to MOVE execution, turn
output bit 5 on when 10 % of MOVE
travel has been completed 0.5
seconds later, turn output bit 5 off.

If after completing motion command travel all parallel processing statement execution
has not been completed, subsequent program execution is delayed until all parallel pro-
cessing statements execution has been completed.
Similarly, if TILL is used to stop at an intermediate travel position, subsequent program
execution is delayed until all parallel processing statements execution has been com-
pleted.

Even for JUMP, the statement (other than Dn) at the beginning of ! ... ! is executed simul-
taneous to the start of (rising) motion.
To execute statements after third axis rising motion has completed, include D0 (zero) at
the beginning of the statement.

RELATED JUMP, GO, MOVE, CMOVE, ARC, CARC, PULSE
COMMANDS

EXAMPLE JUMP P1 C0 LIMZ-45 SENSE !DO;ON 1;D50;OFF 1!

'Parallel to JUMP execution, turn
output bit 1 on simultaneous to
beginning first, second, and fourth
axis JUMP travel. Turn output bit 1
off when 50 % of JUMP travel has
been completed.

!

OFF 1

ON 1

current position
P1

4

Command Description

S#define

FUNCTION Defines identifier to be replaced by specified replacement string

FORMAT #define [identifier{([parameter])}] {[replacement string]}

DESCRIPTION Searches program for specified identifier, each time it is found replaces it with replacement
string, and compiles.
At least one space must be included between the identifier and replacement string.

The defined identifier can be used for conditional compiling with #ifdef or #ifndef com-
mands.
Parameter must be closed by () (parenthesis). Each parameter must be punctuated by " , ",
and up to 8 parameters can be specified. If parameter is specified, this command can be used
as macro.
The maximum size for identifier and replacement string which can be defined by #define
instruction is 7 K byte, which is equivalent to 7,169 characters. When the identifier and
replacement string defined by #define instruction exceeds 7,169 characters, error 22 oc-
curs.

Identifier
* First character must be alpha, following characters may be alphanumeric or under-

score (_) .

* Spaces or tabs are not allowed.

* Large case and small case alpha characters may be used, they are discriminated as
large or small case. Therefore the following are discriminated as different identifiers:

XYZ, Xyz, xYZ

* Identifiers are also discriminated by number of characters. For example "ABC" (5
characters) is discriminated as different from ABC (3 characters) and is not replaced.

Replacement String
* Spaces or tabs are allowed.

* Arguments are not allowed.

* Identifiers used with other #define statements cannot be used as replacement strings.

* If comment symbol (') is included, characters following (') will be treated as a
comment, and will not be included in the replacement string.

* Replacement string may be omitted. In this case the specified identifier is replaced by
nothing, this actually deletes the identifier from the program.

5

Command Description

RELATED #ifdef...#endif, #ifndef...#endif
COMMANDS

EXAMPLE < Example 1 >

Without Pseudo Command #define With Pseudo Command #define

>10 FUNCTION MAIN >10 FUNCTION MAIN

>20 INTEGER O_CYLF;O_CYLF=0 >20 #define O_CYLF 0

>30 INTEGER O_CYLR;O_CYLR=1 >30 #define O_CYLR 1

>40 INTEGER I_CYLF;I_CYLF=0 >40 #define I_CYLF 0

>50 INTEGER I_CYLR;I_CYLR=1 >50 #define I_CYLR 1

>60 INTEGER RDY; RDY=0 >60 #define RDY 0

< Example 2 >

100 #define EOF -1

110 PRINT EOF '-1 is displayed
120 PRINT "EOF" 'String of EOF is displayed
130 PRINT EOF1 'EOF1 is not identical with EOF.

In this case, the value of variable EOF1 is displayed.

< Example 3 >

The maximum number of characters per program line is limited to 79. However, by using
#define to replace identifiers with replacement strings, the maximum number of apparent
characters per program line can be increased to 255.

100 #define TEST 12345678901234567890123456789

110 PRINT TEST, TEST, TEST, TEST

After replacement, the actual number of displayed characters will exceed 80.

< Example 4 >

Use command to display characters on OPU-300 as macro.

100 #define CLS PRINT #24, CHR$(&H1B)+"E?'"

110 #define LOCATE(a,b) CHR$(&H1B)+"Y"+CHR$(31+a)+CHR$(31+b)

120 #define BLKCLS(a,b) CHR$(&H1B)+"E"+CHR$(31+a)+CHR$(31+b)

130 CLS 'Clears screen
140 PRINT #24, LOCATE(1,3)+BLKCLS(32,2) 'Clears 2 lines from the 3rd line

#

6

Command Description

< NOTE >

SPEL III 's compiler checks customer's program twice.
Pseudo command, variables and labels are processed on pass 1, and each line is compiled
on pass 2. Therefore, usage will be limited on the same pass.
It may cause error to use #define for variable registration and label 1, or to use identifier
which is registered by #define for filename of #include.

Error examples are listed below in LIST 1 to LIST 4:

LIST 1 LIST 2
10 FUNCTION MAIN 10 FUNCTION MAIN

20 #define CHAR STRING 20 #define LBL LABEL

30 CHAR A$ 30 GOTO LBL

40 PRINT A$ 40 LBL:

50 FEND 50 FEND

>COM >COM

#ERROR 2 at 40 #ERROR 8 at 30

> >

LIST 3 LIST 4
10 FUNCTION MAIN 10 FUNCTION MAIN

20 #define LMAX 10 20 #define ABC "TEST.PRG"

30 REAL LBUF(LMAX) 30 #include ABC

40 FEND 40 FEND

>COM >COM

#ERROR 14 at 30 #ERROR 2 at 30

> >

However, if the identifier which has already registered is used in replacement string, there
is no problem. This is called nesting of #define.

LIST 5
10 FUNCTION MAIN

20 #define ABC 10

30 #define DEF ABC

40 PRINT DEF

50 FEND

>RUN

 10

>

7

Command Description

#ifdef...#endif
#ifndef...#endif
if define
if not define

FUNCTION Conditional compiling

FORMAT #ifdef [identifier]
...

#endif

#ifndef [identifier]
...

#endif

DESCRIPTION Used together with pseudo commands #endif, #ifdef and #ifndef executes conditional
compiling.

#ifdef first checks if the specified identifier is currently defined by #define. If defined,
statements between #ifdef and #endif are compiled. If not defined, statements between
#ifdef and #endif are skipped without compiling.

#ifndef checks the opposite condition of #ifdef.
#ifndef first checks if the specified identifier is currently defined by #define. If not defined,
statements between #ifndef and #endif are compiled. If defined, statements between
#ifndef and #endif are skipped without compiling.

RELATED #define, COMPILE
COMMANDS

EXAMPLE
 . . .
>100 INPUT #20,A$

>110 #ifdef DEBUG

>120 PRINT A$

>130 #endif
 . . .

In the above example, printing is either executed or not basic on the presence or absence of
the definition of #define DEBUG.
Also, the example given under the #include (command) explanation, by using #ifdef and
#ifndef, can be changed as shown below:

S

#

8

Command Description

VAL.PRG
>300 #ifdef VALUE

>310 ENTRY REAL WORK(100)

>320 ENTRY DOUBLE A_SIN,A_COS

>330 #endif

>340 #ifndef VALUE

>350 EXTERN REAL WORK(100)

>360 EXTERN DOUBLE A_SIN,A_COS

>370 #endif

FILE 1
>10 FUNCTION MAIN

>20 #define VALUE

>30 #include "VAL.PRG"

>40 EXTERN FUNCTION INIT

>50 XQT !2, INIT

>60 FEND

Note that FILE 2 and FILE 3, which use the #include pseudo statement, are same as those in
#include explanation.

In FILE 1, VALUE is defined with the #define statement. By not defining VALUE in FILE
2 and FILE 3, it is possible to choose which statement, #ifdef VALUE or #ifndef VALUE,
is to be executed in each file. The advantage of this method is that if variables are to be
added or deleted, they need be changed in only one place, in the VAL.PRG program.

If using #define statement to define VALUE, because #ifdef...#endif is compiled, only that
program segment is included in FILE 1. Also, if VALUE is not defined, #ifndef...#endif is
compiled, that segment is included in FILE 2 and FILE 3.

9

Command Description

S#include

FUNCTION Pulls in specified file and compiles

FORMAT #include "{[pathname]}[filename].PRG"

* Nesting: up to 5 are allowed

DESCRIPTION Pulls in contents of specified source program file. #include allows global variable
declarations and #define definitions to be pulled in from other files.

Files should be specified from files that exist in the file memory.
If pathname is omitted, #include searches for file in current directory.

An include file may contain a secondary include file. For example, FILE 2 may be included
within FILE 1, and FILE 3 may be included within FILE 2. This is called nesting.
The maximum number of loops (including the original one) is five.

It is allowable that the line numbers of the file to be included match the line numbers of the
original program. However, since by doing so it will become impossible to determine
current program execution status, it is better not to allow the line numbers to match.

The line number should be in ascending order after the include file is included into the
source program file. When the line number is not in ascending order or overlapped, the
following problems may occur.

When the line number is not in ascending order,
system may not find the destination line of the GOTO/GOSUB instruction during compil-
ing and error “Undefined line number xxx” be issued even if the destination line of the
GOTO/GOSUB instruction exists. Even when label is used as the destination, the error
may occur.

When the line number is overlapped,
it is not defined which line is selected as the destination among the overlapped lines of the
GOTO/GOSUB instruction. The line found first during compiling is selected as the destina-
tion. Even when label is used as the destination, the problem occurs. Be careful not to
overlap line numbers because any error is not issued during compiling in this case.

#

10

Command Description

EXAMPLE Not Using Include File Using Include File

INCLUDE FILE (VAL.PRG)

>300 EXTERN REAL WORK(100)

>310 EXTERN DOUBLE A_SIN,A_COS

FILE1 (MAIN.PRG) FILE1 (MAIN.PRG)

>10 FUNCTION MAIN >10 FUNCTION MAIN

>20 EXTERN FUNCTION INIT >20 EXTERN FUNCTION INIT

>30 ENTRY REAL WORK(100) >30 ENTRY REAL WORK(100)

>40 ENTRY DOUBLE A_SIN,A_COS >40 ENTRY DOUBLE A_SIN,A_COS

>50 XQT !2 INIT >50 XQT !2 INIT

>60 FEND >60 FEND

FILE2 (INIT.PRG) FILE2 (INIT.PRG)

>100 FUNCTION INIT >100 FUNCTION INIT

>110 EXTERN REAL WORK(100) >110 #include "VAL.PRG"

>120 EXTERN DOUBLE A_SIN,A_COS

>130 EXTERN FUNCTION DISP >400 EXTERN FUNCTION DISP

>180 XQT !3 DISP

>190 FEND

FILE3 (PRI.PRG) FILE3 (PRI.PRG)

>200 FUNCTION DISP >200 FUNCTION DISP

>210 EXTERN REAL WORK(100) >210 #include "VAL.PRG"

>220 EXTERN DOUBLE A_SIN,A_COS

.

>400 EXTERN FUNCTION DISP
 .

.
 .

.
 .

If an include file is not used, then it becomes necessary to perform variable declarations,
variable name changes, and adding variable names for each of the files that contain that
variable.
For example, considering the previous example, by using an include file a variable defini-
tion change can be accomplished by changing the variable in only two places (FILE1.PRG
and VAL.PRG). This is a useful feature for improving programing efficiency, especially
when many tasks are used.

11

Command Description

A

ABS()
Absolute

FUNCTION Returns absolute value

FORMAT ABS([Numeric Value])

DESCRIPTION Returns absolute value of specified numeric value.

RELATED SGN(), INT(), SQR()
COMMANDS

EXAMPLE >PRINT ABS(-3.54)

3.54

>

F

12

Command Description

>ACCEL
Acceleration

FUNCTION Specifies and displays acceleration/deceleration for PTP motion

FORMAT (1) ACCEL A,B{,C,D,E,F}

A: acceleration specification value
B: deceleration specification value
C: acceleration specification value (axis #3 upward)
D: deceleration specification value (axis #3 upward)
E : acceleration specification value (axis #3 downward)
F : deceleration specification value (axis #3 downward)

* Each value A-F to be integer from 1 to 100 (percent maximum acceleration/decelera-
tion).
[default values: refer to the "Specifications" in the manipulator manual]

(2) ACCEL

DESCRIPTION (1) Specifies acceleration and deceleration values for PTP motion (GO, JUMP, PULSE,
and related) commands.

Each value to be an integer from 1 to 100.

C, D, E, and F for axis #3 are effective only for JUMP command. If axis #3 values are
omitted, C, D, E, and F default as follows:

C and E default to the A (acceleration) value
D and F default to the B (deceleration) value

(2) Displays currently valid ACCEL values as follows:

Acc. value Dec. value
Acc. value (axis #3 upward) Dec. value (axis #3 upward)
Acc. value (axis #3 downward) Dec. value (axis #3 downward)

S

13

Command Description

A

ACCEL value initializes to default value when any one of the following is performed:

Power on
Mode switching (TEACH/AUTO)

Software reset
MOTOR ON

SFREE, SLOCK

VERINIT

 STOP key

 CTRL + C key

While in TEACH mode, actual accelaration differs from low power state to high power
state.

Motor power status actual acceleration
the default value of ACCEL 

Low power state  either lower value
the value of ACCEL 

High power state the value of ACCEL

POWER LOW (LP ON) POWER HIGH (LP OFF)
Low power mode High power mode

when safety door closed

when safety door open

Low power state
(regardless of POWER setting)

If higher accelaration is required, set high power mode using POWER HIGH or LP OFF
and close safety door. If safety door is open accelaration setting will be changed to default
value.

14

Command Description

If ACCEL is executed when the robot is in low power state, the following message is dis-
played. The value in the message is the default value of ACCEL which varies from model
to model. The following example shows that the robot will move at default accelaration
(10) because it is in low power state even though the accelaration setting value by ACCEL
is 100.

>ACCEL 100,100

Low Power State : ACCEL is limited to 10

>

>ACCEL

Low Power State : ACCEL is limited to 10

 100 100

 100 100

 100 100

>

RELATED POWER(LP), SPEED, GO, JUMP, PASS, PULSE
COMMANDS

EXAMPLE >ACCEL 100,100,100,100,100,50 'Only the axis #3 downward deceleration
is set at 50

>ACCEL

 100 100

 100 100

 100 50

15

Command Description

A

S>ACCELS

FUNCTION Specifies and displays acceleration for CP motion

FORMAT (1) ACCELS { [acceleration specification value] }

* acceleration specification value: Integer from 1 to 5000 (mm/s2)
[default value: refer to the "Specifications" in the manipulator manual]

(2) ACCELS

DESCRIPTION (1) Specifies hand acceleration in mm/s2 for CP motion (ARC, MOVE and CVMOVE and
related) commands.

(2) Displays current ACCELS value.

ACCELS value initializes to default value when any one of the following is performed:

Power on
Mode switching (TEACH/AUTO)

Software reset
MOTOR ON

SFREE, SLOCK

VERINIT

 STOP key

 CTRL + C key

While in TEACH mode, actual accelaration differs from low power state to high power
state.

Motor power status actual acceleration
the default value of ACCELS 

Low power state  either lower value
the value of ACCELS 

High power state the value of ACCELS

16

Command Description

POWER LOW (LP ON) POWER HIGH (LP OFF)
Low power mode High power mode

when safety door closed

when safety door open

Low power state
(regardless of POWER setting)

If higher accelaration is required, set high power mode using POWER HIGH or LP OFF
and close safety door. If safety door is open accelaration setting will be changed to default
value.

If ACCELS is executed when the robot is in low power state, the following message is
displayed. The value in the message is the default value of ACCELS which varies from
model to model. The following example shows that the robot will move at default
accelaration (200) because it is in low power state even though the accelaration setting
value by ACCELS is 1000.

>ACCELS 1000

Low Power State : ACCELS is limited to 200

>

>ACCELS

Low Power State : ACCELS is limited to 200

1000

>

RELATED POWER(LP), SPEEDS, MOVE, CMOVE, ARC, CARC, CVMOVE
COMMANDS

EXAMPLE >ACCELS 1000

>ACCELS

 1000

>

17

Command Description

A

FAGL()
Angle

FUNCTION Returns joint angle for selected rotational axis, or position for selected linear axis

FORMAT AGL([axis number])

* axis number: integer from 1 to 4

DESCRIPTION If selected axis is a rotation axis, returns current angle, from selected axis 0 pulse position,
in degrees. Returned value is a real number.

If selected axis is a linear axis, returns current position, in relation to selected axis 0 posi-
tion, in mm. Returned value is a real number.

Returned value's sign (plus or minus) matches the sign for the corresponding manipulator
pulse. Refer to the manipulator manual for standard arm 0 pulse position.

If an auxiliary arm is selected with ARM, AGL returns angle (or position) from standard
arm 0 pulse position to selected arm.

RELATED PLS()
COMMANDS

EXAMPLE >PRINT AGL(1),AGL(2)

 17.234 85.355

Y

X
85.355 mm

17.284 mm

Y

17.284°

X

85.355°

18

Command Description

AOPEN...CLOSE
Append Open

FUNCTION Opens file for appending data

FORMAT AOPEN "[filename]" AS #[filenumber]
...

CLOSE #[filenumber]

* Filename must include extension
filenumber: integer from 30 to 35

DESCRIPTION Opens specified file and identifies it by the specified filenumber. This statement is used for
appending data to the specified file. CLOSE closes the file and releases the filenumber.

The specified file must exist on file memory. The specified filenumber identifies the file as
long as the file is open, it is used by the output statement for appending (PRINT #) and the
statement for closing (CLOSE #) the file. Accordingly, until the current file is closed, its
file number can not be used to specify different file.

A maximum of 6 files can be open concurrently. As long as 6 files are open, however,
DLOAD and DMERGE cannot be executed.

RELATED PRINT #, ROPEN, WOPEN
COMMANDS

EXAMPLE 100 REAL DATA(200)

110 WOPEN "TEST.VAL" AS #30

120 FOR I=0 TO 100

130 PRINT #30,DATA(I)

140 NEXT

150 CLOSE #30
 . . .
200 AOPEN "TEST.VAL" AS #30

210 FOR I=101 TO 200

220 PRINT #30,DATA(I)

230 NEXT

240 CLOSE #30

250 '

S

19

Command Description

A

S>ARC

FUNCTION Executes arc interpolar motion in the XY plane

FORMAT ARC P[point number 1],P[point number 2] {![parallel processing statement]!}

DESCRIPTION Executes arc interpolar motion from current position, through point number 1 to point
number 2. This ARC path is a true arc in a horizontal plane only.

Arm attribute (right or left) values must be the same for current position, point number 1,
and point number 2. If they are not, an error will result.

ARC cannot execute range verification of the trajectory in advance. Therefore, even for
target positions that are within an allowable range, en route the robot may attempt to
traverse an invalid range, stopping with a severe shock that may damage the arm. To pre-
vent this, be sure to perform range verifications at low speed in advance.

ARC uses the SPEEDS speed value and the ACCELS acceleration value.

(1)ARC interpolates a path current position to point number 2, ignoring the Z and U coor-
dinates of point number 1. Therefore, ARC path are suitable for horizontal work sur-
faces only. For non-horizontal work surfaces, use CURVE and/or CVMOVE.

(2)Because ARC motion begins from current position, it may be necessary to use GO (or
JUMP, or related) command to bring robot up to the desired current position prior to
executing ARC.

RELATED SPEEDS, ACCELS, ! ... !, CARC, MOVE, CMOVE, CVMOVE
COMMANDS

EXAMPLE >ARC P100,P101 'Beginning at current position, execute arc interpolar motion
through P100 and stop at P101

current position

P101

P100

NOTE

20

Command Description

S>ARCH

FUNCTION Specifies and displays JUMP arch parameters

FORMAT (1) ARCH [arch number],[vertical rising distance],[vertical lowering distance]

* arch number: integer from 0 to 6
* vertical rising distance: mm
* vertical lowering distance: mm

(2) ARCH

DESCRIPTION (1) Specifies JUMP arch motion vertical distance parameters.
ARCH can specify vertical distance parameters for arch numbers 0 - 6.
ARCH cannot specify parameters for arch number 7, arch number 7 is reserved for gate
motion.
Vertical rising distance is the vertical distance above start position.
Vertical lowering distance is the vertical distance to target position.

ARCH values are maintained when power is off.
VERINIT causes ARCH values to default as shown below:

arch number vertical rising distance vertical lowering distance

0 30 30
1 40 40
2 50 50
3 60 60
4 70 70
5 80 80
6 90 90

If vertical rising or lowering distance specification values exceed the actual vertical
motion distance, then gate motion is executed.

Arch motion is carried out per the parameters corresponding to the arch number se-
lected in the JUMP C modifier.

vertical lowering distance

vertical rising distance

21

Command Description

A

(2) Displays current ARCH values.

Arch motion trajectory is compounded of vertical motion and horizontal motion. It is not
a continuous path control. Therefore, the actual trajectories of arch motion are not decided
uniquely by ARCH parameters. The trajectory changes depending on the motion and
speed.(*1) Execute JUMP with actual motion and speed to confirm the actual trajectory.
When the vertical downward distance of the trajectory is shorter than the expected, lower
the speed and/or the deceleration, or change the parameter of vertical downward distance
long.

(*1) In a trajectory, the vertical upward distance increases and the vertical downward dis-
tance decreases when the motion speed is set high. The change of trajectory depend-
ing on the motion is various. For general example, the above influence is large when
the movement of the first arm is large in case of SCARA robot.

EXAMPLE >ARCH 0,10,50

>JUMP P1 C0

>ARCH

 arch0=10 50

 arch1=40 40

 arch2=50 50

 arch3=60 60

 arch4=70 70

 arch5=80 80

 arch6=90 90

>

NOTE

22

Command Description

S>ARM

FUNCTION Selects and displays arm number

FORMAT (1) ARM [arm number]

* arm number: integer from 0 to 3

(2) ARM

DESCRIPTION (1) Selects arm number.
ARM is used to allow each auxiliary arm to use common position data.
If no auxiliary arms are installed, the standard arm (arm number 0) operates.
Since at time of delivery the arm number is specified 0, it is not necessary to use the
ARM to select an arm number.

ARM values are maintained when power is off.

VERINIT causes ARM number to initialize to 0.

Selecting auxiliary arm numbers that have not been defined by ARMSET command
will result in an error.

(2) Displays current ARM number.

RELATED ARMSET
COMMANDS

EXAMPLE >ARM 3 'Select auxiliary arm 3. If arm 3 has not been defined by ARMSET,
an error will result.

>ARM 0 'Select standard arm

10 ARM 0

20 JUMP P1 'Jump to P1 with standard arm
30 ARM 1

40 JUMP P1 'Jump to P1 with auxiliary arm 1

23

Command Description

A

>ARMSET

FUNCTION Specifies and displays auxiliary arms

FORMAT (1) ARMSET [arm number],[first parameter],[second parameter],~

[third parameter]{,[fourth parameter]{,[fifth parameter]}}

* arm number: integer from 1 to 3
parameter: real number (refer to the chart on the next page)

(2) ARMSET

DESCRIPTION (1) Specifies auxiliary arm parameters, necessary if, in addition to the standard arm, an
auxiliary arm (or auxiliary hand) is installed. When using an auxiliary arm, the arm is
selected by the ARM.

If fourth and/or fifth parameters are omitted, the default values are the standard arm
values.

< NOTE >
ARMSET values are not changed by power off. Executing VERINIT initializes
ARMSET values to "unspecified."

(2) Displays current ARMSET values for all specified arms. Arm 0 (standard arm) is in-
cluded in the display.

Using an auxiliary arm without first specifying its ARMSET parameters may result in
the robot not being able to reach its target position. Therefore, specify ARMSET pa-
rameters prior to using an auxiliary arm, especially in the following cases:

Specifying that a single data point be operated through by two or more arms
Using PALET
Using CP motion
Using relative position specification
Using local coordinates

For operating SCARA robots with rotating joints or cylindrical coordinate robots in a
cartesian coordinate system, joint angle calculations are based on these parameters.
Therefore, specifying them with this command is very important.

S

24

Command Description

X

RELATED ARM
COMMANDS

EXAMPLE >ARMSET 1,300,-12,-30,300,0

>ARMSET

 arm0 250 0 0 300 0

 arm1 300 -12 -30 300 0

>

Parameter Number

1 2 3 4 5

horizontal distance from auxiliary arm height horizontal distance orientation axis

SCARA axis #2 C/L to auxiliary offset offset from axis #1 C/L to angle offset
TYPE arm C/L axis #2 C/L

(mm) (degrees) (mm) (mm) (degrees)

X coordinate axis direction Y coordinate height Angle of axis #2 orientation axis
CARTESIAN position offset axis diredtion offset from Y coordinate angle offset
TYPE posiion offset axis

(mm) (mm) (mm) (degrees) (degrees)

* offset: offset to standard arm

axis #2

auxiliary arm

+-

-+

+

-

auxiliary arm
standard arm

axis #1

axis #2

-
+

4

1

2

1

2

4

Y

axis #1

standard arm

25

Command Description

A

FASC()
ASCII

FUNCTION Returns ASCII code (numeric value) for first character of specified string

FORMAT ASC(|[string variable name]|)
|" [string] "|

DESCRIPTION Returns ASCII code (numeric value) for first character of specified string.
Specified string may be constant string or variable string.

If specified variable string contains no characters (null string), an error occurs.

EXAMPLE 10 FUNCTION MAIN

20 STRING LETTERS$

30 LETTERS$="ABC"

40 PRINT ASC(LETTERS$) 'Output ASCII code for first character of the
current value of variable string LETTER$

50 FEND

>RUN

COMPILE END

65

>PRINT ASC("ABC")

65

>

26

Command Description

FATAN()
Arc Tangent

FUNCTION Returns arctangent of specified value

FORMAT ATAN([numeric value])

DESCRIPTION Returns arctangent, in radians, of specified value.

Returned value range is from -π/2 to π/2.

To convert from radians to degrees, use the following equation:

degrees = radian*180/π (π = 3.141593)

RELATED TAN(), SIN(), COS(), ATAN2()
COMMANDS

EXAMPLE >PRINT ATAN(-0.55) 'Print arctangent of -0.55
-.5028432 '-0.5028432 radians
>PRINT ATAN(0.5773503)*180/3.141593
30 'The arctangent of 0.5773503 is 30 degrees
>PRINT TAN(30*3.141593/180)
.5773503

>

27

Command Description

A

FATAN2()
Arc Tangent 2

FUNCTION Returns arctangent of y/x

FORMAT ATAN2([x coordinate value],[y coordinate value])

DESCRIPTION Returns arctangent of y/x in radians.

Returned value range is from -π/2 to π/2.

To convert from radians to degrees, use the following equation:

degrees = radian*180/π (π = 3.141593)

RELATED TAN(), SIN(), COS(), ATAN()
COMMANDS

EXAMPLE >PRINT ATAN2(100,100)

.7853982 '(The angle is) 0.7853982 radians
>A=.7853982*180/3.141593 'Convert 0.7853982 radians to degrees
>PRINT A

45

>

PRINT TAN(30*3.141593/180)
.5773503

>

28

Command Description

S>BASE

FUNCTION Defines and displays local coordinate system

FORMAT (1) BASE [local coordinate system number],[position specification]

* local coordinate system number: integer from 1 to 15

(2) BASE

DESCRIPTION (1) Defines local coordinate system by specifying local coordinate system origin and rotation
angle in relation to robot coordinate system.

< NOTE >
If LOCAL0 coordinate system has been defined by LOCAL0 or BASE 0, read
"LOCAL0 coordinate system" instead of "robot coordinate system" in this description.

< Example >
BASE 1,100,200,0,45

local coordinate system rotation angle
local coordinate system origin Z axis position
local coordinate system origin Y axis position
local coordinate system origin X axis position
local coordinate system number

BASE 2,P10+X100

* In this case, only the X-U axis coordinate values are referenced, arm posture
and local coordinate system number of P10 are ignored.

(2) All local coordinate systems, including those defined by LOCAL, are displayed.

< Example >
base1=100 200 0 45 1 45

U axis offset value
XY plane scale constant
local coordinate system rotation angle
local coordinate system origin Z axis position
local coordinate system origin Y axis position
local coordinate system origin X axis position
local coordinate system number

XY plane scale constant is usually (1). It is displayed with the coordinate system defined by
SLOCAL.

29

Command Description

B

U axis offset value is usually the same value as local coordinate system rotation angle.
The values will differ if bit 2 of software switch SS5 is on. Refer to "9.2 Setting switches" of
SPEL Editor manual or "[Setup] menu" of SPEL for Windows manual.

Local coordinate system numbers are shared between LOCAL and BASE.

Definitions of local coordinate systems #1 through #15 will be lost when the power is turned
off, or when LOCAL0, BASE 0, or VERINIT are executed.

Added &n can perform reverse conversion of a local coordinate system. Remember that
points determind in TEACH mode can be defined as point data in a local coordinate system.

P1=P*&2 'Defines the current point as coordinate in the local coordinate system 2.

RELATED BASE 0, BASE (), LOCAL0, LOCAL
COMMANDS

EXAMPLE >BASE 1,100,0,0,45 'Defines coordinate system shown below as
Local 1

>BASE 'Display all local coordinate systems
 base0=0 0 0 0 1 0
 base1=100 0 0 45 1 45

 base12=100.54 11.22 0 1.554 1.554

>P5=100,200,50,0

>BASE 5,P5 'Specify local coordinate system using position
data

>LOCAL 'Display local coordinate system per LOCAL
 local 0 (p***:p***),(p***:p***) 'LOCAL0 coordinate system specified by BASE

0
 local 1 (p***:p***),(p***:p***) 'Local coordinate system specified by BASE (in

this case p*** is displayed)
rlocal12 (p1 :p111),(p2 :p112) 'Local coordinate system specified by RLOCAL

x

45°

X
robot coordinate
system

100 mm

Local1 coordinate
system

y

Y

45°

X

x

100 mm

Local1 coordinate
system

robot coordinate
system

Y
y

30

Command Description

BASE 0
Base zero

FUNCTION Defines robot's basic coordinate system Local0

FORMAT BASE 0,[position specification]

DESCRIPTION Each robot has an absolute coordinate system, the position of which cannot be changed,
called the "robot coordinate system." This robot coordinate system becomes the reference
for a local coordinate system whose position can be changed, called the Local0 coordinate
system. Local0 coordinate system can be defined by either BASE 0 or LOCAL0.
Defining Local0 coordinate system is the same as defining local coordinate systems with the
BASE, except for the (0). Refer to BASE explanation for details.

Usually the robot coordinate system is equivalent to the Local0 coordinate system, and it is
unnecessary to differentiate between them. BASE 0 is used when the local coordinate
system needs to be different from the robot coordinate system, such as when executing
maintenance operations.

Power off does not change BASE 0 values.
Local0 coordinate system is made equivalent to robot coordinate system by executing any
one of the following:

BASE 0,0,0,0,0

LOCAL0 (P1:P1),(P1:P1)

VERINIT

Since BASE 0 asters the position of the basic coordinate system, it should be executed only
when necessary.

Executing BASE 0 erases all local coordinate systems, including those defined by LOCAL.
It is necessary to redefine them.

Executing VERINIT initializes Local0 coordinate system to (base 0 0 0 0 1 0), equivalent to
the robot coordinate system.

RELATED BASE , BASE(), LOCAL0, LOCAL
COMMANDS

S>

NOTE

31

Command Description

B

BASE()

FUNCTION Returns value of local coordinates systems

FORMAT BASE([local coordinate system number],[axis number])

* local coordinate system number: integer from 1 to 15
axis number: integer from 1 to 6

DESCRIPTION Returns the value of local coordinates systems.
Returns the value of specified local coordinate and axis. Returns the value set by BASE
command when the local coordinate system is set by BASE command. Returns the value
displayed by BASE command when the local coordinate system is set by LOCAL
command.

RELATED BASE, LOCAL
COMMANDS

EXAMPLE >BASE

 base1=100 200 0 45 1 45

>PRINT BASE(1,1)

 100

>

F

32

Command Description

BYTE
Byte

FUNCTION Defines 1-byte integer type variables

FORMAT BYTE [variable name]{(array size 1{,array size 2{,array size 3}})}~
{,[variable name]{(array size 1{,array size 2{,array size 3}})}}n

DESCRIPTION This command defends 1-byte integer type variables.
If several variables of the same type are declared, use a " , " (comma) and describe several
variable names. When defining an array variable, declare the name and its size enclose with
(). The size can be defined up to 3 dimension.

By default, the variable whose data type is not declared specifically will be treated as REAL
type. Therefore, it should be declared if the integer type is sufficient or the data type be-
cause it has advantage over the REAL type in terms of performance speed and memory
efficiency.

Also, there are three types to the integer type and, each handles a different size of data as
follows: BYTE (1-byte integer), INTEGER (a 2-byte integer) and LONG (a 4-byte inte-
ger). The range for a BYTE type value is -128 to 127. If a value outside this range is
entered, it causes an error.

For more details about the variable, refer to "2.3 Variables" in the Elementary section of the
User's manual for SRC-300/320.

The following cites the restrictions on the variable names. The variable may be freely
named within these restrictions.

・The usable characters are alphanumeric and underscores (_). There is no distinc-
tion between capital and small case letters.

・Must be eight characters or under.
・The first character must be an aophabet character other than "P".
・Reserved words (i.e. command, statement, and function) cannot be used. A re-

served word that is followed by an underscore or numeric character is also read as
a reserved word.

The variable type must be declared at the beginning of a line; otherwise, the file will not be
successfully compiled. When declaring another type of variable, a new line must be created.

S

NOTE

33

Command Description

B

RELATED INTEGER, LONG, REAL, DOUBLE, STRING, VARIABLE, SYS
COMMANDS

EXAMPLE 10 FUNCTION MAIN

20 BYTE I 'Declares a 1-byte integer type variable "I."
30 BYTE ODATA(10,10) 'Declares a 2 dimensional array of 1-byte integer type

 variable, "ODATA."
 . . .
999 FEND

34

Command Description

S>CALIB
Calibration

FUNCTION Replaces current arm posture pulse value with current CALPLS values

FORMAT CALIB [axis number] { ,[axis number] }3

* axis number: integer from 1 to 4

DESCRIPTION Automatically calculates and specifies offset (HOFS) value. This offset is necessary to
matching the origin for each robot axis motor to the corresponding robot mechanical origin.

Use CALIB when motor pulse value has changed, such as after changing a motor.

Normally, the calibration position PULSE values would match the CALPLS pulse values.
However, after maintenance operations such as changing motors, these two sets of values
will no longer match, and therefore calibration becomes necessary.

Calibration may be accomplished by moving the arm to a desired calibration position, and
then executing CALIB. By executing CALIB, the calibration position pulse value is
changed to the CALPLS value, the correct pulse value for the calibration position.

HOFS values must be determined to execute calibration. To have HOFS values automati-
cally calculated, move the arm to desired calibration position, and execute CALIB. The
controller automatically calculates HOFS values based on calibration position pulse values
and on CALPLS pulse values.

If axis number is not specified, error will occur.

CALIB is intended to be used for maintenance purposes only. Execute CALIB only when
necessary.
Executing CALIB causes the HOFS value to be replaced. Because unintended HOFS value
changes can cause unpredictable robot motion, use caution in executing CALIB only when
necessary.

RELATED CALPLS, HOFS
COMMANDS

NOTE

35

Command Description

C

EXAMPLE >CALPLS 'Display current CALPLS values
 65523 43320

 -1550 21351

>PULSE 'Display current position PULSE values
 65526 49358

 -1542 21299

>CALIB 2 'Execute calibration for axis 2 only
>PULSE 'Display (changed) PULSE values
 65526 43320

 -1542 21299

36

Command Description

SCALL

FUNCTION Calls a Function as a subroutine

FORMAT CALL [Function name]

* Nesting up to 10 levels is possible

DESCRIPTION CALL calls (i.e., transfers program control to) a Function (defined in FUNCTION...FEND)
as a subroutine. When END or FEND is encountered, program control returns to the task
that called the Function procedure.

Since a Function is handled as a subroutine in a CALL statement, multiple tasks can call the
same subroutine. However, should multiple tasks SIMULTANEOUSLY call the same
Function, the values they assign to variables in the Function will conflict. To prevent this,
write programs such that, until one task finishes processing of the Function, other tasks that
follow do not call the same Function. This is called exclusive control.

To call a subroutine within a task (procedure), use a GOSUB...RETURN statement, which
is described elsewhere in this manual.

EXAMPLE 100 FUNCTION MAIN

105 OFF $0 'Memory I/O for exclusive control
110 XQT !2 SUB
 . . .
200 CALL ERROR
 . . .
300 FEND

310 FUNCTION SUB
 . . .
350 CALL ERROR
 . . .
400 FEND

410 FUNCTION ERROR

420 ON $0;IF ZEROFLG(0)=1 THEN WAIT SW($0)=0;GOTO 420
 . . .
490 OFF $0

500 FEND

37

Command Description

C

S>CALPLS
Calibration Pulse

FUNCTION Specifies and displays position and orientation pulse used for calibration

FORMAT (1) CALPLS [Axis #1 pulse value],[Axis #2 pulse value][Axis #3 pulse value], ~

[Axis #4 pulse value]
* pulse value: integer

(2) CALPLS

DESCRIPTION (1) Specifies and maintains correct position pulse value for calibration.

CALPLS is intended to be used for maintenance, such as after changing motors, when
motor zero position needs to be matched to the corresponding arm mechanical zero
position. This matching of motor zero position to corresponding arm mechanical zero
position is called calibration.

Normally, the calibration position PULSE values would match the CALPLS pulse val-
ues. However, after performing maintenance operations such as changing motors, these
two sets of values no longer match, and therefore calibration becomes necessary.

Calibration may be accomplished by moving the arm to a certain calibration position,
and then executing CALIB. By executing CALIB, the calibration position pulse value
is changed to the CALPLS value, the correct pulse value for the calibration position.

HOFS values must be determined to execute calibration. To have HOFS values auto-
matically calculated, move the arm to desired calibration position, and execute CALIB.
The controller automatically calculates HOFS values based on calibration position
pulse values and on CALPLS values.

CALPLS values are not initialized at power off, or by executing VERINIT or SYSINIT.

(2) Displays current CALPLS values as follows:

[Axis #1 pulse value] [Axis #2 pulse value]
[Axis #3 pulse value] [Axis #4 pulse value]

RELATED CALIB, HOFS
COMMANDS

38

Command Description

EXAMPLE >CALPLS 'Display current CALPLS values
 65523 43320

 -1550 21351

>PULSE 'Display current position PULSE values
 65526 49358

 -1542 21299

>CALIB 4 'Execute calibration for axis #4 only
>PULSE 'Display (changed) PULSE values
 65526 49358

 -1542 21351

39

Command Description

C

> SCARC
Continuous Arc

FUNCTION Executes arc interpolar motion in a horizontal plane, without decelerating, through
specified final position

FORMAT CARC P[point number 1],P[point number 2] {![parallel processing statement]!}

DESCRIPTION Generates and directs arc interpolar motion along a curve from current position, through
point number 1 and point number 2, not decelerating as it passes through point 2.
For details regarding arc interpolar motion, refer to ARC.

By immediately following CARC with CARC or CMOVE, constant speed is maintained,
with no decelerations. Be sure that each such continuous motion command series completes
with either a MOVE or ARC to decelerate and stop.

For CARC, CMOVE, ARC, or MOVE commands that immediately follow CARC, be sure
that successive paths connect smoothly. If they do not, robot may jerk violently, or Error
152 may occur, cutting motor power and stopping robot.
To prevent this, use software switch SS5, turning bit 6 on. In this setting for CARC travel
from P1 to P2, followed by MOVE, CMOVE, ARC, or CARC travel from P2 to P3, as robot
approaches P2 it will generate and travel a smooth path to P3, passing near but not through
P2. In this setting for CARC travel from P1 to P2, not followed by a motion command,
robot will decelerate and stop at P2.
If you want to know how to set software switch, refer to "9.2 Setting switches" of SPEL
Editor manual or "[Setup] menu" of SPEL for Windows manual.

If, when using MOVE or ARC to decelerate and stop subsequent to CARC, insufficient
deceleration distance is provided, Error 153 will occur, cutting motor power and stopping
robot.

If CARC is immediately followed by a command, statement, or function other than a mo-
tion command, the following command, statement, or function will be executed prior to the
robot reaching the specified point of the preceding CARC. Therefore in principle, only
SPEEDS, ACCELS, CARC, CMOVE, ARC, or MOVE may immediately follow CARC.
To execute statements simultaneous to CARC motion, use parallel processing. For details,
refer to parallel processing in the ! ... ! command description.

RELATED P=,! ... !, ARC, SPEEDS, ACCELS, MOVE, CMOVE
COMMANDS

EXAMPLE 20 JUMP P1

30 CARC P2,P3 !D50;ON 0;D100;OFF 0!

40 ARC P4,P5

40

Command Description

SCHAIN

FUNCTION Loads into main memory and executes object program and position data on file memory

FORMAT CHAIN "{[pathname]}[filename]"

* Filename extensions are not allowed

DESCRIPTION While one program is running, loads into main memory and executes secondary object
program and corresponding position data.

Currently running object program and position data is replaced by specified object program
and position data, and specified program is executed from its first line. If pathname is omit-
ted, CHAIN statement searches for file in the current directory.

Filename extension for the specified file is not allowed. From the filename specification
alone, the following 3 files are automatically loaded:

"filename.OBJ"
"filename.SYM" LOAD
"filename.PNT"

Should any one of the above files not exist in the file memory, an error will occur.
ONERR error processing cannot clear this error.

Executing CHAIN causes all variables except for backup variables to be deleted.

Because software reset does not occur when executing CHAIN, the I/O output and memory
I/O conditions are maintained.

EXAMPLE 10 FUNCTION JOB1

20 IF IN(0)=1 THEN CHAIN "JOB2" 'Execute JOB2 if input port 0 is 1
30 IF IN(0)=2 THEN CHAIN "JOB3" 'Execute JOB3 if input port 0 is 2
40 FEND

NOTE

41

Command Description

C

F>CHARSIZE
Character Size

FUNCTION Specifies character size (on operating unit)

FORMAT CHARSIZE [size number]

* size number: 2, 4, 9, or 16
 [default value: 2]

DESCRIPTION Specifies the character size, which are outputted to operating unit using OPU PRINT, with
size number. Corresponding character size to size number is as follows. If other size
number which is not in the following list is specified, it will be disregarded.

size number character size

2 standard
4 ×4
9 ×9

16 ×16

When power is turned on, the initial size setting is 2, standard.

RELATED CLS, CURSOR, NORMAL, REVERSE, OPUNIT, OPU PRINT
COMMANDS

EXAMPLE >CHARSIZE 9

>OPU PRINT 3,1,"ROBOT"

>CHARSIZE 2

>OPU PRINT 5,5,"WORLD"

42

Command Description

CHDIR, CD
Change Directory

FUNCTION Changes and displays current directory

FORMAT (1) CHDIR {{[pathname]}[directory name]}

(2) CHDIR

DESCRIPTION (1) Changes current directory to specified directory.

If pathname and directory name are omitted, current directory is displayed. This is used
to display the current directory when it is not known.

(2) Displays current directory.

At power on, root directory becomes current directory.

RELATED DIR
COMMANDS

EXAMPLE >CHDIR \ 'Change current directory to root directory
>CHDIR.. 'Change current directory to parent directory
>CD \TEST\H55 'Change current directory to \H55 in \TEST
>CD 'Display current drive's current directory
A:\TEST\H55\

>

43

Command Description

C

CHR$()
Character

FUNCTION Returns character that corresponds to specified ASCII code

FORMAT CHR$([character code])

* character code: integer from 0 to 255

DESCRIPTION Returns character that corresponds to specified ASCII code.

EXAMPLE >PRINT CHR$(&H41)+CHR$(&H42)+CHR$(&H43)

ABC

>

F

44

Command Description

CLEAR

FUNCTION Clears position data

FORMAT CLEAR

DESCRIPTION Clears position data. (initializes position data area.)

Executing CLEAR in on-line mode clears position data in controller main memory.

Executing CLEAR in off-line mode clears position data in programing unit.

RELATED PDEL, NEW
COMMANDS

EXAMPLE >P1=100,200,-20,0/R

>P2=0,300,0,20/L

>PLIST

P1=100,200,-20,0/R

P2=0,300,0,20/L

>CLEAR

>PLIST

>_ 'Because all position data has been cleared, no position data is displayed

>

45

Command Description

C

>CLRLIB
Clear Library

FUNCTION Clears backup variables

FORMAT CLRLIB

DESCRIPTION Clears all backup variables in memory.

RELATED LIBRARY, SYS
COMMANDS

EXAMPLE >CLRLIB

>

46

Command Description

> SCLS
Clear Screen

FUNCTION Erases characters (on operating unit)

FORMAT CLS {[x coordinate],[y coordinate],[number of columns],[number of lines]}

DESCRIPTION Erases characters in the area which is specified by (x,y) and (x+number of column, y+
number of line).
After erasing characters, cursor moves to (x,y) position.

If CLS only is input, characters in all area of operating unit screen are erased. In this case,
cursor moves to home position (1,1) after erasing characters.

RELATED CHARSIZE, CURSOR, NORMAL, REVERSE, OPUNIT, OPU PRINT
COMMANDS

EXAMPLE >CLS 5,3,10,2 ' Erases characters in gray area shown below

[x:column]
 +10 +20 +30

 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2

1

2 ROBOT
3

4

5

6

7 ROBOT
8

ROBOT[y:line]

47

Command Description

C

CMOVE
Continuous Move

FUNCTION Executes simultaneous four axis linear interpolar motion, without decelerating, through
specified position

FORMAT CMOVE [position specification] {![parallel processing statement]!}

DESCRIPTION Executes simultaneous four axis linear motion, from current position through specified
position, not decelerating as it passes through specified position.
For details regarding linear interpolar motion, refer to MOVE.

By immediately following CMOVE with a CARC or CMOVE command, constant speed is
maintained, with no decelerations. Be sure that each such continuous motion command
series completes with either a MOVE or ARC to decelerate and stop.

For CARC, CMOVE, ARC, or MOVE commands that immediately follow CMOVE, be
sure that successive paths connect smoothly. If they do not, robot may jerk violently, or
Error 152 may occur, cutting motor power and stopping robot.
To prevent this, use software switch SS5, switching bit 6 to 1. In this setting for CMOVE
travel from P1 to P2, followed by MOVE, CMOVE, ARC, CARC travel from P2 to P3, as
robot approaches P2 it will generate and travel a smooth path to P3, passing near but not
through P2. In this setting for CMOVE travel from P1 to P2, not followed by a motion
command, robot will decelerate and stop at P2.
If you want to know how to set software switch, refer to "9.2 Setting switches" of SPEL
Editor manual or "[Setup] menu" of SPEL for Windows manual.

If, when using MOVE or ARC to decelerate and stop subsequent to CMOVE, insufficient
deceleration distance is provided, Error 153 will occur, cutting motor power and stopping
robot.

If CMOVE is immediately followed by a command, statement, or function other than a
motion command, the following command, statement, or function will be executed prior to
the robot reaching the specified position of the preceding CMOVE. Therefore in principle,
only SPEEDS, ACCELS, CARC, CMOVE, ARC, or MOVE may immediately follow
CMOVE .
To execute statements simultaneous to CMOVE motion, use parallel processing. For de-
tails, refer to parallel processing in the ! ... ! command description.

RELATED P=,! ... !, MOVE, SPEEDS, ACCELS, ARC, CARC
COMMANDS

EXAMPLE 20 JUMP P1

30 CMOVE P2 !D50;ON 0;D100;OFF 0!

40 CARC P3,P4;MOVE P5

S>

48

Command Description

>COMPILE, COM

FUNCTION Compiles a source program file into an executable file

FORMAT COMPILE{-V}{-L}{"{[pathname]}[filename]"}

* Filename extension is not allowed

DESCRIPTION To execute a program, the source program must be translated to machine executable form.
This process is called compiling. COMPILE executes source program compiling.

In executing COMPILE, SPEL III generates an executable file in intermediate code, called
the object file, and a symbol table file in which variable and Function names in source code
are associated with those in intermediate code.

· If filename is omitted, SPEL III compiles the source program file existing in main
memory, and generates an object file and a symbol table file in main memory. To execute
the object file generated in main memory, use XQT.
After compiling, SPEL III generates in the current directory an object file named
SYSTMP.OBJ and a symbol file named SYSTMP.SYM.

Main memory File memory

source program

>COM position data

object program SYSTMP.OBJ

symbol table SYSTMP.SYM

backup variable

· If filename is specified, SPEL III compiles the specified source program file
(filename.PRG) that resides in the specified path (pathname), and generates in the speci-
fied path of the specified drive an object file named filename.OBJ and a symbol file
named filename.SYM. (Note that filename is replaced by the actual filename you speci-
fied.)
To execute the program, type XQT followed by filename. (For more information, see
XQT.)

SPEL III allocates two areas in main memory for compilation: the object area and the sym-
bol area. In executing COMPILE with the specified filename, SPEL III generates
filename.OBJ and filename.SYM in the object area and symbol area as well as in the speci-
fied path.

49

Command Description

C

For SPEL III to accept COMPILE with the specified filename and pathname specified, the
source program file must reside in the specified path. Therefore, the source program file
must be saved on file memory before executing COMPILE.

Main memory File memory

source program TEST.PRG

position data TEST.PNT

(TEST.OBJ) TEST.OBJ

(TEST.SYM) TEST.SYM

· In selecting the -V, SPEL III verifies whether the types of all variables are declared. If
SPEL III finds any variable whose type is not declared, it generates Error 2. Thus it checks
if type declarations have been made for all variables.
If the -V is omitted, SPEL III regards variables with no type declared as real number type.

· In selecting the -L option, SPEL III compiles the specified line to be branched by GOTO/
GOSUB/ONERR in 4-byte integer.
If the -L is omitted, they are compiled in 2-byte integer.
When the program is compiled without the -L, the following message may be displayed.

short branch [line number]

When a program is compiled without the -L option, specified line to be branched by
GOTO/GOSUB/ONERR is expressed in 2-byte integer. It means the specified lines to be
branched must be within ±32 KB (on object area).
The above error message means that the specified lines to be branched is over ±32 KB. In
such case compile the program with the -L option.
In this case, object size after compiling with the -L option will be a little larger than the
one which is compiled without the -L option.

When executing COMPILE with the specified filename, SPEL III generates filename.OBJ
and filename.SYM in the object area and symbol area as well as in the specified path. This
results in loss of the consistency between the point data retained in main memory and the
object file. Keep this in mind when executing the compiled program or when handling the
files.

NOTE

50

Command Description

RELATED RUN, XQT, QUIT, RESUME, VARIABLE
COMMANDS

EXAMPLE >COM 'Compile source program file in main memory
COMPILE END

>

>XQT 'Execute object program file in main memory
>

>COM"TEST" 'Compile TEST.PRG in current directory
COMPILE END

>XQT"TEST" 'Execute TEST.OBJ, the compiled file
>

>COM"TEST"

COMPILE END

>DLOAD"TEST" 'Load into main memory the source program and position data
that correspond to object file and symbol tables generated in
main memory. Execute the program in response to XQT

>XQT

>

>COM-V 'Compile while checking variable type declarations
##ERROR 2 at 50 'Line number 50 contains a variable with no type declared
##ERROR 2 at 120 'Line number 120 contains a variable with no type declared
>

51

Command Description

C

CONFIG, CNFG
Configuration

FUNCTION Sets configuration parameters for RS-232C communication port

FORMAT CONFIG {#[port number],[mode number],[protocol number],[time-out],～

[baud rate number]}

* port number: 20 or 21 (With additional RS-232C: integer from 20 to 23)
mode number: integer from 0 to 47
protocol number: integer from 0 to 19
baud rate number: integer from 0 to 7

DESCRIPTION CONFIG sets the configuration parameters for an RS-232C communication port.
The port number is 20 or 21 with standard specifications. If additional RS-232C port is
installed, the port number is from 20 to 23.

For the specified mode number, protocol number, and baud rate number, see the tables on
the following pages. When TTY protocol is specified, the argument time-out has no effect.
The mode number 24 or later is not effective for the added port number 22 and 23.

After changing the configuration parameters for an RS-232C port by executing CONFIG,
the system must be reset for the changes to take effect. This is because the system reads the
configuration parameters only when it is started.

Reset the system by:

Turning the power off and on.
Switching between modes.
Executing RESET command in TEACH mode.
If an operating unit or the like is in use, pressing its reset switch in AUTO mode.
Inputting the reset characters through an RS-232C port.

If CONFIG only (without any number and time specification) is inputted, the number and
time which is currently specified is displayed.

Executing VERINIT initializes all port configuration parameters (mode, protocol, time-out,
and baud rate) to their default values: 2, 1, 3, and 0. These numbers mean the following:

2: 7 data bits, even parity, 1 stop bit

1: basic protocol (secondary station)

3: time-out of 3 seconds

0: baud rate 9600 bps

>

NOTE

52

Command Description

RELATED PRINT #, INPUT #, CON, VER, VERINIT
COMMANDS

EXAMPLE >CONFIG #20,0,4,0,6 'Set the configuration parameters for port #20 as follows:
7 data bits, even parity, 2 stop bits, TTY protocol, XON/
XOFF control, CR-LF terminator, baud rate 19200 bps

>CONFIG

 CONFIG #20,0,4,5,6

 CONFIG #21,2,1,3,0

ARGUMENTS
AND SETTINGS < mode number >

mode # data bits parity stop bits mode # data bits parity stop bits

0 7 EVEN 2 24 6 EVEN 2
1 7 ODD 2 25 6 EVEN 1.5
2 7 EVEN 1 26 6 EVEN 1
3 7 ODD 1 27 - - -

4 8 NONE 2 28 6 ODD 2
5 8 NONE 1 29 6 ODD 1.5
6 8 EVEN 1 30 - - -

7 8 ODD 1 31 - - -

8 7 EVEN 1.5 32 6 NONE 2
9 - - - 33 6 NONE 1.5

10 7 ODD 1.5 34 6 NONE 1
11 - - - 35 - - -

12 7 NONE 2 36 5 EVEN 2
13 7 NONE 1 37 5 EVEN 1.5
14 7 NONE 1.5 38 5 EVEN 1
15 - - - 39 - - -

16 8 EVEN 2 40 5 ODD 2
17 8 EVEN 1.5 41 5 ODD 1.5
18 - - - 42 5 ODD 1
19 8 ODD 2 43 - - -

20 8 ODD 1.5 44 5 NONE 2
21 - - - 45 5 NONE 1.5
22 8 NONE 1.5 46 5 NONE 1
23 - - - 47 - - -

53

Command Description

C

< protocol number >

protocol # protocol station buffer busy control terminator

0 TTY - No CR
1 BASIC 2 - -
2 BASIC 1 - -
3 TTY - XON/XOFF CR
4 TTY - XON/XOFF CR-LF
5 TTY - XON/XOFF LF
6 TTY - No CR-LF
7 TTY - No LF
8 BASIC2 2 - -
9 BASIC2 1 - -

10 TTY - RS/CS CR
11 BASIC - RS/CS -
12 BASIC - RS/CS -
13 TTY - RS/CS & XON/XOFF CR
14 TTY - RS/CS & XON/XOFF CR-LF
15 TTY - RS/CS & XON/XOFF LF
16 TTY - RS/CS CR-LF
17 TTY - RS/CS LF
18 BASIC2 2 RS/CS -
19 BASIC2 1 RS/CS -

* Notes on using RS/CS
· Transmission is not controlled for RS, RS output (transmission inquiry) is always

L(Low).
The controller has 20 frames and 120 byte buffer, so there is little possibility of data
transmission failure for proper amount of data transmission even protocol number 10,
16, or 17 (TTY, RS/CS) is used.
However, if large amount of data is transmitted to controller, data may not be received
correctly since those protocol make data transmission ready all the time. In this case, use
protocol number 13, 14 or 15 (TTY, RS/CS & XON/XOFF).

· In the case of protocol number 18 or 19 (BASIC, RS/CS), if controller is in waiting
status for sending data, time-out function is not effective.

< baud rate number (transmission speed) >

baud rate # baud rate

0 9600 bps
1 4800
2 2400
3 1200
4 600
5 300
6 19200
7 38400

54

Command Description

CONSOLE, CNSOL

FUNCTION Specifies console to be used in AUTO mode

FORMAT CONSOLE { |OP |}
|# [port number]|
|BUS |

* port number: 20 or 21
 [default value: OP]

DESCRIPTION When OP is specified, the device connected to main remote is console. The robot can be
controlled by using switches. The main remote is selected by the bit 1 of software switch
SS1. When robot is delivered REMOTE2 (operating unit) is selected as the main remote.

When port number is specified, the specified RS-232C port is console.
Through the RS-232C port specified as the console, the robot can be controlled by using
SPEL III instructions in AUTO mode as you can in TEACH mode.

When BUS is specified, serial bus BUS1 (option) is console. A host computer in the serial
bus network can control the robot.

With no specification, CONSOLE displays the current console.

Use VER to display the current value of port number.

When executing VERINIT, the CONSOLE value is initialized to its default value: OP.

RELATED CONFIG, VER, VERINIT
COMMANDS

EXAMPLE >CONSOLE #20 'Specify RS-232C port #20
>CONSOLE #21 'Specify RS-232C port #21

>

NOTE

55

Command Description

C

>COPY

FUNCTION Copies file to another location

FORMAT COPY {[pathname 1]}{[filename 1]} {[pathname 2]}{[filename 2]}

* Filename must include extension

DESCRIPTION Copies specified filename 1 (source) to specified filename 2 (destination).

Wildcard characters (*, ?) are allowed in specified filenames.

The same pathname and filename may not be specified for both source and destination files.

Source Spec. (filename 1)

COPY [pathname 1]
Copies all files residing in the specified path (pathname 1).

COPY [pathname 1][filename 1]

Copies the specified file (filename 1). If pathname 1 is omitted, the current directory is
assumed.

Destination Spec. (filename 2)

[pathname 2]

Copies the file to the specified directory (pathname 2). The copied file is given the
same name as the original file.

[pathname 2][filename 2]

Copies the file to the specified file (filename 2) in the specified directory (pathname 2).

When copying a file within a directory, it is recommended to make that directory the current
directory using CHDIR(CD). Then COPY can be executed specifying only the filenames
without having to specify pathnames for the source and destination.

RELATED DIR, CHDIR, MKDIR
COMMANDS

EXAMPLE COPY \BAK*.PRG \USR*.PRG 'Copy all files with ".PRG" extension from
directory BAK to directory USER, preserving
the original filenames

56

Command Description

FCOS()
Cosine

FUNCTION Returns cosine of specified angle

FORMAT COS([radians])

DESCRIPTION Returns cosine of the specified angle in radians.

Angles in degrees must be converted to radians, using the following equation:

radian = degrees*π/180 (π = 3.141593)

RELATED SIN(), TAN(), ATAN(), ATAN2()
COMMANDS

EXAMPLE >PRINT COS(0.55) 'Display cosine of 0.55 radians
.8525245

>PRINT COS(30*3.141593/180) 'Display cosine of 30 degrees
.8660254

>A=30*3.141593/180 'Display cosine of 30 degrees, using variable
>PRINT COS(A)

.8660254

>

57

Command Description

C

FCTR()
Counter

FUNCTION Returns count value of counter

FORMAT CTR([input bit number])

* input bit number: number of input bit set as counter
returned value: integer from 0 to 32767

DESCRIPTION Returns count value of counter specified by input bit number.

RELATED CTRESET
COMMANDS

EXAMPLE 100 CTRESET 3 'Reset counter 3
110 ON 0 'Switch on
120 TURN:

130 IF CTR(3)<5 THEN GOTO TURN

140 OFF 0 'When count value is 5 switch off

58

Command Description

S>CTRESET
Counter Reset

FUNCTION Resets counter

FORMAT CTRESET [input bit number]

* input bit number: integer from 0 to 127
number of counters: maximum 16

DESCRIPTION Sets specified input bit as counter and start the counter. If specified input bit is already set
as a counter, it is reset and starts.

Switching input from off to on causes counter to increase 1 count. Pulse input timing chart
is as shown below:

4 msec or longer 4 msec or longer

Turning power off releases all counters.

Use CTR to retrieve count value.

RELATED CTR()
COMMANDS

EXAMPLE 100 CTRESET 3 'reset counter (input bit 3)
110 ON 0 'Switch on
120 TURN:

130 IF CTR(3)<5 THEN GOTO TURN

140 OFF 0 'When count value is 5, switch off

59

Command Description

C

CURSOR

FUNCTION Specifies cursor display on or off (on operating unit)

FORMAT CURSOR |ON |
|OFF|

DESCRIPTION If ON is specified, cursor is displayed.
If OFF is specified, cursor is not displayed.

When power is turned on, initial setting is OFF.

RELATED CHARSIZE, CLS, NORMAL, REVERSE, OPUNIT, OPU PRINT
COMMANDS

> S

60

Command Description

S>CURVE

FUNCTION Creates a file for free curve CP control motion

FORMAT CURVE {[pathname]}[filename],|O|,[mode setting],[number of axis],~
|C|

[curve point specifications]

* filename: filename extensions are not allowed
mode setting: integer from 0 to 3
number of axes: integer from 2 to 4

DESCRIPTION Creates a free curve CP (Continuous Path) motion file from specified continuous point
series.
This file is used to execute CVMOVE curve motion.
It is not necessary to specify speeds and accelerations prior to executing CURVE.
Speeds and accelerations may be changed anytime prior to executing CVMOVE.

Points defined by BASE or LOCAL may be used in the series to locate the curve at the
desired position.

If pathname is specified, the file is created in the specified directory. If pathname is omitted,
the file is created in the current directory.

Filenames may contain a maximum of 8 alphanumerics and/or underscore (_) characters.
CURVE automatically adds the extension .CRV to name of generated files.

"O" or "C" specifies open or closed curves, respectively.
For open curves, motion stops at the final specified point.
For closed curves, motion continues through the final specified point, and stops after re-
turning to the start point.

Mode settings (decelerated stops and tangential correction) are specified as follows:

mode setting decelerated stop tangential correction

0 Yes No
1 Yes No
2 Yes Yes
3 No Yes

61

Command Description

C

Tangential correction continuously maintains tool alignment tangent to the curve in the
XY plane. It is specified when installing tools such as cutters that require continuous
tangential alignment.
Because tangential correction for closed curves requires a complete 360 degree tool rota-
tion, prior to executing CVMOVE it is necessary to extend the range with RANGE.

Number of axes is an integer from 2 to 4.
2 selects generating a curve in the XY plane with no Z axis movement or U axis rotation,
3 selects generating a curve in XYZ space with no U axis rotation, and 4 selects generating
a curve in XYZ space with U axis rotation.

Curve point specifications (individual points and/or continuous increasing or decreasing
point series) are separated by commas.
A continuous increasing or decreasing point series may be indicated by a dash (-) between
the first and final points in the series. For example, (P1-P5) is equivalent to (P1, P2, P3,
P4, P5).
Including intermediate points of continuous series, closed curves may be specified by
from 3 to 50 points, open curves may be specified by from 4 to 200 points.

A maximum of five I/O process statements for execution during curve motion, separated
by commas, may be included in CURVE. I/O processing is executed as the robot passes
through the point (or final point in the series) that precedes the I/O command. (Refer to
example below.)

RELATED CVMOVE, FILES
COMMANDS

EXAMPLE >CURVE CVFIL,O,0,4,P1-P5,ON 2,P123-P100,ON 3,P6,P8 'Specifies curve
as shown below

>FILES
 . . .
CVFIL CRV 6
 . . .
space 65

>JUMP P1

>CVMOVE CVFIL

ON 3 execution

ON 2 execution

P5P2
P100

....

P6
P8

P1

P3

P4

P123
P122

P121

P120

P101

62

Command Description

S>CVMOVE
Curve Move

FUNCTION Executes free curve CP control motion file generated by CURVE

FORMAT CVMOVE {[pathname]}[filename]

DESCRIPTION Executes free curve CP (Continuous Path) motion based on CURVE files.

If pathname is specified, CVMOVE searches for the file in the specified directory.
If pathname is omitted, CVMOVE searches for the file in the current directory.

Filenames are specified without their extension(.CRV).

For free curve files created from point data that has already been assigned local attributes,
movement positions can be changed with the LOCAL or BASE.

CVMOVE cannot execute range verification of the trajectory in advance. Therefore, even
for target positions that are within an allowable range, en route the robot may attempt to
traverse an invalid range, stopping with a severe shock that may damage the arm. To pre-
vent this, be sure to perform range verifications at low speed in advance.

CVMOVE uses the SPEEDS speed value and the ACCELS acceleration value.

RELATED SPEEDS, ACCELS, CURVE
COMMANDS

EXAMPLE >CURVE CVFIL,O,0,4,P1-P5,ON 2,P123-P100,ON 3,P6,P8 'Specifies CURVE
parameters

>FILES
 . . .
CVFIL CRV 6
 . . .
space 65

>JUMP P1

>CVMOVE CVFIL

63

Command Description

C

CX(P) CY(P),CZ(P),CU(P)
Coordinate of X-axis

FUNCTION Returns X, Y, Z, or U axis coordinate value of specified point

FORMAT (1) C|X|(P[point number])
|Y|
|Z |
|U|

(2) C|X|(P*)
|Y|
|Z |
|U|

DESCRIPTION (1) Returns X, Y, Z, or U axis coordinate value of specified point.

(2) Returns each coordinate value of current position

RELATED PLS()
COMMANDS

EXAMPLE >PRINT CX(P1)

0

>PRINT CY(P2) P1=0, 0, 0, 0

200 P2=100, 200, 300, -50, 180

>PRINT CZ(P2)

-50

>PRINT CU(P*)
-56.234

>

F

64

Command Description

DATE

FUNCTION Specifies and displays current date

FORMAT (1) DATE [month]-[day]-[year]

(2) DATE

DESCRIPTION (1) Specifies current year, month, and date. DATE automatically corrects the current
weekday.
This date is used for file record keeping control.

(2) Displays current date.

RELATED DATE$(0), TIME, TIME$(0)
COMMANDS

EXAMPLE >DATE

Current date is Wed 12-25-1996

>DATE 1-3-1997

>DATE

Current date is Fri 1-03-1997

>

>

65

Command Description

D

DATE$(0)

FUNCTION Returns current date

FORMAT DATE$(0)

* The numeral 0 in ()

DESCRIPTION Returns current year, month, and date.

RELATED DATE, TIME, TIME$(0)
COMMANDS

EXAMPLE >PRINT DATE$(0)

Fri 1-03-1997

F

66

Command Description

DEL, ERASE
Delete

FUNCTION Deletes file(s)

FORMAT DEL {[pathname]}{[filename]}

* At least, one of [data] must be specified
Each file name must have an extension

DESCRIPTION Deletes specified file(s).
Filename and extension may contain wildcard characters (*, ?). If *.* is entered in place of
the filename, the following message appears:

Are You Sure (Y/N)?

To delete all files in current directory → enter Y or y

To delete no files → enter N or n

If pathname is omitted, DEL deletes file(s) in current directory.
If filename is omitted, DEL deletes all files in current directory. This is equivalent to
entering *.* in place of the filename.

RELATED KILL
COMMANDS

EXAMPLE DEL \BAK

DEL *.PNT

>

67

Command Description

D

DELETE, DELET

FUNCTION Deletes program line(s)

FORMAT DELETE |[line number] |
|[beginning line number]- |
|[beginning line number]-[ending line number] |
| -[ending line number] |

DESCRIPTION Deletes specified program lines as follows:

[line number]

Deletes specified line number

[beginning line number]-

Deletes all lines from beginning line number to the end of the program

[beginning line number]-[ending line number]

Deletes all lines from beginning line number up to and including ending line number.
To prevent Error 2 from occurring, beginning line number must be less than ending
line number.

-[ending line number]

Deletes all lines up to and including ending line number.

RELATED NEW, PDEL
COMMANDS

EXAMPLE >DELETE 30-40 'Delete lines from 30 up to and including 40
>LIST

 10 FUNCTION MAIN

 20 JUMP P1

 50 FEND

>DELETE 100 'Delete line 100
>DELETE 200- 'Delete all lines from 200 onward
>

>

10 FUNCTION MAIN

20 JUMP P1

30 WAIT 3

40 JUMP P5

50 FEND

68

Command Description

>DIR
Directory

FUNCTION Displays contents of directory

FORMAT DIR {[pathname]}{[filename]}{/P}{/W}

DESCRIPTION Displays filename, directory name, file size, and date and time of previous editing for
specified directories and files as follows:

AUTO BAT 12345 2-18-93 1:00

↑ ↑ ↑ ↑ ↑
Filename Extension File Size (bytes) Date of Time of

Previous Previous
Editing Editing

For subdirectories, instead of file size, <DIR> is displayed.
If pathname is omitted, DIR searches in current directory.

Filename and extension may contain wildcard characters (*, ?). If both filename and exten-
sion are omitted, this is equivalent to entering *.* in place of the filename. In this case,
information for all files that exist in the specified directory will be displayed.

It is possible to omit one of either the filename or the extension. Doing so is equivalent to
specifying the wildcard character * in place of either the filename or extension.
However, be aware that by omitting the extension of a file that has a filename identical to a
directory name in the same path, DIR defaults to that directory. Therefore DIR information
for all of the sub directories and files in that directory will be displayed.

Note that the following commands are equivalent :
Command Equivalent Command
DIR DIR *.*
DIR .PRG DIR *.PRG

/P Specifies page mode. One screen of information is displayed. To view the next
screen, press space key.

/W Specifies wide display. Only filenames are displayed, five per line.

/P/W Specifies page mode and wide display. One screen of information is displayed.
To view the next screen, press space key. Only filenames are displayed, five per
line.

69

Command Description

D

RELATED FILES, WIDTH
COMMANDS

EXAMPLE >DIR

>DIR *.PRG
>DIR TEST.OBJ

70

Command Description

DLOAD, DLO
Disk Load

FUNCTION Loads specified files into main memory

FORMAT DLOAD "{[pathname]}[filename{|.PRG|}]"
|.PNT |

DESCRIPTION Loads specified file from file memory into main memory.

Main memory File memory

(TEST.PRG) TEST.PRG

(TEST.PNT) TEST.PNT

object program

symbol table

If filename extension is specified, only that file is loaded.
If the extension .PRG is specified, only the source program [filename.PRG] will be loaded.
If the extension .PNT is specified, only the position data [filename.PNT] will be loaded.

If filename extension is omitted, [filename.PRG] and [filename.PNT] will be successively
loaded. If either file does not exist an error will occur. If [filename.PRG] exists but
[filename. PNT] does not, the error will occur after [filename.PRG] is loaded.

The statement DLOAD "[filename.PNT]" may be included in the program in order to load
position data files during program execution. However, the statement DLOAD "[filename.
PRG]" is not allowed.

If pathname is omitted, DLOAD loads file(s) from current directory.

DLOAD overwrites current source program and position data in main memory. Therefore,
prior to executing DLOAD, copy current source program and position data to file memory
or floppy disk, if necessary.

RELATED FILES, DIR, DSAVE, DMERGE
COMMANDS

EXAMPLE >DLOAD "TEST"

>DLOAD "TEST.PRG"

>

S>

NOTE

71

Command Description

D

DMERGE
Disk Merge

FUNCTION Loads specified file(s) into main memory and merges them with source program or
position data

FORMAT DMERGE "{[pathname]}[filename{|.PRG|}]"
|.PNT |

DESCRIPTION Loads specified file(s) from file memory into main memory and merges them with source
program or position data.

If filename and extension is specified, only that file is loaded and merged.
Valid filename extensions are .PRG and .PNT only.
If filename is specified but filename extension is omitted, [filename.PRG] and
[filename.PNT] will be successively loaded and merged. If either file does not exist, an
error will occur. If [filename.PRG] exists but [filename.PNT] does not, the error will
occur after [filename.PRG] is loaded and merged.

If a loaded file line number matches a main memory source program line number, the
loaded file line contents replace the main memory source program line contents.
In a similar manner, if a loaded file point number matches a main memory point number,
the loaded file position data replaces the main memory position data.

The statement DMERGE "[filename.PNT]" may be included in the program in order to
merge position data files during program execution. However, the statement DMERGE
"[filename.PRG]" is not allowed.

If pathname is omitted, DMERGE loads specified file(s) from the current directory and
merges them.

RELATED FILES, DIR, DSAVE
COMMANDS

EXAMPLE >DMERGE "TEST.PRG"

>LIST Main Memory File Memory
10 FUNCTION TEST 10 FUNCTION MAIN 10 FUNCTION TEST

20 JUMP P2 20 JUMP P1 + 20 JUMP P2

30 WAIT 1 30 WAIT 1 35 ON 2

35 ON 2 40 FEND 45 FEND

40 FEND

45 FEND

S>

72

Command Description

DOUBLE
Double

FUNCTION Defines 8-byte REAL type variables

FORMAT DOUBLE [variable name]{(array size 1{,array size 2{,array size 3}})}~
{,[variable name]{(array size 1{,array size 2{,array size 3}})}}n

DESCRIPTION This command defends 8-byte REAL type variables.
If several variables of the same type are declared, use a " , " (comma) and describe several
variable names. When defining an array variable, declare the name and its size enclose with
(). The size can be defined up to 3 dimension.

By default, the variable whose data type is not declared specifically will be treated as REAL
type. Therefore, it should be declared if the integer type is sufficient or the data type be-
cause it has advantage over the REAL type in terms of performance speed and memory
efficiency.

The DOUBLE type supplies 14 valid digits. If the high accuracy is not needed, using REAL
(a 4-byte REAL number, 7 valid digits) is recommended.

For more details about the variable, refer to "2.3 Variables" in the Elementary section of the
User's manual for SRC-300/320.

The following cites the restrictions on the variable names. The variable may be freely
named within these restrictions.

・The usable characters are alphanumeric and underscores (_). There is no distinc-
tion between capital and small case letters.

・Must be eight characters or under.
・The first character must be an aophabet character other than "P".
・Reserved words (i.e. command, statement, and function) cannot be used. A re-

served word that is followed by an underscore or numeric character is also read as
a reserved word.

The variable type must be declared at the beginning of a line; otherwise, the file will not be
successfully compiled. When declaring another type of variable, a new line must be created.

S

NOTE

73

Command Description

D

RELATED BYTE, INTEGER, LONG, REAL, STRING, VARIABLE, SYS
COMMANDS

EXAMPLE 10 FUNCTION MAIN

20 DOUBLE I 'Declares a 8-byte REAL type variable "I."
30 DOUBLE ODATA(10,10) 'Declares a 2 dimensional array of 8-byte REAL type

 variable, "ODATA."
 . . .
999 FEND

74

Command Description

DSAVE, DSA
Save to Disk

FUNCTION Saves main memory source program and position data files in file memory or floppy disk

FORMAT DSAVE "{[pathname]}[filename{|.PRG|}]"
|.PNT |

DESCRIPTION Saves main memory source program and position data files, names the files as specified,
and saves them in file memory or floppy disk.

Main memory File memory

source program TEST.PRG

position data TEST.PNT

object program

symbol table

The following restrictions apply to filenames: (Refer to User's manual for details.)

· Eight characters or less
· Allowed characters

alphanumeric characters *
symbols such as ! # $ % & () { } - _ @ ^

* Either large or small case letters may be input, small case letters are converted to large
case.

Valid filename extensions are .PRG and .PNT only.
If [filename.PRG] is specified, only source program is saved. If [filename.PNT] is speci-
fied, only position data file is saved.
If filename extension is omitted, both [filename.PRG] and [filename.PNT] will be saved.

If DSAVE is executed with no source program or position data in main memory, saved files
will contain nothing.

The statement DSAVE "[filename.PNT]" may be included in the program in order to save
position data during program execution.
In this case, it is possible to use other extensions except ".PNT". However, it is recom-
mendable to use ".PNT" extension for position data file.

If pathname is omitted, DSAVE saves files in current directory.

If in the specified directory a file with same filename already exists, an error will occur.
Should this occur, use DEL to delete unnecessary files.

>

75

Command Description

D

RELATED DIR, FILES, DEL, KILL, DLOAD
COMMANDS

EXAMPLE >DSAVE "TEST.PRG"

>DSAVE "TEST.PNT"

>KILL "TEST"

>DSAVE "TEST"

>

76

Command Description

FDSW()

FUNCTION Returns remote input status as decimal

FORMAT DSW([port number])

* port number: integer from 2 to 6

DESCRIPTION Returns status of the REMOTE1 - 3 as a decimal.
SPEL III in this version assigns no meaning to port number 0 or 1. (DSW() returns 0 if port
number 0 or 1 are specified.)

Emergency stop can be inputted from REMOTE1, REMOTE2 and TEACH port.
DSW() can not specify the port from which the emergency stop is inputted because of
serial circuit.
The status of E.STOP indicates the emergency stop condition or not, not the condition of
the emergency stop switch. In other words, even if the mechanical hold of the emergency
stop switch is released DSW() returns 1 which means emergency stop condition until the
emergency stop condition is canceled.

bit0 RESET
1 PAUSE
2 START

DSW(2) 3 undefined
4 undefined
5 undefined
6 undefined
7 MONITOR

bit0 ↑
1 ↓
2 ←

DSW(3) 3 → REMOTE2
4 F1 (OPU-300)
5 F2
6 F3
7 F4

bit0 undefined
1 AUTO mode
2 TEACH mode

DSW(4) 3 undefined
4 undefined
5 undefined
6 Safeguard REMOTE1
7 E.STOP REMOTE1, REMOTE2, TEACH

77

Command Description

D

 bit0 RESET
1 PAUSE
2 START

DSW(5) 3 HOME
4 program No.20

 5 program No.21

6 program No.22

7 program No.23

REMOTE3bit0 MCAL
1 Motor power on
2 Motor power off

DSW(6) 3 undefined
4 undefined
5 undefined
6 undefined
7 undefined

DSW(5) and DSW(6) for REMOTE3 function only for bits which set up as REMOTE3.
DSW() returns 0 if it is used to bits which are not set up as REMOTE3 .

RELATED PRGNO, OPUNIT
COMMANDS

EXAMPLE The program can check whether the [F1] key of the OPU-300 was pressed by including
the following statements:

10 FUNCTION CHECKSW

20 IF (DSW(3) AND &H10)=&H10 THEN...

78

Command Description

SECLR
Error Clear

FUNCTION Clears error status

FORMAT ECLR

DESCRIPTION Clears error status (error number).

ECLR is use with ONERR.
By including an ONERR, should an error occur during program execution, it becomes pos-
sible to branch to an error processing subroutine.
When it is desired to return to the main program at the completion of the error processing
subroutine, it is necessary to use ECLR to clear the error status. If the error status is not
cleared by ECLR execution, the uncleared error status will cause the error processing sub-
routine to repeat.

RELATED ONERR
COMMANDS

EXAMPLE 10 ONERR ERR_SUB 'When error occurs during execution, branch to line 70
20 FOR I=0 TO 199

30 JUMP P1

40 NEXT I

50 END

60 '

70 ERR_SUB:

80 ECLR 'Clear error status
 . . .
220 RETURN

79

Command Description

E

>EDIT

FUNCTION Switches to edit mode

FORMAT EDIT {[pathname]}[filename]{.[extension]}

DESCRIPTION Switches to edit mode, to edit text files such as batch files.
Two special commands are available for exiting from edit mode: QUIT and END. Issuing
either command switches back to programing mode.

In programing mode, although source program files and position data files can be edited,
other text files, such as batch files, cannot be edited. Editing text files other than source
program and position data files must be done in edit mode.

To edit a file with no extension, specify the filename with no extension.

End of input file

If the specified filename does not exist, the following message appears, which indicates
that a new file will be created:

New file

To exit edit mode, use one of the two edit mode specific commands; QUIT (exit without
saving file), or END (exit after saving file). The following messages appear after exiting:

>QUIT

Edit End...

>

>END

Edit End...file save

>

When loaded by EDIT, line numbers starting at 10 are added to each line in increments of
10. When saved by END, however, the file is stripped of line numbers.

80

Command Description

In edit mode, only the following commands may be used:

Edit commands
LIST
DELETE
RENUM
NEW
FREE

Exit commands
QUIT Exit to programing mode without saving file
END Exit to programing mode after saving file

File management commands
COPY
DIR
DEL(ERASE)
RENAME
CD(CHDIR)
MD(MKDIR)
RD(RMDIR)
RENDIR

SPEL III allocates for edit mode a memory area separate from that for programing mode, so
that EDIT can be executed without losing the program retained in the source program area
in main memory.

The number of characters in a line is limited to 79. At load time (without line numbers), the
length of one line cannot exceed 74 characters. Characters exceeding this limitation will be
truncated.

In edit mode, only edit-related commands are available. To use any other commands, such
as XQT, return to programing mode using QUIT or END. While in edit mode, (even if
switched to AUTO mode), the program cannot be executed.

EXAMPLE EDIT CNFG.SYS

New file

>10 TASK=8

>20 ERRBUF=20

>30 LINBUF=256

>END

Edit End...file save

>

81

Command Description

E

SEND

FUNCTION Terminates program execution

FORMAT END

DESCRIPTION Signifies the end of program, program execution does not proceed beyond this line
number.

For programs that contain subroutines, END at the end of the main program separates the
main program from the subsequent subroutine. If END is omitted, the subroutine will be
executed as part of the main program.

In edit mode for text file by EDIT, END is used to exit to programming mode after saving
file.

EXAMPLE 10 FUNCTION TEST

20 JUMP P5

30 IF SW(4)=0 THEN GOSUB BUZZER

40 JUMP P6 ;ON 0 ;WAIT 0.5

50 JUMP P7 ;OFF 0 ;WAIT 0.5

60 GOTO 20

70 END 'End of program
80 '

90 BUZZER:

100 ON 4

110 WAIT SW(4)=1 OR SW(5)=1

120 OFF 4

130 WAIT SW(4)=1

140 RETURN

150 '

160 FEND

>

82

Command Description

ENTRY

FUNCTION Declares global variables

FORMAT ENTRY [variable type] [variable name]{,[variable name]}n

DESCRIPTION Declares specified variable(s) as global variable(s), and retains their values in a specially
allocated symbol file.

With ENTRY, SPEL III provides support for global variables (i.e., variables that are shared
among all files that comprise a program) in addition to local variables (i.e., variables that
can be used only within a single file and have no effect outside the file).

Once a global variables has been declared, another file can refer to it by including EXTERN
in that file.

Using global variables facilitates creating a program from multiple files through modular
compilation and through linking.

RELATED EXTERN, LINK
COMMANDS

EXAMPLE FILE 1(MAIN.PRG)
10 FUNCTION MAIN

20 INTEGER I 'I is local variable
30 ENTRY REAL WORK(100) 'Declare global variable
40 EXTERN FUNCTION SUB_TASK

50 WORK(5)=10.3
 . . .
1000 FEND

FILE 2(INIT.PRG)
2000 FUNCTION SUB_TASK

2010 J=1

2020 EXTERN REAL WORK(100) 'Declare reference to global variable
2030 A=J+WORK(5) 'Use value of WORK(5) set in FILE 1
 . . .
3000 FEND

S

83

Command Description

E

ERA(0)
Error Axis

FUNCTION Returns axis number in which error occurred

FORMAT ERA(0)

DESCRIPTION Returns axis number in which error occurred.
Number which will be returned is 0 to 4.
0(zero) means that an axis is not causing error.

RELATED ONERR, TRAP, ERR(0), ERL(0), ERT(0), ERD(0)
COMMANDS

EXAMPLE 100 TRAP ERROR CALL ER_PRINT
 . . .
3000 FUNCTION ER_PRINT

3010 PRINT #20, "Error occurred in controller."

3020 PRINT #20, "Task number at which error occurred is ",ERT(0),"."

3030 IF ERA(0) THEN PRINT #20, "Axis which caused error is ",ERA(0),"."

3040 PRINT #20, "Error code is ",ERR(0),"."

3050 END

3060 FEND

F

84

Command Description

FERL(0)
Error line number

FUNCTION Returns line number in which error occurred

FORMAT ERL(0)

DESCRIPTION Returns line number in which error occurred.

ERL(0) is used with ONERR. If an error occurs in a program included within ONERR...
RETURN, it may be difficult to locate the source of the error. ERL(0) returns the line
number in which the error occurred.

Since the ECLR internal to the ONERR error processing program clears the error line num-
ber back to 0, be sure to execute ERL(0) prior to executing ECLR.

RELATED ONERR, ECLR, ERR(0)
COMMANDS

EXAMPLE
 . . .
120 ONERR 1000
 . . .
1000 'Error management process

1010 ELINE=ERL(0)

1020 ECODE=ERR(0)

1030 ECLR

1040 PRINT "error"

1050 PRINT " line = ",ELINE

1060 PRINT " code = ",ECODE

1070 RETURN

85

Command Description

E

FERR(0)
Error

FUNCTION Returns error number

FORMAT ERR(0)

* The numeral 0 in ()

DESCRIPTION ERR(0) is used with ONERR. If an error occurs in a program included within ONERR...
RETURN, it may be difficult to know the error number. ERR(0) returns the error number.

Since the ECLR internal to the ONERR error processing program clears the error number
back to 0, be sure to execute ERR(0) prior to executing ECLR.

RELATED ONERR, ECLR, ERL(0)
COMMANDS

EXAMPLE 10 ONERR 60

20 FOR I=0 TO 199

30 JUMP PI

40 NEXT I

50 END

60 '

70 'ERR SUB

80 A=ERR(0)

90 PRINT A

100 ECLR

110 RETURN

86

Command Description

>ERRHIST
Error History

FUNCTION Displays error history

FORMAT ERRHIST {[number of errors to display]}

* number or errors to display: integer from 1 to 50
[default value: 20]

DESCRIPTION Displays a maximum of fifty of the most recently occurred errors.

The following items are displayed:

error number
axis number related to error
line number in which error occurred
task number
date and time error occurred

If "number of errors to display" is specified, errors of specified number are displayed.

If "number of errors to display" is omitted, twenty of the most recently occurred errors are
displayed.
If ERRBUF=30 is specified in the CNFG.SYS file, thirty errors are displayed.

Regarding error 2 (syntax error), if it is issued during program execution, only such errors
are recorded.
If ONERR is used, such errors are not recorded.

Power off does not change ERRHIST memory or display items.
Power off is recorded as error 48.

EXAMPLE >ERRHIST 7

Error(axis) Line Task Dev Date Time

 5 10-21 8:11:09p

 11 10-21 8:11:18p

 2 10-21 8:12:06p

 125 (2) 10-21 8:12:26p

 48 10-21 8:31:52p

 125 (2) 10-22 9:00:00a

 125 (2) 160 1 10-22 1:01:15p

>

87

Command Description

E

ERRMSG$
Error Message

FUNCTION Returns error message corresponding to specified error number

FORMAT ERRMSG$([error number])

DESCRIPTION Returns error message which is described in ERROR CODE TABLE.
Error message is displayed in the language which is specified by software switch SS1.

RELATED ERR(0), ERL(0), ONERR, TRAP
COMMANDS

EXAMPLE >PRINT ERRMSG$(124)

Numeric value is out of allowable range.

F

88

Command Description

ERT(0)
Error Task

FUNCTION Returns task number at which error occurred

FORMAT ERT(0)

* The numeral 0(zero) in ()

DESCRIPTION Returns task number at which error occurred.
Number which will be returned is 1 to 16.

RELATED TRAP, ERR(0), ERD(0), ERA(0), ERL(0)
COMMANDS

EXAMPLE 100 TRAP ERROR CALL ER_PRINT
 . . .
3000 FUNCTION ER_PRINT

3010 PRINT #20, "Error occurred in controller."

3020 PRINT #20, "Task number at which error occurred is ",ERT(0),"."

3030 IF ERA(0) THEN PRINT #20, "Axis which caused error is ",ERA(0),"."

3040 PRINT #20, "Error code is ",ERR(0),"."

3050 END

3060 FEND

> S

89

Command Description

E

SEXTERN
External

FUNCTION Declares reference to global variables

FORMAT EXTERN [variable type] [variable name]{,[variable name]}n

DESCRIPTION Declares reference to global variable(s) declared in an ENTRY statement. Including
EXTERN in a file enables the file to have access to the value of a global variable set in
another file.

RELATED ENTRY
COMMANDS

EXAMPLE FILE 1(MAIN.PRG)
10 FUNCTION MAIN

20 INTEGER I 'I is local variable
30 ENTRY REAL WORK(100) 'Declare global variable
40 EXTERN FUNCTION INIT

50 WORK(5)=10.3
 . . .
1000 FEND

FILE 2(INIT.PRG)
2000 FUNCTION INIT

2010 J=1

2020 EXTERN REAL WORK(100) 'Declare reference to global variable
2030 A=J+WORK(5) 'Use value of WORK(5) set in FILE 1
 . . .
3000 FEND

90

Command Description

FILES

FUNCTION Displays name and size of files in file memory

FORMAT FILES {[pathname]}{[filename]}

DESCRIPTION Displays name and size of files in file memory. Also displays unused file memory. File
size units are Kbytes.

If pathname is omitted, FILES assumes current directory.

Filename and extension may contain wildcard characters (*, ?). If filename and extension
are omitted, this is equivalent to entering *.* in place of the filename, and FILES displays
name and size for all of the vile and directories in the specified drive and directory.

RELATED DIR, WIDTH, DLOAD, DSAVE, DMERGE, KILL
COMMANDS

EXAMPLE >FILES

01 PRG 2

01 PNT 1

01 OBJ 2

01 SYM 1

ABC CRV 1

02 PRG 2

02 PNT 1

EXAMPLE PRG 5

CNFG SYS 1

AUTO BAY 1

EXAMPLE PNT 1

EXAMPLE2 PNT 1

 space 181

>

>

91

Command Description

F

FIND

FUNCTION Searches for string

FORMAT FIND {"}[string]{"} {{[drive name]}{[pathname]}[filename]}

* Filename extension is necessary

DESCRIPTION Searches for and displays line(s) of specified file that contains specified string.

For FIND to search for strings that contain small case alpha characters and spaces, the
search string must be bracketed by quotation marks. If quotation marks are omitted, FIND
searches for large case alpha characters when small case alpha characters are specified.

The search string may contain wildcard characters (*, ?).
For FIND to search for wildcard characters (*, ?) or \ as search string characters, precede
each character (*, ?, \) with a \, and specified in the search string as *, \?, or \ \.

Filename and extension may contain wildcard characters (*, ?).

If filename is omitted, FIND searches for specified string from main memory program,
and displays the corresponding lines.

If pathname is omitted, FIND searches file(s) from current directory.

EXAMPLE For the filename ONOFF.PRG
>FIND L?D ONOFF.PRG 10 FUNCTION ONOFF

ONOFF.PRG 20 INTEGER LED

20 INTEGER LED 30 INTEGER STOPSW

40 FOR LED=0 TO 31 40 FOR LED=0 TO 31

50 ON LED 50 ON LED

70 FOR LED=0 TO 31 60 NEXT

80 OFF LED 70 FOR LED=0 TO 31

> 80 OFF LED

>FIND ST*SW ONOFF.PRG
90 NEXT

ONOFF.PRG 100 IF SW(STOPSW)=0 THEN GOTO 40

30 INTEGER STOPSW 110 FEND

100 IF SW(STOPSW)=0 THEN GOTO 40

>

>FIND "ON LED" ONOFF.PRG

50 ON LED

>

>

92

Command Description

S>FINE

FUNCTION Sets the allowable range for positioning completion checkout

FORMAT FINE {[axis #1 setting],[axis #2 setting],[axis #3 setting],[axis #4 setting]}

* axis setting: integer from 0 to 32767

DESCRIPTION Sets the allowable positioning range in pulses for each axis. Positioning is confirmed when
all axes have arrived within the specified ranges.

This positioning completion check begins after the sub CPU has completed sending the
target position pulse to the servo system. Due to servo delay, the robot will not yet have
reached the target position. This check continues to be executed every few milliseconds
until each axis has arrived within the specified range setting. After positioning check has
completed, control passes to the next command.

With relatively large ranges, the positioning will be confirmed relatively early, which may
cause the target positioning to be rough.

Since the servo delay is normally less than a few thousand pulses, a range setting of a few
thousand pulses or larger will result in no beneficial positioning effect.

Depending on conditions, FINE settings, even if they are 0, do not always contribute to fine
positioning.

If settings for all four axes are omitted, FINE displays the current settings as follows :

[axis #1 setting] [axis #2 setting]
[axis #3 setting] [axis #4 setting]

When MOTOR ON, SLOCK, SFREE, or VERINIT are executed, FINE values are initial-
ized to the default values, which vary from model to model.

RELATED GO, JUMP, MOVE, ARC, CVMOVE, PULSE
COMMANDS

EXAMPLE >FINE 50,50,50,50

>

>FINE

 50 50

 50 50

93

Command Description

F

SFOR...NEXT

FUNCTION Executes a series of statements a specified number of times

FORMAT FOR [vn]=[iv] TO [final value] {STEP [increment value]}
...

NEXT {[vn]}

(replace vn with variable name)
(replace iv with initial value)

* initial value, final value, increment value: ±0.000001 to ±9999999
nesting: up to 20

DESCRIPTION Executes a series of statements a specified number of times.

Number of loop repetitions (times for repeating the series of statements from FOR to
NEXT) is determined by the initial value, final value, and increment value.

If increment value is omitted, it defaults to 1.
Increment value may be negative, but initial value must be greater than final value.

Nesting is allowable, a maximum of nineteen FOR...NEXT loops may be nested into the
first FOR...NEXT loop. (For an explanation of nesting, refer to #include command.)

The variable name following NEXT may be omitted. For programs that contain nested
FOR...NEXT loops, however, including the variable name following NEXT aids in quickly
identifying loops.

EXAMPLE 10 FOR SP=10 TO 100 STEP 10 'Change speeds from 10 to 100 at 10 intervals,
jump from P1 to P5 at each speed

20 SPEED SP

30 FOR I=1 TO 5

40 JUMP PI

50 NEXT I

60 NEXT SP

94

Command Description

NOTE

>FORMAT

FUNCTION Formats file memory or floppy disk

FORMAT FORMAT {/A}

DESCRIPTION Formats file memory.

After specifying FORMAT parameters, FORMAT displays a prompt of the following form
and waits for input:

RAM disk Format OK(Y/N)?

?_

To begin formatting, press Y, otherwise, press N.

Except when /A is specified, executing FORMAT erases all data in the file memory.
Therefore backup data as necessary prior to executing FORMAT. If you want to know how
to backup and restore, refer to "backing up and restoring a file" in chapter 3 of SPEL Editor
manual or "[File] menu" of SPEL for Windows manual.

When FORMAT is executed, following message may be displayed.

Memory error !! address $xxxxxxxx

If the displayed address number with $ is one of the below, it means the dip switch DSW1
on MPU board is set that additional RAM is installed while it is not installed actually.
Turn off the corresponding bit of the software switch.

$00080003 Bit 1 of SD2

$00099001 Bit 1 and 2 of SD2

If other address number is displayed, please contact the authorized distributor of our robot.

/A selects, when the optional 1 Mbyte RAM modules have been added to the file memory,
that file memory be formatted without erasing the current file memory contents.
Install the RAMs by the steps described below.

1) Backup all of the data in main memory and file memory.

95

Command Description

F

2) Turn off the controller, insert the additional RAM modules into MPU board. Refer to
② to ⑧ in "10.3 Additional RAM" of controller manual for details.

3) Execute FORMAT/A. The file memory is formatted without erasing the current file
memory contents.
When /A is specified, you will be prompted as follows.

RAM disk size adjust OK(Y/N)?

?_

Then, if Y is entered, the file memory is formatted and contents size increases.

When FORMAT is executed, the message may be displayed “Memory error !!
address $xxxxxxxx”. If the address number, which starts with $, is $00080003 or
$00099001, it means the dip switch SD2 on MPU board is set so that additional RAM
is installed while it is not installed actually. Check if RAMs are installed correctly and
execute FORMAT/A again. If other address is displayed, please contact the authorized
distributor of our robot.

*When you want to increase the size of main memory (when you set the bit 1 and 2 of
SD2 to the on position), initialize memory by SYSINIT command. Executing
SYSINIT clears all data in main memory; object program, backup variables, point
data, and source program. Restore all of backed up data to main memory.

4) Turn off the controller once, and turn on again.

5) Execute DIR command. Check if all files are displayed and free space is increased.

6) Execute DLOAD and DWNLD command and check if you can access a file correctly.
When error 87 is occurred, it means a failure of formatting. In this case execute FOR-
MAT without /A, restore the files that you backed up earlier to file memory.

EXAMPLE >FORMAT

RAM disk Format OK(Y/N)?

?Y

96

Command Description

FREE

FUNCTION Displays available memory

FORMAT FREE

DESCRIPTION Displays available memory and unused variables.

In on-line mode, displays main memory available memory, in bytes, as follows:
PRG = Source program available memory
VAR = Unused backup variables, available memory

(Total number of variables, total memory) Values specified by LIBSIZE
OBJ = Object program available memory

In off-line mode, displays programing unit available memory, in bytes, as follows:
PRG = Source program available memory
PNT = Position data available memory

EXAMPLE >FREE

PRG = 65536 'Source program available memory
VAR = 10,462 'Unused backup variables, available memory
 (10,512) '(Total number of variables, total memory) Values specified by

LIBSIZE
OBJ = 99660 'Object program available memory
>

>

97

Command Description

F

FUNCTION...FEND
Function...Function End

FUNCTION Defines Function

FORMAT FUNCTION [Function name]
...

FEND

DESCRIPTION The first line of a program must contain FUNCTION with Function name, the last line
must be FEND. The program from FUNCTION to FEND is called a Function.
When executing many tasks, or when using CALL statements, multiple Functions can be
described in series (refer to example below.)

A Function name is used to call up each Function, the following restrictions apply to
Function names:

· Eight characters or less.

· Only alphanumerics and underscore (_).

· Either large or small case letters may be input, small case letters are converted to large
case.

· First character must be an alpha character other than [P].

· Keywords (such as GO or FOR) are not allowed. Keywords followed by underscore
or numerics are read as reserved words.

The first Function described in the program is called the "main Function." The main
Function is executed in Task 1.
The main Function's XQT specifies task numbers and corresponding Function names, and
directs execution for all subsequent Functions.

An object file can contain up to 69 functions. (A function starts with “FUNCTION” and
ends with “FEND”.) In order to incorporate more functions than 69 in the program, create
a new object file and link to the original object file by using LINK command.

RELATED XQT, RUN, QUIT, HALT, CALL, LINK
COMMANDS

S

98

Command Description

EXAMPLE 10 FUNCTION MAIN

20 '

30 XQT !2 TASK2 'Execute Function TASK2 in Task 2
40 XQT !3 TASK3 'Execute Function TASK3 in Task 3
 . . .
100 FEND

110 '

120 FUNCTION TASK2 'Function TASK 2
130 ST2:

140 WAIT SW($1)=1
 . . .
200 GOTO ST2

210 FEND

220 '

230 FUNCTION TASK3 'Function TASK 3
240 ST3:

250 WAIT SW(1)=1
 . . .
300 GOTO ST3

310 FEND

99

Command Description

GO

FUNCTION Executes simultaneous all axes PTP motion, with deceleration and stop at specified position

FORMAT (1) GO [ps] {|/R|} {TILL} {![parallel processing statement]!}
|/L |

(2) GO [ps] {|/R|} {TILL SW(input bit number)} {= |0|} {![parallel processing statement]!}
|/L | |1|

[ps] = position specification

DESCRIPTION Executes simultaneous all axes PTP motion, with deceleration and stop at specified position.

GO command uses the SPEED speed value and the ACCEL acceleration value.
In setting the arm’s mode for the horizontal robot, specify either the right or left arm by
declaring “/R” (for the right arm) or ”/L” (for the left arm). Note that “/R” can be
omitted while “/L” for the left arm cannot be omitted. Unless specified with “/L,” all the
set mode will apply only to the right arm.
TILL modifier is used to decelerate and stop the robot at an intermediate travel position if
current TILL condition becomes satisfied. If TILL condition does not become satisfied,
robot travels to the target position.

(1) GO with TILL Modifier:
Checks if current TILL condition becomes satisfied. If satisfied, this command com-
pletes by decelerating and stopping robot.

(2) GO with TILL Modifier, SW (input bit number) Modifier, and (0 or 1) Input Condition:
Checks if same line input condition becomes satisfied. If satisfied, this command com-
pletes by decelerating and stopping robot at an intermediate travel position.
GO with TILL Modifier, SW (input bit number) Modifier, but no Input Condition:
Input condition defaults to 1. If specified input bit becomes on, this command com-
pletes by decelerating and stopping robot at an intermediate travel position.

GO differs from JUMP in that while GO Z axis motion is in a straight line from current
position to target position, JUMP Z axis motion includes rising prior to horizontal travel, and
lowering after horizontal travel. Since in using the GO there is a greater possibility of a
hand colliding against a workpiece, in most cases, JUMP, and not GO, should be used.

S>

NOTE

G

100

Command Description

RELATED P=, ! ... !, SPEED, ACCEL, TILL, SW(), PASS
COMMANDS

EXAMPLE 100 TILL SW(1)=0 AND SW(2)=1 'Specifies TILL conditions (Input Bit 1 is off
and Input Bit 2 is on)

110 GO P1 TILL 'Stop if current TILL condition (line 100)
becomes satisfied

120 GO P2 TILL SW(2)=1 'Stop if Input Bit 2 is on
130 GO P3 TILL 'Stop if current TILL condition (line 100) is

satisfied

101

Command Description

GOSUB...RETURN
Go to Subroutine

FUNCTION Branches to, executes, and returns from subroutine

FORMAT GOSUB |line number |
|label |

...
|line number |
|label |

...
RETURN

* nesting: up to 10

DESCRIPTION Branches to specified line number or label, executes subroutine that follows, and return to
main program.
Be sure to end each subroutine with RETURN. Doing so directs program execution to
return to the line following GOSUB.

Nesting is allowable, a maximum of nine GOSUB...RETURN loops may be nested into the
first GOSUB...RETURN loop. (For an explanation of nesting, refer to #include command.)

The combined total number of GOSUB and GOTO commands is limited to 447. Attempting
to exceed 448 will result in an error.

To specify as a label, place " : " (colon) after the label. Other than the restrictions given
below, the labels may be freely named.

Label: ・Within eight characters
・The first character must be an alphabet other than "P".
・Alphanumerics and underscores (_)
・No distinction between capital and small case

RELATED GOTO
COMMANDS

EXAMPLE 10 GOSUB WAIFDR

20 JUMP P1; JUMP P3

30 JUMP P*:Z0
...

300 WAIFDR: 'label
310 WAIT SW($1)=1

320 OFF $1

330 RETURN

S

G

102

Command Description

GOTO
Go to

FUNCTION Branches to specified line number

FORMAT GOTO |line number |
|label |

DESCRIPTION Branches unconditionally to specified line number or label.

If the specified line number or label does not exist, Error 8 will occur.

The combined total number of GOTO and GOSUB commands is limited to 447.
Attempting to exceed 448 will result in an error.

To specify as a label, place " : " (colon) after the label. Other than the restrictions given
below, the labels may be freely named.

Label: ・Within eight characters
・The first character must be an alphabet other than "P".
・Alphanumerics and underscores (_)
・No distinction between capital and small case

EXAMPLE 10 SPEED 100

20 JUMP P50

30 WAIT 0.5

40 JUMP P80

50 WAIT 1.2

60 GOTO 20 'Branch to line 20, continue execution

EXAMPLE 2 100 GOTO TIMER 'Branch to line labeled TIMER, continue execution
 . . .
300 TIMER:

S

103

Command Description

HALT

FUNCTION Temporarily stops execution of task in progress

FORMAT HALT ![Task number]

* Task number: integer from 1 to 16

DESCRIPTION Temporarily stops (halts) execution of task in.
To resume execution of the halted task, use RESUME.
To complete halted task, use QUIT.

RELATED RUN, XQT, QUIT, RESUME
COMMANDS

EXAMPLE 10 FUNCTION MAIN

20 XQT !2 FLASH 'Execute Function FLASH as Task 2
30 LOOP:

40 WAIT 3 'Set timer interval to 3 seconds (Task 2 is executing)
50 HALT !2 'Halt Task 2 (after line 40, 3 seconds has elapsed)
60 WAIT 3 'Set timer interval to 3 seconds (Task 2 is stopped)
70 RESUME !2 'Resume Task 2 (after line 60, 3 seconds has elapsed)
80 GOTO LOOP

90 FEND

100 '

110 FUNCTION FLASH 'Flash light on/off at 0.2 seconds intervals
120 LOOP1:

130 ON 1

140 WAIT 0.2

150 OFF 1

160 WAIT 0.2

170 GOTO LOOP1

180 FEND

S>

H

104

Command Description

HOFS
H Offset

FUNCTION Specifies and displays offset pulse used for software zero point correction

FORMAT (1) HOFS [axis #1 offset value],[axis #2 offset value],[axis #3 offset value],~

[axis #4 offset value]

(2) HOFS

DESCRIPTION (1) Specifies offset from the encoder 0 point to the mechanical 0 point, this offset is used
for software 0 point correction.
Although robot motion control is based on the zero point of the encoder mounted on
each axis motor, the encoder zero point may not necessarily match the robot mechani-
cal zero point. The HOFS offset pulse correction pulse is used to carry out a software
correction to the mechanical 0 point based on the encoder 0 point.

HOFS values are not changed by power off, or by executing VERINIT.

HOFS values can be specified directly.

To have HOFS values automatically calculated, move the arm to a certain calibration
position, and execute CALIB. The controller automatically calculates HOFS values
based on CALPLS pulse values and calibration position pulse values.

(2) Displays current HOFS values as follows:

[Axis #1 value] [Axis #2 value]
[Axis #3 value] [Axis #4 value]

The HOFS value is correctly specified prior to delivery. There is a danger that unneces-
sarily changing the HOFS value may result in positional errors and unpredictable motion.
Therefore, we strongly recommend that HOFS values not be changed unless absolutely
necessary.

RELATED CALIB, CALPLS
COMMANDS

EXAMPLE HOFS 100,120,50,0

>

HOFS

 100 120

 50 0

> S

NOTE

105

Command Description

HOME

FUNCTION Executes motion to home (standby) position

FORMAT HOME

DESCRIPTION Executes low speed PTP motion to home (standby) position specified by HOMESET, in
(HORDR value) order.

When robot is in home position, the controller's REMOTE 2 connector HOME output be-
comes active.

RELATED HOMESET, HORDR
COMMANDS

EXAMPLE >HOME

>

S>

H

106

Command Description

HOMESET

FUNCTION Specifies and displays home (standby) position

FORMAT (1) HOMESET [axis #1 pulse value],[axis #2 pulse value],[axis #3 pulse value],~

[axis #4 pulse value]
* pulse value: integer

(2) HOMESET

DESCRIPTION (1) Specifies HOME position with pulse values.

HORDR specifies and displays the order of axis motion for HOME execution.

(2) Displays current HOMESET values.

Executing VERINIT deletes HOMESET values.

RELATED HOME, HORDR
COMMANDS

EXAMPLE >HOME

!!Error 143 'Attempting to execute HOME without HOMESET values
causes error

>HOMESET

!!Error 143 'Attempting to display home position pulse values without
HOMESET values causes error

>HOMESET 0,0,0,0

>HOMESET

 0 0

 0 0

>HOME

>_

>HOMESET PLS(1),PLS(2),PLS(3),PLS(4)

> 'Using PLS function, specify current position as home
position

S>

107

Command Description

HORDR
Home Order

FUNCTION Specifies and displays HOME command axis motion order

FORMAT (1) HORDR [specification value 1],[specification value 2],~

[specification value 3],[specification value 4]

(2) HORDR

DESCRIPTION (1) Specifies HOME command axis motion order.

The axis (or group of axes) specified by value 1 execute motion first. At the completion
of first motion, the axis (axes) specified by value 2 execute motion, and so on, until home
position is reached.

Each axis is assigned a bit 0 to 3 as follows:

Axis Axis #1 Axis #2 Axis #3 Axis #4

Bit Number bit3 bit2 bit1 bit0

Binary Code &B1000 &B0100 &B0010 &B0001

HORDR values are initialized to default values by executing VERINIT.
Refer to the "Specifications" in the manipulator manual for default values, which vary
from model to model.

(2) Displays current HORDR values in hexadecimal notation as follows:

[specification value 1] [specification value 2]
[specification value 3] [specification value 4]

RELATED HOME, HOMESET
COMMANDS

EXAMPLE >HORDR &B0010,&B1000,&B0100,&B0001 'Specifies HORDR order (axis #3,
axis #1, axis #2, then axis #4)

>HORDR

 02 08 'Display in hexadecimal
 04 01

S>

H

108

Command Description

HOUR

FUNCTION Displays controller accumulated operating

FORMAT HOUR

DESCRIPTION Displays, as an integer, in hours, accumulated controller time.

RELATED TIME()
COMMANDS

EXAMPLE >HOUR

 2560

>

>

109

Command Description

S>HTASK
Halt Task

FUNCTION Specifies tasks to be temporarily stopped by PAUSE command or PAUSE input

FORMAT HTASK {[0,]}[Task number]{,[Task number]}n

* Task number: integer from 1 to 16
The numeral 0(zero)

DESCRIPTION Specifies tasks to be temporarily stopped by PAUSE command or PAUSE input.
PAUSE input is performed from 3 ports shown below.

The operating unit PAUSE switch
REMOTE1 connector Safety door input
REMOTE3 connector PAUSE input terminal

Tasks not defined by HTASK cannot be stopped by either PAUSE command or PAUSE
input. However, Safety door input from REMOTE1 stops robot control task whether the
task is defined by HTASK or not.

In case of controller SRC-300, restart after temporary stop is accomplished by inputting
START from operating unit or REMOTE3. After temporary stop, all tasks are completely
stopped by inputting RESET.
In case of controller SRC-320, how to restart is different from TEACH mode and AUTO
mode. In AUTO mode, same way as SRC-300 is used. In TEACH mode, restart and
reset are accomplished from programming unit (PC). Refer to the SPEL Editor or SPEL
for Windows manual.

"0" parameter specifies START LED on/off status when the task specified by HTASK is
temporarily stopped while other tasks are in operation.
Its status is as follows:

START LED PAUSE LED
Omit "0" OFF ON
Specify "0" ON ON

After turning power on, initial HTASK value causes all tasks to be temporarily stopped by
PAUSE command execution or PAUSE input. In addition, 0(zero) is not specified. There-
fore if after turning power on, HTASK values are not specified, executing PAUSE com-
mand or inputting PAUSE will cause all tasks to be temporarily stopped.

HTASK setting is not changed unless HTASK values are specified again, or the power is
turned off. Other procedures such as RESET command input or RESET switch input does
not change HTASK setting.

NOTE

H

110

Command Description

· The task which controls robot motion must be specified to be temporarily stopped when
pause is inputted.

· Specify HTASK value only once at Task 1. Do not specify it repeatedly in one program.

· If HTASK values are specified once, the setting is effective for all programs to be ex-
ecuted unless the power is turned off. If HTASK is used, specify HTASK values in all
programs including files in file memory to stop all tasks when pause is inputted.

EXAMPLE 20 HTASK 1,3,4 ' If PAUSE is inputted, Tasks 1, 3 and 4 will temporarily stop

NOTE

111

Command Description

HTEST

FUNCTION Displays HTEST values

FORMAT HTEST

DESCRIPTION Displays HTEST values of all axes as follows.

[axis #1 HTEST value] [axis #2 HTEST value]
[axis #3 HTEST value] [axis #4 HTEST value]

HTEST value means the difference between the actual pulse value and the logical pulse
value in calibration with MCAL where home sensor is turned on to where eoncoder Z phase
signal is detected.

RELATED MCAL, HOFS
COMMANDS

EXAMPLE >HTEST

176 -75

218 59

>

>INC

H

112

Command Description

IF...THEN...ELSE...ENDIF

FUNCTION Conditional statement execution

FORMAT (1) IF [conditional expression] THEN...
{ELSE}...
ENDIF * nesting: up to 20 are allowed.

(2) IF [conditional expression] THEN [statement]{;[statement]}n~

{ELSE [statement]{;[statement]}n}

DESCRIPTION (1) Specifies IF condition.
If IF condition is satisfied, the statements between IF and ELSE are executed. If IF
condition is not satisfied, the statements between ELSE and ENDIF are executed.
ELSE through ENDIF may be omitted, then control passes to the line immediately fol-
lowing ENDIF, if IF condition is not satisfied.

Multiple IF...ENDIF statements may be nested.

IF condition may contain any operators supported by SPEL III.

(2) If IF condition specified in this line is satisfied, the statements between THEN and
ELSE are executed. If not satisfied, the statements following ELSE are executed.
ELSE onward may be omitted. If omitted, then control passes to the next line, if IF
condition is not satisfied.

EXAMPLE 100 IF SW(0)=1 THEN PRINT "i0 ON" ELSE PRINT "i0 OFF"

110 '

120 IF SW(1)=1 THEN

130 IF SW(2)=1 THEN

140 PRINT "i1 ON i2 ON"

150 ELSE

160 PRINT "i1 ON i2 OFF"

170 ENDIF

180 ELSE

190 IF SW(2)=1 THEN

200 PRINT "i1 OFF i2 ON"

210 ELSE

220 PRINT "i1 OFF i2 OFF"

230 ENDIF

240 ENDIF

S

113

Command Description

FIN()
Input

FUNCTION Returns input status of (8 bit input) input port

FORMAT IN([port number])

* port number: integer from 0 to 15

DESCRIPTION Returns, as a decimal, input status of input port specified by port number.

Each port is comprised of 8 input bits, the standard 16I/16O is made up of 2 ports.
The port number, LSB/MSB, and input bit number are related as follows:

port MSB LSB
number 7 6 5 4 3 2 1 0

0 7 6 5 4 3 2 1 0
1 15 14 13 12 11 10 9 8

LSB : least significant bit
MSB: most significant bit

RELATED OUT, INBCD(), OPBCD
COMMANDS

EXAMPLE A=IN(1) 'Store at variable A the input status of input port 1 (input bit 8 to 15), as a
decimal.
For example, if bit 9 and bit 10 are on and the remaining bits are off,
returns 6 to A.

I

114

Command Description

FIN($)
Input $

FUNCTION Returns input status of (8 bit unit) memory I/O port

FORMAT IN($[port number])

* port number: integer from 0 to 63

DESCRIPTION Returns, as a decimal, input status of memory I/O port specified by port number.

Each port is comprised of 8 memory I/O bits. Since there are a total of 512 bits, memory I/
O is made up of 64 ports.

The port number, LSB/MSB, and memory I/O bit number are related as follows:

port MSB LSB
number 7 6 5 4 3 2 1 0

0 7 6 5 4 3 2 1 0
1 15 14 13 12 11 10 9 8
2 23 22 21 20 19 18 17 16

62 503 502 501 500 499 498 497 496
63 511 510 509 508 507 506 505 504

LSB : least significant bit
MSB : most significant bit

RELATED OUT$
COMMANDS

EXAMPLE A=IN($62) 'Store at variable A the input status of input port 62 (Bit 496 to 503), as
a decimal.
For example, if bit 500 to 502 are on and the remaining bits are off,
returns 112 to A.

115

Command Description

FINBCD()
Input by Binary Coded Decimal

FUNCTION Returns input status of (8 bit input) input port as BCD

FORMAT INBCD([port number])

* port number: integer from 0 to 15

DESCRIPTION Returns, as a ("upper rank 4, lower rank 4") binary coded decimal (0 to 9), input status of
input port specified by port number.

Each port is comprised of 8 input bits, the standard 16I/16O is made up of 2 ports.
The port number, LSB/MSB, and input bit number are related as follows:

port MSB LSB
number 7 6 5 4 3 2 1 0

0 7 6 5 4 3 2 1 0
1 15 14 13 12 11 10 9 8

LSB : least significant bit
MSB : most significant bit

RELATED OPBCD, IN(), OUT
COMMANDS

EXAMPLE >B=INBCD(1) 'Store at variable B the input status of input port 1 returned as
BCD

>PRINT INBCD(1) 'Display status of input bit 8 to 15 as BCD
(For this example, port channel is 01010011)

53

I

116

Command Description

FINBIN

FUNCTION Returns the value of input port specified by starting port number and number of ports

FORMAT INBIN([starting port number],[number of ports],[presence of parity check])

* starting port number : integer from 0 to 127
number of ports : integer from 0 to 15 (0=1bit, 15=16bit)
presence of parity check : 0=none, 1=even, 1=odd

DESCRIPTION Returns the value of input port specified by starting port number and number of ports as binary data.
IN() delimits the input port in eight bits. INBIN() can specify an arbitrary starting port and
number of ports. The maximum number of ports is 16.

If the parity check is specified, the range of the port becomes 15 bits or less and the last bit is a parity
bit. When the parity error occurs, (-1) is returned.

The value of starting port number + number of ports should not exceed the number of input ports
installed in the controller.

RELATED IN(), INBCD(), INBIT()
COMMANDS

EXAMPLE >PRINT INBIN(2,5,0) 'Returns the value of input port 2 - 6.

18 'When the ports are in the following condition, it
returns 18.

bit 6 bit 5 bit 4 bit 3 bit 2

1 0 0 1 0

NOTE

117

Command Description

FINBIT

FUNCTION Returns the bit number which is turned on among input ports specified by starting port number and
number of ports

FORMAT INBIT([starting port number],[number of ports])

* starting port number : integer from 0 to 127
number of ports : integer from 0 to 15 (0=1bit, 15=16bit)

DESCRIPTION Returns the bit number which is turned on among input ports specified by starting port number and
number of ports.
When two or more bits are turned on, (-1) is returned.
No bit is turned on, 0 is returned.

The value of starting port number + number of ports should not exceed the number of input ports
installed in the controller.

RELATED IN(), INBCD(), INBIN()
COMMANDS

EXAMPLE >PRINT INBIT(2,5,0) 'Returns the bit number which is turned on among input port 2 - 6.

2 'When the ports are in the following condition, the returning value
is 2.

bit 6 bit 5 bit 4 bit 3 bit 2

0 0 0 1 0

NOTE

I

118

Command Description

INPUT

FUNCTION Inputs data from console keyboard

FORMAT INPUT [variable name 1]{,[variable name n]}n

DESCRIPTION Allows numeric values and strings to be input from console, and stores them at variables.

A single INPUT can specify multiple variable names. Variable names are to be separated
by commas (,).
Numeric variable names and string variable names are allowed, input data type must match
the variable type.

In executing INPUT, a (?) prompt appears at the console. After inputting data press the
return key.

For multiple variables, the number of input datum must match the number of INPUT vari-
able names. Also, data are to be separated by commas (,). In this case, the comma is called
a delimiter.

When inputting numerics, take note of the following:

* Characters other than numerics are ignored. An error occurs if the number of datum
does not match the number of INPUT numeric variable names.

* If numerics and alpha characters are mixed, only the first numeric(s) surrounded by
alpha characters are stored at the variable.

< Example >
A123BC45 ' (123) is stored

When inputting strings, numerics and alpha characters are allowed.

RELATED PRINT
COMMANDS

EXAMPLE >INPUT A 'Specify numeric variable A
?52 'Store 52 at numeric variable A
>INPUT A$,B$ 'Specify string variables A$ and B$
?ROBOT, WORLD 'Store ROBOT at string variable A$, WORLD at string

variable B$
>

S>

119

Command Description

INPUT #

FUNCTION Inputs data from communication port

FORMAT INPUT #[port number],[variable name 1]{,[variable name n]}n

* port number: integer from 20 to 23

DESCRIPTION Accepts numeric values and strings from communication port specified by port number,
stores them at variables.

An INPUT # can specify multiple variable names. Variable names are to be separated by
commas (,).
For multiple variables, the number of input datum must match the number of INPUT #
variable names.

Numeric variable names and string variable names are allowed, input data type must match
the variable type.

When inputting numerics, take note of the following:

* Characters other than numerics are ignored. An error occurs if the number of datum does
not match the number of INPUT numeric variable names.

* If numerics and alpha characters are mixed, only the first numeric(s) surrounded by alpha
characters are stored at the variable.

< Example >
A123BC45 ' (123) is stored

When inputting strings, numerics and alpha characters are allowed.

RELATED LOF(), PRINT #
COMMANDS

EXAMPLE >INPUT #20,A 'Specify accepting one numeric datum from port 20, storing it at
numeric variable A

>INPUT #21,B,C 'Specify accepting two numeric datum from port 21, storing one
at numeric variable B and the other at numeric variable C

>INPUT #20,A$ 'Specify accepting string from port 20, storing at string variable
A$

> S

I

120

Command Description

FINT()
Integer

FUNCTION Returns the largest integer that is less than or equal to specified value

FORMAT INT([numeric value])

DESCRIPTION Returns the largest integer that is less than or equal to specified value.

Note that for negative specified values, the returned integer will have a larger absolute
value than the specified value. Refer to the following example:

< Example >
INT(1.55) → 1
INT(-1.55) → -2

-2 -1 0 1 2

RELATED ABS(), SGN(), SQR()
COMMANDS

EXAMPLE >PRINT INT(111.55)

111

>PRINT SGN(-111.55)

-112

>

121

Command Description

INTEGER
Integer

FUNCTION Defines 2-byte integer type variables

FORMAT INTEGER [variable name]{(array size 1{,array size 2{,array size 3}})}～

{,[variable name]{(array size 1{,array size 2{,array size 3}})}}n

DESCRIPTION This command defines 2-byte integer type variables.
If several variables of the same type are declared, use a " , " (comma) and describe several
variable names. When defining an array variable, declare the name and its size enclose
with (). The size can be defined up to 3 dimension.

By default, the variable whose data type is not declared specifically will be treated as
REAL type. Therefore, it should be declared if the integer type is sufficient or the data
type because it has advantage over the REAL type in terms of performance speed and
memory efficiency.

Also, there are three types to the integer type and, each handles a different size of data as
follows: BYTE (1-byte integer), INTEGER (a 2-byte integer) and LONG (a 4-byte inte-
ger). The range for an INTEGER type value is -32768 to 32767. If a value outside this
range is entered, it causes an error.

For more details about the variable, refer to "2.3 Variables" in the Elementary section of
the Use's manual for SRC-300/320.

The following cites the restrictions on the variable names. The variable may be freely
named within these restrictions.

・The usable characters are alphanumeric and underscores (_). There is no distinc-
tion between capital and small case letters.

・Must be eight characters or under.
・The first character must be an alphabet character other than "P".
・Reserved words (i.e. command, statement, and function) cannot be used. A re-

served word that is followed by an underscore or numeric character is also read as a
reserved word.

The variable type must be declared at the beginning of a line; otherwise, the file will not be
successfully compiled. When declaring another type of variable, a new line must be cre-
ated.

S

NOTE

I

122

Command Description

RELATED BYTE, LONG, REAL, DOUBLE, STRING, VARIABLE, SYS
COMMANDS

EXAMPLE 10 FUNCTION MAIN

20 INTEGER I 'Declares a 2-byte integer type variable "I."
30 REAL ODATA(10,10) 'Declares a 2 dimensional array of 2-byte integer

type variable, "ODATA."
 . . .
999 FEND

123

Command Description

JRANGE
Joint Range

FUNCTION Defines permissible working range of specified axis in pulses

FORMAT JRANGE [axis number],[lower limit pulse value],[upper limit pulse value]

* axis number: integer from 1 to 4

DESCRIPTION Defines permissible working range of specified axis with upper and lower limit in pulses.
For RANGE command, all parameters for upper and lower limit of all axes must be speci-
fied.
However, number of necessary parameters for JRANGE is 3, it is useful to define working
range of one axis only.

Lower limit must not exceed upper limit. A lower limit in excess of upper limit will cause
an error, making it impossible to execute motion command.

To confirm defined working range, use RANGE command.

Refer to the "Specifications" in the manipulator manual for maximum working ranges,
which vary from model to model.

Neither power off nor executing VERINIT changes JRANGE setting values.

RELATED RANGE, LIMPLS
COMMANDS

EXAMPLE >JRANGE 2, -60000, 70000 'Define the 2nd axis range as -6000 to 70000

S>

J

124

Command Description

JS(0)
Jump Sense

FUNCTION Returns whether or not SENSE condition has been satisfied after JUMP SENSE execution
has completed

FORMAT JS(0)

DESCRIPTION Returns whether or not SENSE condition has been satisfied after JUMP with SENSE
modifier execution has completed.

1: SENSE condition has been satisfied, currently stopped above target position.
0: SENSE condition has not been satisfied, jump is completed at target position.

RELATED SENSE, JUMP, STAT(1)
COMMANDS

EXAMPLE
 . . .
100 SENSE SW(0)=1
 . . .
200 JUMP P1 C2 SENSE

210 IF JS(0)=1 THEN GOSUB ERRPRC;GOTO 200

220 ON 1
 . . .
1000 ERRPRC:
 . . .

The above program directs motion to P1, assembles a part, and then turns output bit 1 on.
When a "material supply failure" signal from a peripheral device has been received at input
bit 0, program branches to subroutine ERRPRC to reestablish material supply. The input
bit condition is checked as the third (Z) axis downward motion begins.

F

125

Command Description

JUMP

FUNCTION Directs PTP movement with gate motion

FORMAT JUMP [ps] {|/R|} {C[arch number]} {LIMZ[Z coordinate value]}~
|/L |

{|SENSE|} {![parallel processing statement]!}
| TILL |

* arch number: integer from 0 to 7
[ps] = position specification

DESCRIPTION Directs PTP movement of gate shape to target position.
In gate motion, axis #3 rises from current position to Z coordinate highest position (z=0),
travels horizontally to above target position while rotating to specified axis #4 angle, then
axis #3 goes down to target position.
In setting the arm’s mode for the horizontal robot, specify either the right or left arm by
declaring "/R" (for the right arm) or "/L" (for the left arm). Note that "/R" can be omitted while
"/L" for the left arm cannot be omitted. Unless specified with "/L," all the set mode will apply
only to the right arm.
C [arch number] determines the arch trajectory while rising from current position, traveling
horizontally, and lowering to target position. This is called arch motion.

S>

Default value of each arch number is shown below.
To change the values, use ARCH command.

arch number 0 1 2 3 4 5 6 7
a 30 40 50 60 70 80 90

gate motion
b 30 40 50 60 70 80 90 (mm)

gate motion

arch motion

current position target position
.a b a: vertical upward distance

b: vertical downward distance.

J

126

Command Description

.

Arch motion trajectory is compounded of vertical motion and horizontal motion. It is not a
continuous path control. Therefore, the actual trajectories of arch motion are not decided
uniquely by ARCH parameters. The trajectory changes depending on the motion and
speed. Execute JUMP with actual motion and speed to confirm the actual trajectory.

• Even if JUMP commands with same arch number are executed at an same position tra-
jectories are different by motion speed. Lower trajectory with lower motion speed. If
JUMP is executed with high speed to confirm an arch motion trajectory hand may crash
into obstacle with lower speed.

• In a trajectory, the vertical upward distance increases and the vertical downward distance
decreases when the motion speed is set high. When the vertical downward distance of
the trajectory is shorter than the expected, lower the speed and/or the deceleration, or
change the parameter of vertical downward distance long.

• Even if JUMP commands with same distance are executed trajectories are different by
motion. The change of trajectory depending on the motion is various. For general ex-
ample, in case of SCARA robot, the vertical upward distance increases and the vertical
downward distance decreases when the movement of the first arm is large. When the
vertical downward distance of the trajectory is shorter than the expected, lower the speed
and/or the deceleration, or change the parameter of vertical downward distance long.

If LIMZ [Z coordinate value] is specified, 3rd axis rises to the specified height limit, and
travels horizontally.
When LIMZ modifier is omitted, robot rises to the Z axis height specified by currently valid
LIMZ value.
LIMZ Z axis height limit specification is the Z axis value for the robot coordinate system. It
is not the Z axis value for ARM, TOOL, or LOCAL0 coordinates. Therefore take necessary
precautions when using tools or hands with different operating heights.

JUMP with SENSE Modifier:

target position

z = 0 (highest position)

z = LIMZ specified value

NOTE

127

Command Description

JUMP with TILL Modifier:
Checks if current TILL condition is satisfied during robot motion until axis #3 starts going
down. TILL condition is not checked after axis #3 starts going down. Therefore take
necessary precautions when using arch motion.
If satisfied, this command completes by decelerating and stopping robot. Robot stops at
the specified height by LIMZ specification. If LIMZ is not specified, robot moves to z = 0
height.
Use STAT(1) to verify whether TILL condition has been satisfied and this command has
been completed, or TILL condition has not been satisfied and robot stopped at target posi-
tion.
Position where condition satisfied and motion stop condition :

during vertical rising motion goes up and stops

during combined motion horizontal motion - decelerates and stops
(horizontal and vertical) axis #3 motion - goes up and stops

during horizontal motion decelerates and stops

after start lowering stops at target position

target position

motion completed

Checks if current SENSE condition is satisfied before axis #3 going down. If satisfied,
this command completes with robot stopped above target position. Use JS(0) or STAT(1)
to verify whether SENSE condition has been satisfied and this command has been com-
pleted, or SENSE condition has not been satisfied and robot stopped at target position.

condition checking

J

position where condition satisfied
stop position.

128

Command Description

target position target position

target position target position

Parallel processing statement can direct certain commands be executed during horizontal
travel. For details, refer to the "! ... !" parallel processing section.

To specify speed and acceleration, use SPEED and ACCEL. For JUMP command, it is
possible to separately specify speeds and accelerations for Z axis upward motion, horizon-
tal travel including U axis rotation, and Z axis downward motion.

RELATED P=, ! ... !, SPEED, ACCEL, LIMZ, SENSE, TILL, JS(0), STAT(1)
COMMANDS

EXAMPLE >JUMP P10+X50 C0 LIMZ-20 SENSE !D50;ON 0;D80;ON 1!

>

129

Command Description

KILL

FUNCTION Deletes file(s)

FORMAT KILL "{[pathname]}[filename]"

DESCRIPTION Deletes specified files.

Filename extensions may be present or omitted.
If filename and extension is specified, only that file is deleted.

If filename is specified but filename extension is omitted, the following files will be de-
leted, in order:

filename.PRG (source program file)
filename.PNT (position data file)
filename.OBJ (object file)
filename.SYM (symbol table file)

In this case, if either filename.PRG or filename.PNT does not exist an error will occur. If
filename.PRG exists but filename.PNT does not, the error will occur after filename.PRG
is deleted.

If pathname is omitted, KILL deletes file from current directory.

Filename and extension may contain wildcard characters (*, ?).

RELATED DEL, FILES, DIR, DSAVE
COMMANDS

EXAMPLE >FILES

ABCD PRG 2

ABCD PNT 1

space 59

>KILL "ABCD.PRG"

>FILES

ABCD PNT 1

space 61

>

K

130

Command Description

LEFT$()

FUNCTION Returns the leftmost characters of specified string

FORMAT LEFT$(|[string variable name] |,[number of characters])
|"[string]" |

DESCRIPTION Returns the leftmost specified number of characters of specified string.
String may be specified by a string variable.

RELATED RIGHT$(), MID$()
COMMANDS

EXAMPLE 10 FUNCTION MAIN

20 STRING LETTER$

30 LETTER$="ABCDE"

40 PRINT LEFT$(LETTER$,2)

50 FEND

>RUN

COMPILE END

AB

>

F

131

Command Description

L

LEN()
Length

FUNCTION Returns number of characters of specified string

FORMAT LEN(|[string variable name|])
|"[string]" |

DESCRIPTION Returns number of characters of specified string.
String may be specified by a string variable.

EXAMPLE >PRINT LEN("ABCDE")

5

>

F

132

Command Description

LIBRARY

FUNCTION Displays backup variable names in memory

FORMAT LIBRARY

DESCRIPTION Displays all backup variable names in memory, also displays types of variable.

RELATED SYS, VARIABLE
COMMANDS

EXAMPLE >LIST

10 FUNCTION BACKUPV

20 SYS BYTE ER_RB(10),ER_RA(5)

30 SYS REAL V(20)

40 FEND

>RUN

COMPILE END

>LIBRARY

 BYTE ER_RB(10)

 BYTE ER_RA(5)

 REAL V(20)

>

>

133

Command Description

L

LIBSIZE, SIZE
Library Size

FUNCTION Specifies and displays number of usable backup variables and available memory

FORMAT (1) LIBSIZE [number of backup variables],[available memory]

* number of backup variables: integer from 0 to 794 [default values: 10]
available memory: 14 to 32768 bytes [default values: 512]

(2) LIBSIZE

DESCRIPTION (1) Specifies number of usable backup variables and available memory.

Array variables, regardless of the size of their array, are counted as one variable.

After entering command, the following message prompt appears:

>Backup Variable, Object all clear --> OK?

To change current LIBSIZE value enter Y or y

To not change current LIBSIZE value enter N or n

Changing the current LIBSIZE value causes all main memory backup variable area
and object area (except for the source program area and position data area) to be
cleared. Therefore, if backup variables are used, it will be necessary to save them
again after completing LIBSIZE execution.

Because the size of the robot controller main memory is fixed, specifying a larger
number of backup variables or available memory correspondingly decreases the ob-
ject area. For this reason, when increasing the number of backup variables or avail-
able memory, keep the increase as small as possible.

The memory size required by a variable depends on the variable type. For example, a
2 byte integer, including its registration table (system work area), requires about 10
bytes. The registration table memory size required for each variable is basically the
same, regardless of type of variable and whether it is an array variable or not. There-
fore, in order to use memory efficiently, use array variables to the extent possible.

>

134

Command Description

Available variable types are as follows:

BYTE 1 byte (-128 to +127) 


INTEGER 2 byte (-32768 to +32767)  integers


LONG 4 byte (-2147483648 to +2147483647) 
REAL 4 byte 7 digits 

 real numbers
DOUBLE 8 byte 14 digits 

(2) Displays current usable backup variables and available memory.

Neither power off nor executing VERINIT changes LIBSIZE value.

RELATED PRGSIZE, PNTSIZE, FREE, SYS
COMMANDS

EXAMPLE >LIBSIZE 500,10000

>LIBSIZE

 500,10000

>

135

Command Description

L

LIMZ
Limit Z Axis

FUNCTION Specifies and displays Z axis height for JUMP commands

FORMAT (1) LIMZ [Z axis specification value]
...

JUMP [position specification]

* [LIMZ default value: 0]

(2) JUMP [position specification] LIMZ [Z axis specification value]

(3) LIMZ

DESCRIPTION LIMZ specifies Z axis height for JUMP.
MOTOR ON, software resets, SLOCK, SFREE, and VERINIT all initialize LIMZ value
to 0.

(1) LIMZ Command:
Specifies Z axis height.
Multiple LIMZ are permitted, the most recent LIMZ value remains current until super-
seded.

JUMP Command:
Executes JUMP at current LIMZ value Z axis height.

(2) JUMP with LIMZ Modifier:
Specifies Z axis height for same line JUMP only.

(3) Displays current LIMZ value.

LIMZ Z axis height limit specification is the z axis value for the robot coordinate system. It
is not the Z axis value for ARM, TOOL, or local0 coordinates. Therefore take necessary
precautions when using tools or hands with different operating heights. When LIMZ modi-
fier is omitted, robot rises to the Z axis height specified by currently valid LIMZ value.

RELATED JUMP
COMMANDS

EXAMPLE 10 LIMZ -10 'Specifies LIMZ value (Z=-10)
20 JUMP P1 'Execute JUMP at current LIMZ value (Z=-10)
30 JUMP P2 LIMZ-30 'Execute JUMP at Z=-30
40 JUMP P3 'Execute JUMP at current LIMZ value (Z=-10)

> S

NOTE

136

Command Description

LINEHIST
Line History

FUNCTION Displays line number history

FORMAT LINEHIST [Task number]{,Task number}7

DESCRIPTION Displays in order the ten most recently executed line numbers.

Line histories for up to eight tasks can be specified. Multiple tasks are displayed in order to
execution, with each task display containing its ten most recently executed line numbers.

Line history capacity can be increased to twenty by specifying LINEBUF=20 in the
CNFG.SYS file.

Line histories are erased when power is turned off.

EXAMPLE >LINEHIST 1,2

 Task 1 Task 2 Time

 40 1:26:37p

 30 1:26:37p

 40 1:26:37p

 30 1:26:37p

 140 1:26:37p

 110 1:26:37p

 40 1:26:38p

 30 1:26:38p

 40 1:26:38p

 30 1:26:38p

 40 1:26:38p

 30 1:26:38p

 120 1:26:38p

 130 1:26:38p

 140 1:26:38p

 110 1:26:38p

 120 1:26:38p

 130 1:26:38p

 140 1:26:38p

 110 1:26:38p

>

Program
10 FUNCTION MAIN

20 XQT !2,SUB

30 WAIT 0.1

40 GOTO 30

50 FEND

100 FUNCTION SUB

110 WAIT 0.2

120 '

130 '

140 GOTO 110

150 FEND

137

Command Description

L

LINE INPUT

FUNCTION Stores one line of data from console to string variable

FORMAT LINE INPUT [string variable name]

DESCRIPTION Stores one line of character string data from console to string variable.

In executing LINE INPUT, "?" prompt will appear at the console. After inputting the line
of data, press enter (return) key.

RELATED INPUT
COMMANDS

EXAMPLE 100 FUNCTION MAIN

110 STRING A$

120 LINE INPUT A$ 'Read one line of data, store at string variable A$
130 PRINT A$

140 FEND

>RUN

COMPILE END

?A,B,C

A,B,C 'Display string as read
>

S>

138

Command Description

LINE INPUT #

FUNCTION Stores one line of data from communication port to string variable

FORMAT LINE INPUT #[port number],[string variable name]

* port number: integer from 20 to 23

DESCRIPTION Stores one line of character string data from communication port to string variable.

EXAMPLE LINE INPUT #20,A$ 'Receive string from port 20, store at string variable A$

S>

139

Command Description

L

LINK

FUNCTION Links two or more object files

FORMAT LINK [filename 1]+[filename 2]{+[filename n]}n{,[linked-filename]}

* filename extension is not allowed

DESCRIPTION Links two or more object files that are in file memory into a single object file, and saves
the file as linked filename (with filename extension .OBJ).
At the same time, links the symbol files into a single symbol file, and saves the file as
linked-filename (with filename extension .SYM).

Doing so a single executable object file and a single symbol file can be created, through
modular compilation, from multiple object files and symbol files.

The linked filename may be omitted. If omitted, the object file and the symbol file are
saved as SYSTMP.OBJ and SYSTMP.SYM, respectively.

In a linked object file (i.e., an object file linked from multiple object files), the first Func-
tion procedure (FUNCTION...FEND) of filename 1 becomes the main Function and is
executed as Task 1.

< NOTE >
To execute a linked object file, a position data file with the same filename, but with the
extension .PNT is necessary. For example, for linked object file SYSTMP.OBJ, position
data file SYSTMP.PNT must be created.

RELATED COMPILE, ENTRY, EXTERN, FILES, DIR
COMMANDS

EXAMPLE >COM"MAIN"

COMPILE END

>COM"SUB"

COMPILE END

>LINK MAIN+SUB,TEST 'Link MAIN.OBJ and SUB.OBJ into TEST.OBJ
>

>

140

Command Description

LIST

FUNCTION Displays source program

FORMAT (1) LIST {|[line number] |}
|[beginning line number]- |
|[beginning line number]-[ending line number] |
| -[ending line number] |
| * |
| *- |

(2) LIST

DESCRIPTION (1) Displays program lines as specified by their line numbers. Line numbers are specified
as follows:

[line number]

Displays specified line

[beginning line number]-

Displays all lines from beginning line number to end of program

[beginning line number]-[ending line number]

Displays all lines from beginning line number up to and including ending line num-
ber. To prevent Error 2 from occurring, beginning line number must be less than
ending line number.
-[ending line number]

Displays all lines up to and including ending line number

*
Display line where STOP or BREAK key interrupted display

*-

Display all lines from where STOP or BREAK key interrupted display to end of
program

(2) Displays all lines.

EXAMPLE >LIST 50- 'Displays all lines from 50 to end of program
>LIST -100 'Displays all lines up to and including 100
>LIST 20 'Displays 20
>LIST 100-200 'Displays all lines from 100 up to and including 200
>LIST 'Display all lines
>LIST * 'Display line where display was interrupted
>LIST *- 'Display all lines from where display was interrupted to end of program

>

141

Command Description

L

LOCAL (RLOCAL, LLOCAL, SLOCAL)

FUNCTION Defines and displays local coordinate systems

FORMAT (1) LOCAL[local coordinate system number] (P[point number 1]:P[point number 2]),~

(P[point number 3]:P[point number 4])

* local coordinate system number: integer from 1 to 15

(2) LOCAL

DESCRIPTION (1) Defines a local coordinate system by specifying two points, P[point number 1] and
P[point number 3], contained in it that coincide with two points, P[point number 2] and
P[point number 4], contained in the robot coordinate system.

< Example >
local coordinate system point data

LOCAL1 (P1:P11),(P2:P12)

robot coordinate system point data

If the distance between the two specified points in the local coordinate system is not
equal to that between the two specified points in the robot coordinate system, the XY
plane of the local coordinate system is defined in the position where the midpoint be-
tween the two specified points in the local coordinate system coincides with that be-
tween the two specified points in the robot coordinate system.

Similarly, the Z axis of the local coordinate system is defined in the position where the
midpoints coincide with each other.

The U axis of the local coordinate system is automatically corrected in accordance
with the X and Y coordinate values of the specified 4 points. Therefore, the two points
in the robot coordinate system may initially have any U coordinate values.

If may be desired to correct the U axis of the local coordinate system based on the U
coordinate values of the two points in the robot coordinate system, rather than having it
automatically corrected (e.g., correct the rotation axis through teaching) To do so, turn
on bit 2 of software switch SS5, and then use LOCAL. Refer to "9.2 Setting switches"
of SPEL Editor manual or "[Setup] menu" of SPEL for Windows manual.

S>

142

Command Description

(2) Displays all defined local coordinate systems, including those defined by BASE.

< Example >

Local coordinate systems defined by LOCAL

 local 0 (p5 :p55),(p6 :p56) 'Local0 coordinate system

 local 1 (p1 :p11),(p2 :p12) 'Local coordinate system defined by LOCAL

llocal 5 (p50 :p60),(p51 :p61) 'Local coordinate system defined by LLOCAL

rlocal 10(p70 :p80),(p71 :p81) 'Local coordinate system defined by RLOCAL

slocal 12(p90 :p100),(p91 :p101) 'Local coordinate system defined by SLOCAL

Local coordinate systems defined by BASE

 local 0 (p***:p***),(p***:p***) 'Local coordinate system 0

 local 2 (p***:p***),(p***:p***)

To move the arm to a point with Z=0 in the robot coordinate system (the uppermost point of
the third axis for an ordinary robot) using the point data of a local coordinate system whose
Z axis is offset, use an "@" symbol:

< Example >

JUMP P1:Z@

local coordinate system point data

< NOTE >
If Local0 coordinate system is defined with LOCAL0 or BASE 0, read every occurrence of
"robot coordinate system" in the description above as "Local0 coordinate system."

While LOCAL basically uses midpoints for positioning the axes of your local coordinate
system as described above, SPEL III provides three variants of LOCAL that use alternative
positioning methods, as may be required for your specific application. These variants include
LLOCAL, RLOCAL, and SLOCAL. (However, they correct the U axis by the same
method as LOCAL.)

LLOCAL (Left Local)

LLOCAL defines a local coordinate system by specifying [point number 1] correspond-
ing to [point number 2] in the robot coordinate system (Z axis direction is included.)

RLOCAL (Right Local)

RLocal defines a local coordinate system by specifying [point number 3] corresponding
to [point number 4] in the robot coordinate system (Z axis direction is included.)

143

Command Description

L

SLOCAL (Scale Local)

When defining the XY plane of a local coordinate system, SLOCAL specifies [point
number 1] and [point number 3] in the local coordinate system corresponding to [point
number 2] and [point number 4] in the robot coordinate system. Thus, it allows definition
of the coordinate scale factor; the locus can be scaled up or down. For the Z axis,
SLOCAL specifies [point number 1] in the local coordinate system corresponding to
[point number 2] in the robot coordinate system.

Local coordinate system numbers are shared between BASE and LOCAL.

Definitions of local coordinate systems #1 through #15 will be lost when the power is turned
off, or when LOCAL0, BASE 0, or VERINIT are executed.

Added &n can perform reverse conversion of a local coordinate system. Remember that
points determind in TEACH mode can be defined as point data in a local coordinate system.

P1=P*&2 'Defines the current point as coordinate in the local coordinate system 2.

RELATED BASE, BASE 0, BASE(), LOCAL0
COMMANDS

EXAMPLE >PLIST

P1=0,0,0,0/1 'Points in local coordinate system #1

P2=100,0,0,0/1

P11=0,100,0,0 'Points in robot coordinate system

P12=100,100,0,0

>LOCAL1(P1:P11),(P2:P12) 'Define local coordinate system #1

>

>LOCAL 'Display all local coordinate systems

local 0(p***:p***),(p***:p***) 'Local0 coordinate system defined by BASE 0

local 1(p1 :p11),(p2 :p12) 'Local coordinate system #1 defined by LOCAL

>GO P1 'Move to P1 on the LOCAL System 1 via GO

>JUMP P2:Z@ 'Move to P1(Z=0) on the LOCAL System 1 via

JUMP

144

Command Description

LOCAL0 (RLOCAL0, LLOCAL0)
Local Zero

FUNCTION Defines robot's basic coordinate system Local 0

FORMAT LOCAL0(P[point number 1]:P[point number 2]),(P[point number 3]:P[point number 4])

DESCRIPTION Defined local coordinate systems are based on a single basic local coordinate system, called
"Local0 coordinate system." Usually the Local0 coordinate system is equivalent to the robot
coordinate system, the absolute coordinate system of the robot.

Although the position of the robot coordinate system cannot be changed, the position of
Local0 coordinate system can be changed by using LOCAL0 (or BASE 0). Note that, as
long as Local0 coordinate system is equivalent to the robot coordinate system, it is not nec-
essary to redefine the Local0 coordinate system.

After disassembling and reassembling the robot from or to a table for servicing, or some
other purpose, the point data no longer matches the points on the system, thereby making the
current point data invalid. In such a case, the current point data can be made valid once
again by teaching the robot two points in the current point data and then defining the Local0
coordinate system with LOCAL0.

< Example >
current point data

LOCAL0 (P1:P11),(P2:P12)

new point data by teaching

Move the robot arm to the position that corresponds to P1 and P2 in the current point
data, and teach the robot to recognize P1 and P2 as P11 and P12, respectively. Then,
execute LOCAL0 as shown above.

LOCAL0 and its variants, LLOCAL0 and RLOCAL0, define the XY plane, Z axis, and U
axis the same way as LOCAL and its variants. Therefore, refer to the explanation of
LOCAL and its variants for more information.

Power off does not change Local0 coordinate system values.

To ensure that Local0 coordinate system is equivalent to the robot coordinate system, use
one of the following:

LOCAL0 (P1:P1),(P1:P1)

BASE 0,0,0,0,0

VERINIT

> S

145

Command Description

L

Since LOCAL0 alters the position of the basic coordinate system, it should be used only
when necessary.

Executing LOCAL0 erases all local coordinate systems, including those defined by BASE.
It is necessary to redefine them.

Executing VERINIT initializes Local0 coordinate system, making it identical to the robot
coordinate system.

RELATED BASE, BASE 0, BASE(), LOCAL
COMMANDS

NOTE

146

Command Description

LOF()
Line of File

FUNCTION Returns number of data lines stored in RS-232C buffer

FORMAT LOF([port number])

* port number: integer from 20 to 23

DESCRIPTION Data sent to an RS-232C port is stored in a buffer, and is subsequently read from the buffer
with INPUT # command. LOF returns the number of data lines stored in the buffer, and
returns 0 if no data lines are stored.

RELATED INPUT #
COMMANDS

EXAMPLE >PRINT LOF(20) 'Display number of data lines stored in port 20 buffer
5

>

F

147

Command Description

L

LONG
Long

FUNCTION Defines 4-byte integer type variables

FORMAT LONG [variable name]{(array size 1{,array size 2{,array size 3}})}~
{,[variable name]{(array size 1{,array size 2{,array size 3}})}}n

DESCRIPTION This command defends 4-byte integer type variables.
If several variables of the same type are declared, use a " , " (comma) and describe several
variable names. When defining an array variable, declare the name and its size enclose
with (). The size can be defined up to 3 dimension.

By default, the variable whose data type is not declared specifically will be treated as
REAL type. Therefore, it should be declared if the integer type is sufficient or the data
type because it has advantage over the REAL type in terms of performance speed and
memory efficiency.

Also, there are three types to the integer type and, each handles a different size of data as
follows: BYTE (1-byte integer), INTEGER (a 2-byte integer) and LONG (a 4-byte inte-
ger). The range for a LONG type value is -2147483648 to 2147483647. If a value outside
this range is entered, it causes an error.

For more details about the variable, refer to "2.3 Variables" in the Elementary section of the
User's manual for SRC-300/320.

The following cites the restrictions on the variable names. The variable may be freely
named within these restrictions.

・The usable characters are alphanumeric and underscores (_). There is no distinc-
tion between capital and small case letters.

・Must be eight characters or under.
・The first character must be an aophabet character other than "P".
・Reserved words (i.e. command, statement, and function) cannot be used. A re-

served word that is followed by an underscore or numeric character is also read as
a reserved word.

The variable type must be declared at the beginning of a line; otherwise, the file will not be
successfully compiled. When declaring another type of variable, a new line must be created.

S

NOTE

148

Command Description

RELATED BYTE, INTEGER, REAL, DOUBLE, STRING, VARIABLE, SYS
COMMANDS

EXAMPLE 10 FUNCTION MAIN

20 LONG I 'Declares a 4-byte integer type variable "I."
30 REAL ODATA(10,10) 'Declares a 2 dimensional array of 4-byte integer type

 variable, "ODATA."
 . . .
999 FEND

149

Command Description

L

> SLP, POWER
Low Power, Power

FUNCTION Switches motor power mode and displays current status

FORMAT LP { |ON |} POWER { |LOW |}
|OFF| |HIGH|

* [default: ON] * [default: LOW]

DESCRIPTION Switches motor power mode and displays current status.

LP With ON specified, mode switches to low power mode.
With OFF specified, mode switches to high power mode.
With no ON/OFF specification, LP displays the current motor power status.

POWER With LOW specified, mode switches to low power mode.
With HIGH specified, mode switches to high power mode.
With no LOW/HIGH specification, POWER displays the current power
mode and the actual power mode status.
>POWER

 Mode :Low ← current mode
 State:Low ← actual status

The function of LP and POWER is same.

POWER LOW (LP ON) POWER HIGH (LP OFF)
Low power mode High power mode

when safeguard closed

when safeguard open
Low power state

(regardless of POWER, LP setting)

For the safety reasons, low power state is basic in TEACH mode for the controller.
Therefore, following operations (Reset operations) will turn the motor power mode to low as
default setting. In this case, speed and acceleration setting also will be initialized to default
value. Refer to "Specifications" in the manipulator manual for default values of speed and
acceleration, which vary from model to model.

initialized commands

SPEED
ACCEL
SPEEDS
ACCELS

POWER LOW
or

LP ON

(low power mode)

· Power on
· AUTO/TEACH mode switching
· RESET command
· MOTOR ON command
· STOP key
· CTRL + C key

150

Command Description

In low power state, motor power is limited, and effective motion speed setting is lower than
the default value. If higher speed is specified directly or in a program, the speed is set to the
default value.

Motor power status Actual motion speed
the default value of speed setting command 

Low power state  either lower value
the specified value of speed setting command 

High power state the specified value of speed setting command

If higher speed motion is required in AUTO mode for motion commands described in a
program, specify POWER HIGH or LP OFF in the program.

In low power state, error 173 may occur if robot arm is pushed by hand or operation with
down force is executed because of the limited motor power.

When speed setting command is inputted in low power state, the following message will be
displayed.
It shows the robot is in low power state, and will move in low speed.

Low Power State : xxxxx is limited to xxx

RELATED POWER, SPEED, ACCEL, SPEEDS, ACCELS
COMMANDS

EXAMPLE >SPEED 50 'Specifies higher speed
 Low Power State : SPEED is limited to 5

>ACCEL 100,100

 Low Power State : ACCEL is limited to 10

>JUMP P1 'Moves in low speed
>SPEED; ACCEL 'To display speed setting status
 Low Power State : SPEED is limited to 5

 50

 50 50

 Low Power State : ACCEL is limited to 10

 100 100

 100 100

 100 100

>XQT

>LP OFF 'Set high power mode (=POWER
HIGH)
>JUMP P2 'Moves in high speed

151

Command Description

L

LSHIFT()
Left Shift

FUNCTION Shifts numeric value data to left

FORMAT LSHIFT([numeric value data],[number of bits to be shifted])

DESCRIPTION Shifts specified numeric value data specified number of bits to the left (toward most
significant bit). For each place shifted to the left, a 0 is inserted into the vacated space on the
right.

RELATED RSHIFT(), NOT()
COMMANDS

EXAMPLE >PRINT LSHIFT(1,2)

 4

>I=5

>PRINT LSHIFT(I,1)

 10

>

F

152

Command Description

S>INCMCAL
Machine Calibration

FUNCTION Executes machine calibration

FORMAT MCAL

DESCRIPTION It is necessary to execute machine calibration with this command for INC robot on which
the incremental encoder is installed. Machine calibration must be executed after turning on
the power. If you attempt motion command execution or PLIST* command (they need the
current position data) without executing machine calibration, it will cause an error.

The moving distance at machine calibration differs from model to model. Refer to the
specifications of corresponding manipulator manual for details.

Machine calibration is executed according to the moving axis order which is specified with
MCORDR command. The default value of MCORDR at the shipment differs from model
to model. Refer to the specifications of corresponding manipulator manual for details.

On the multi-calibration-point system robot, the axis #1 and #2 move ±15-16 degree to
clockwise/counter-clockwise direction. If MCAL is executed near the limit of motion en-
velope, the arm goes over the range. In this case, error may be issued or the arm hits the
mechanical stopper, and cannot execute calibration. To avoid it, execute MCAL in the
center of motion envelope.

NOTE

±15 - 16 degree

Regarding the single-calibration-point robot such as cartesian robot(XM3000), when
MCAL command is executed, the robot arm is calibrated at the origin of robot coordinate.

Do not rotate the axis #4 more than 180° while the controller power is off. After you rotate
the axis, if you turn on the power and execute MCAL, error 237 will appear depending on a
model. In this case turn off the power, and move the axis #4 to the approximate previous
position, then turn on the power again.

RELATED MCORDR, MCORG, MCOFS
COMMANDS

EXAMPLE >MOTOR ON
>MCAL

NOTE

153

Command Description

M

>INCMCOFS
Machine Calibration Offset

FUNCTION Specifies and displays the parameter for machine calibration

FORMAT MCOFS { [specification value 1], [specification value 2], ~
[specification value 3], [specification value 4], ~
[specification value 5], [specification value 6], ~
[specification value 7]}

DESCRIPTION Specifies and displays the parameter for machine calibration.
This parameter is necessary data for executing machine calibration with MCAL.
Meaning of each specification value is as follows:

specification value 1 Logic of sensor when MCORG is executed hexadecimal

specification value 2-5 Pulse values between where sensor is on to decimal
where Z phase is detected at specified position
of 1st to axis #4

specification value 6,7 Difference between logical value and sensor decimal
(for multi-calibration- edge width at the specified position of axis #1
 point robot) and axis #2

If you omit all the specification values, parameters for calibration which are currently set
are displayed as follows:

[specification value 1]
[specification value 2] [specification value 3]
[specification value 4] [specification value 5]
[specification value 6] [specification value 7]

If you specify all specification values, they are set as parameters for machine calibration.
Enter zero to specification value 6,7 for single-calibration-point robot such as cartesian
robot.
Parameters for calibration are calculated by moving the robot arm with MCORG. How-
ever, if those values are clear in advance, you can input the values using this MCOFS
command.

MCOFS values are maintained when the power is off and even VERINIT is executed.

When machine calibration is executed with MCAL, current position is recognized based on
this parameter, therefore, these data must be specified. If wrong data are specified, the
robot coordinates is incorrect, and it causes improper robot motion.

154

Command Description

◆ Specifying the parameters for calibration using this command is used for maintenance
purposes only after replacing MPU board for example. Do not use this command for
other purposes.

For your reference, outline of replacing MPU board procedure is described below.
Please refer to the maintenance manual for details.

1. Before replacing MPU board, display the parameters for calibration currently speci-
fied with MCOFS command.

2. Write down all those displayed 7 parameters.

3. Insert a new MPU board into controller.

4. Input the written down parameters into MCOFS in the correct order and execute it.

The parameters for calibration can be also set by using MKVER and SETVER commands,
or function keys V-BKUP and V-RSTR on SPEL Editor, or <MKVER> and <SETVER>
button on [Maintenance] dialog box in [Tools] menu of SPEL for Windows.

RELATED MCORG, MCAL, VER, MKVER
COMMANDS

EXAMPLE >MCOFS

04

1364 50

4506 6304

-479 -469

>MCOFS &H04,1364,50,4506,6304,-479,-469

NOTE

155

Command Description

M

INC > SMCORDR
Machine Calibration Order

FUNCTION Specifies and displays the moving axis order in machine calibration

FORMAT (1) MCORDR { [specification value 1], [specification value 2], ~
[specification value 3], [specification value 4]}

* [default value: Differs from model to model]

(2) MCORDR

DESCRIPTION (1) Specifies the order of moving axis in machine calibration with MCAL. First the axis
(or axes) specified as specification value 1 executes calibration, after it finished, the
axis specified as specification value 2 executes calibration. In this way the axis of
specification value 3 and specification value 4 executes calibration in this order.

Each axis is assigned to bit0 to 3 as shown below:

Axis name 1st axis 2nd axis 3rd axis 4th axis
Bit number bit3 bit2 bit1 bit0
Binary code &B1000 &B0100 &B0010 &B0001

At the shipment, default value is specified. Refer to the specifications of manipulator
manual for details.

MCORDR values are maintained when power is off. Performing VERINIT initializes
to default value.The default values differ from model to model. Refer to the specifica-
tions of corresponding manipulator manual for details.

In the case of robot that has a ballscrew spline, specify the previous order for axis #3 to
axis #4, or specify the same order.
Otherwise error is issued when MCAL is executed.

(2) Displays current MCORDR values in hexadecimal as follows:
[specification value 1] [specification value 2]
[specification value 3] [specification value 4]

RELATED MCAL, MCOFS
COMMANDS

EXAMPLE >MCORDR &B0010,&B1000,&B0100,&B0001 'Specifies the order as follows:
>MCORDR axis #3 → #1 → #2 → #4
02 08

04 01 'Values are displayed in hexadecimal.

156

Command Description

MCORG
Machine Calibration Origin

FUNCTION Calculates the parameter for machine calibration

FORMAT MCORG [axis number] { ,[axis number] }3

* axis number: Integer from 1 to 4

DESCRIPTION Calculates the parameter which is necessary for machine calibration with MCAL.

◆ This command is intended to be used for maintenance of a multi-calibration-point sys-
tem robot, it is used after replacing a motor for example. Use this command only when
it is necessary.

If axis number is specified, the parameter for the specified axis is calculated.
In the case of robot that has a ballscrew spline, and need to calculate the parameter for axis
#3 or #4, specify both axes together. It causes an error if one of them is specified.
If axis number is not specified, error will occur.

Calculated parameter for calibration is maintained when the power is off, and is not
changed by initialization such as VERINIT.
The parameters maintained in the controller are displayed by MCOFS.

When MCORG is executed, all the specified axis start moving. Before executing it, make
sure that there is no obstacles around the robot. Especially be sure that axis #3 is at higher
position.

For the multi-calibration-point system robot, arm position where MCORG is allowed to be
executed is limited.
Do not execute MCORG in other positions.
If it is not multi-calibration-point system robot, it is allowed to execute this command in any
positions.

How to calculate the parameter for machine calibration (execution of MCORG) in the case
of multi-calibration-point system robot is described below.

① Move the axis #3 and #4 of the robot within the motion range.

② Decide the arm position by using LEDs on sensor monitor on the rear side of manipula-
tor base. LEDs are shown next page. The number of 1 to 4 with printed "HOME"
character on the board corresponds to the axis number of manipulator.

>INC

NOTE

157

Command Description

M

HOME1 HOME3

HOME2 H
O

M
E4

EN
C

+5
V

If you move the axis #1 or #2, LED corresponds to the axis turns on or off in accordance
with the arm movement.
Stretch the arm as drawn with dotted line in the figure below, so that the arm is parallel
to Y axis of the robot coordinates. In this case, HOME1 and HOME2 LED turn on.
When the LED does not turned on, please move the arm from present posture slightly
counterclockwise manually until HOME1 and HOME2 LED turns on. (The position
where LED turns on is slightly different because of the mechanical difference of the
position where the sensor is installed. The difference gives no influence in accuracy.)

③ While watching HOME2 LED, move the arm #2 to clockwise direction by the hand.
Hold the arm #1 so that it does not move at that time. Stop moving the arm #2 in the
approximate center of the range where the LED turn off at the first time.

④ Next while watching HOME1 LED, move the arm #1 to clockwise direction by the hand.
Stop moving the arm #1 in the approximate center of the range where the LED turns off
at the first time.
For both arm #1 and #2, the approximate position is less than the degree shown in the
drawing below. The degree differs from model to model. Refer to the specifications of
manipulator manual.

② 0°

④ -8°maximum

③ -7°maximum

example for BN type

⑤ Execute MOTOR ON, and engage motors.

⑥ When you execute MCORG at this position arm #1 and #2 move to counterclockwise
direction. The maximum movement degree is as shown below, be sure to remove any
obstacles in the range before executing MCORG.

158

Command Description

PULSE 0,0,0,0

example for BN type

+15° maximum

+18° maximum

⑦ Execute MCAL to conduct machine calibration.

⑧ Execute PULSE command at the 0 pulse position of the axis #1 and #2.
>PULSE 0,0,0,0

⑨ Confirm that arm #1 and #2 are straight and are on the X axis of the robot coordinates. If
they are not, it means the arm position when MCORG is executed is not correct.

NOTE In the case of multi-calibration-point-system robot, if MCORG is not executed at the right
position, correct parameters for calibration is not calculated. If the parameters for calibra-
tion is not correct, the robot cannot move properly.
If you execute MCORG by mistake, do not execute any motion commands.
In this case execute MCORG at the correct position again, or find the correct data and input
it with MCOFS.

RELATED MCAL, MCOFS
COMMANDS

EXAMPLE >MCORG 1,2 'Calculates parameters for machine calibration of axes #1 and #2.

159

Command Description

M

MID$()
Middle $

FUNCTION Returns specified number of characters of specified string beginning from specified start
position

FORMAT MID$(|[string variable name] |,[start position],[number of characters])
|"[string]" |

DESCRIPTION Beginning from specified start position, returns specified number of characters of specified
string.

Specified string may be specified as a string variable.

Start position is counted from the leftmost string character.

RELATED LEFT$(), RIGHT$()
COMMANDS

EXAMPLE >PRINT MID$("ABCDE",3,2)

CD

>A$="1234567"

>PRINT MID$(A$,2,3)

234

>

F

160

Command Description

MKDIR, MD
Make Directory

FUNCTION Creates subdirectory

FORMAT MKDIR {[pathname]}[directory name]

DESCRIPTION Creates subdirectory in specified path.

If pathname is omitted, creates subdirectory in current directory.

Only one subdirectory can be created at a time.

RELATED DIR
COMMANDS

EXAMPLE >MD \USR

>MD \USR\PNT

>

161

Command Description

M

MKVER
Make VER

FUNCTION Makes backup of various setting data on file memory

FORMAT MKVER {/A}

DESCRIPTION Backup data of various setting and all the data on main memory will be saved on current
directory with filenames. Filenames are added automatically.

Various setting data means the data which are specified by the following commands:

CALPLS HOFS MCORDR MCOFS
SEL SET ARCH
TSPEED TSPEEDS HOMESET HORDR
ARM ARMSET TOOL TLSET
RANGE XYLIM BASE 0
CONFIG CONSOLE WIDTH
PRGNO OPUNIT WEIGHT MAXDEV
PRGSIZE PNTSIZE LIBSIZE
Software switch settings REMOTE3 setting

If /A is not specified, various setting data and backup variables will be saved with the
following filenames.

data filename

various setting data MK#0.BAT

backup variable LIB#0.BIN

Batch file "MK#0.BAT" includes commands for specifying above various setting data and
command for loading backup variable file "LIB#0.BIN" onto main memory.

If /A is specified, various setting data and all data on main memory will be saved with the
following filenames.

data filename

various setting data MK#0.BAT

source program PRG#0.PRG

position data PNT#0.PNT

object program OBJ#0.BIN

symbol table SYM#0.BIN

backup variable LIB#0.BIN

>

162

Command Description

Batch file "MK#0.BAT" includes commands for specifying various setting data and com-
mand for loading five files such as source program etc. in the previous page onto main
memory.

Backup variables will be saved by MKVER, however, usual variables will not be saved.

In order to load each file data which was saved by MKVER to original memory area, there
are two methods below:

To execute SETVER.
To execute the batch file MK#0.BAT.

Various setting data includes important basic data such as HOFS etc..
It is recommendable to execute MKVER and keep those data as a file when a robot is
installed for the first time.
If you want to know how to backup and restore, refer to "backing up and restoring a file" in
chapter 3 of SPEL Editor manual or "[File] menu" of SPEL for Windows manual.

RELATED SETVER, VER
COMMANDS

EXAMPLE This command will be used when MPU or SPU board in controller is replaced. It is
especially useful for loading various setting data onto a new board.

Save data on the board to be replaced (old board) as a file.

>MKVER 'Following files will be made
MK#0.BAT
LIB#0.BIN

 CPU Data Backup

 Backup Variable Backup

Make backup of all files including above files on file memory onto a disk of programing
unit.

Install a new board into a controller.

Restore all files on the disk of programing unit to controller file memory.

Execute SETVER.

>SETVER

163

Command Description

M

MOTOR

FUNCTION Turns motor power on and off

FORMAT MOTOR |ON |
|OFF|

DESCRIPTION At motor on, all axes are engaged and brakes are released.
At motor off, power to all motors is cut, and brakes are engaged.

After an emergency stop, or after an error has occurred that requires resetting with the
RESET, execute RESET, then execute MOTOR ON.

RELATED SFREE, SLOCK, RESET
COMMANDS

EXAMPLE >MOTOR ON

>MOTOR OFF

>

>SFREE 1,2,4

>

>MOTOR ON

> S

164

Command Description

MOVE

FUNCTION Moves all four axes simultaneously by linear interpolation

FORMAT (1) MOVE [ps] {TILL}

(2) MOVE [ps] {TILL SW([input bit number]){= |0|}}{![parallel processing statement]!}
|1|

* [ps] = position specification

DESCRIPTION Moves all four axes simultaneously by linear interpolation.

MOVE uses the SPEEDS speed value and the ACCELS acceleration value. Should the
SPEEDS speed value exceed the allowable speed for any axis, power to all four axis motors
will be cut, and robot will stop.

MOVE cannot execute U axis-only movement.

MOVE cannot execute range verification of the trajectory in advance. Therefore, even for
target positions that are within an allowable range, en route the robot may attempt to
traverse an invalid range, stopping with a severe shock that may damage the arm. To pre-
vent this, be sure to perform range verifications at low speed in advance.

TILL modifier is used to decelerate and stop the robot at an intermediate travel position if
currently valid TILL condition is satisfied. If TILL condition is not satisfied, robot travels
to the target position.

(1) MOVE with TILL Modifier:
Checks if current TILL condition is satisfied. If satisfied, this command completes by
decelerating and stopping robot.

(2) MOVE with TILL Modifier, SW(input bit number) Modifier, and (0 or 1) Input Condi-
tion:
Checks if same line input condition is satisfied. If satisfied, this command completes by
decelerating and stopping robot at an intermediate travel position.

MOVE with TILL Modifier, SW(input bit number) Modifier, but no Input Condition:
Input condition defaults to 1. If specified input bit is on, this command completes by
decelerating and stopping robot at an intermediate travel position.

> S

165

Command Description

M

RELATED P=, ! ... !, SPEEDS, ACCELS, TILL, SW(), CMOVE, ARC, CARC, CVMOVE
COMMANDS

EXAMPLE 100 TILL SW(1)=0 AND SW(2)=1 'Specifies TILL condition (input bit 1 is off
and input bit 2 is on)

110 MOVE P1 TILL 'Stop if current TILL condition (line 100) is
satisfied

120 MOVE P2 TILL SW(2)=1 'Stop if input bit 2 is on
130 MOVE P3 TILL 'Stop if current TILL condition (line 100) is

satisfied

166

Command Description

MYTASK(0)

FUNCTION Returns number of mytask

FORMAT MYTASK(0)

* The numeral 0 in ()

DESCRIPTION Returns number of mytask as numeric value.

EXAMPLE In the following program, output bits 1 through 8 are switched on and off.

>LIST

10 FUNCTION MAIN

20 XQT !2, TASK 'Execute Function TASK in Task 2
30 XQT !3, TASK 'Execute Function TASK in Task 3
40 XQT !4, TASK 'Execute Function TASK in Task 4
50 XQT !5, TASK 'Execute Function TASK in Task 5
60 XQT !6, TASK 'Execute Function TASK in Task 6
70 XQT !7, TASK 'Execute Function TASK in Task 7
80 XQT !8, TASK 'Execute Function TASK in Task 8
90 '

100 '

110 ON MYTASK(0) 'Turn on mytask number output bit
120 OFF MYTASK(0) 'Turn off mytask number output bit
130 GOTO 110

150 '

200 FUNCTION TASK

210 ON MYTASK(0) 'Turn on mytask number output bit
220 OFF MYTASK(0) 'Turn off mytask number output bit
230 GOTO 210

240 FEND

F

167

Command Description

N

NEW

FUNCTION Deletes source program in source program area

FORMAT NEW

DESCRIPTION Deletes source program in source program area.

When executed in on-line mode, deletes source program in controller main memory (initial-
izes source program area).

When executed in off-line mode, deletes source program in programing unit (PC).

NEW is executed to clear memory prior to entering a new program.

RELATED CLEAR
COMMANDS

EXAMPLE >LIST

10 'NEW PROGRAM 10 'NEW PROGRAM

20 HOME 20 HOME

30 JUMP P1 30 JUMP P1

40 JUMP P2 40 JUMP P2

50 JUMP P3 50 JUMP P3

60 END 60 END

>

>NEW

>LIST

>_ 'Because the previously existing program was deleted by executing
NEW, nothing is displayed

>

168

Command Description

NORMAL

FUNCTION Cancels reverse display mode (on operating unit)

FORMAT NORMAL [x column],[y line],[number of characters]

* x: Integer from 1 to 32
y: Integer from 1 to 8
number of character: Integer from 1 to 32

DESCRIPTION Cancels reverse display mode for specified number of characters from (x,y) position, and
displays characters in normal display mode.

If specified area is longer than the end of one line, extra area does not slide to the next line,
but returns to the beginning of the line, and displays characters in normal mode.

RELATED REVERSE, CHARSIZE, CLS, CURSOR, OPUNIT, OPU PRINT
COMMANDS

EXAMPLE >NORMAL 10,2,3

> S

169

Command Description

N

NOT()

FUNCTION Returns inverted value of integer bit

FORMAT NOT([integer])

DESCRIPTION Returns inverted value of specified integer bit.

RELATED LSHIFT(), RSHIFT()
COMMANDS

F

170

Command Description

OFF

FUNCTION Switches output bit off, and, after a specified time, switches it back on

FORMAT OFF [output bit number]{,[time interval]{,[non-synchronous setting]}}

* output bit number: integer from 0 to 127
time interval: seconds, (minimum unit is 0.01)
non-synchronous setting: 0 or 1 [default value: 1]

DESCRIPTION If only output bit number is specified, specified bit number output is switched off.

If time interval is specified, output bit is switched off, and switched back on after time
interval elapses. If prior to executing OFF the output bit was already off, then it is switched
on after the time interval elapses.

Non-synchronous settings are applicable when time interval is specified as follows:

* 1: Switches output off, switches back on after specified interval elapses, then executes
next command.

* 0: Switches output off, and simultaneously executes next command.
* setting omitted: Same as setting 1.

If an output bit which is set up as a REMOTE3 is specified, error will occur. REMOTE3
output bits are turned on or off automatically according to the status of robot controller.

RESET resets all bits to off.

All of output bits will be turned off when emergency stop occurs.
To maintain the current status, turn on bit 6 of software switch SS1. Refer to "9.2 Setting
switches" of SPEL Editor manual or "[Setup] menu" of SPEL for Windows manual.

RELATED ON, OUT, OPBCD, SW()
COMMANDS

EXAMPLE >OFF 1 'Switches output bit 1 off
>OFF 1,3 'Switches output bit 1 off, 3 seconds elapses, switches on
>OFF 1,3,0 ;GO P1 'Switches output bit 1 off and at the same time, travel to P1

begins. 3 seconds elapses, and switches output bit 1 on

> S

NOTE

171

Command Description

O

OFF $

FUNCTION Switches memory I/O off

FORMAT OFF $[bit number]

* bit number: integer from 0 to 511

DESCRIPTION Switches specified memory I/O bit off.

RELATED ON $, SW($), IN($)
COMMANDS

EXAMPLE >OFF $9 'Switch memory I/O bit 9 off

S>

172

Command Description

>ON

FUNCTION Switches specified output bit on, and, after a specified time, switches it back off

FORMAT ON [output bit number]{,[time interval]{,[non-synchronous setting]}}

* output bit number: integer from 0 to 127
time interval: seconds, (minimum unit is 0.01)
non-synchronous setting: 0 or 1 [default value: 1]

DESCRIPTION When only output bit number is specified, that output bit is switched on.

When time interval is specified, output bit is switched off when the time interval elapses
after the output bit was switched on.

Non-synchronous settings are applicable when time interval is specified as follows:

* 1: Switches on and executes next command when the time interval since switching to
on elapses.

* 0: Switches on as next command executes.
* setting omitted: Same as setting 1.

If an output bit which is set up as a REMOTE3 is specified, error will occur. REMOTE3
output bits are turned on or off automatically according to the status of robot controller.

RESET resets all bits to off.

All of output bits will be turned off when emergency stop occurs.
To maintain the current stats, turn on bit 6 of software switch SS1. Refer to "9.2 Setting
switches" of SPEL Editor manual or "[Setup] menu" of SPEL for Windows manual.

RELATED OFF, OUT, OPBCD, SW()
COMMANDS

EXAMPLE >ON 1 'Switches output bit 1 on
>ON 1,3 'Switches output bit 1 on for 3 seconds, then switches off
>ON 1,3,0 ;GO P1 'Switches output bit 1 on for 3 seconds, then switches off. As

output bit 1 is switched on, begins moving to P1

S

NOTE

173

Command Description

O

ON $

FUNCTION Switches memory I/O on

FORMAT ON $[bit number]

* bit number: integer from 0 to 511

DESCRIPTION Switches specified memory I/O bit on.

RELATED OFF $, SW($), IN($)
COMMANDS

EXAMPLE >ON $5 'Switch memory I/O bit 5 on

S>

174

Command Description

ONERR...RETURN
On Error...Return

FUNCTION Defines error processing

FORMAT (1) ONERR |line number|
|label |...

|line number|
|label |...
ECLR...
RETURN

(2) ONERR 0

DESCRIPTION (1) After an error occurs, by either line number or label, branches program to error
processing subroutine. RETURN returns program control to line following error.

Typically when an error is generated, error number is displayed and program execution
stops. By including an ONERR, should an error occur during program execution, it
becomes possible to branch to an error processing subroutine, thereby allowing pro-
gram execution to continue.

The error processing subroutine must include an ECLR to clear error status. Error
subroutines may not contain nested error subroutines. (For details regarding nesting,
refer to #include command description.)

ONERR...RETURN may be used in any task in which error processing is desired. It
may be included many times in each task.

(2) Clears ONERR.

RELATED ECLR, ERR(0), ERL(0)
COMMANDS

EXAMPLE 10 ONERR 60
20 FOR I=0 TO 199
30 JUMP PI
40 NEXT I
50 END
60 '
70 'ERR SUB 'Subroutine for error processing
80 A=ERR(0)
90 PRINT A
100 ECLR 'Clears error status
110 RETURN

S

175

Command Description

O

ONGOTO
On Go to

FUNCTION Branches to specified line number or label depending on the value of the variable

FORMAT ONGOTO [variable name],{ |line number |}{, |line number|}n
|label | |label |

DESCRIPTION Branches to specified line number or label depending on the value of the variable.

The next statement of ONGOTO is executed when the value of variable is not between 1
and n or when "BREAKNXT" is used for the label.

EXAMPLE 10 FUNCTION MAIN

15 INPUT A

20 ONGOTO A,40,50,BREAKNXT,50,BREAKNXT,40

30 PRINT "end";END

40 PRINT "line 40";END

50 PRINT "line 50";END

60 FEND

S

176

Command Description

> SOPBCD
Output by Binary Coded Decimal

FUNCTION Outputs BCD data to output port (8 bit output)

FORMAT OPBCD [port number],[output data]

* port number: integer from 0 to 15
output data: integer from 0 to 99

DESCRIPTION Outputs BCD data to output port specified by port number.

Each port is comprised of 8 bits, the standard 16I/16O is made up of 2 ports.
The port number, LSB/MSB, and bit number are related as follows:

port MSB LSB
number 7 6 5 4 3 2 1 0

0 7 6 5 4 3 2 1 0
1 15 14 13 12 11 10 9 8

LSB: least significant bit
MSB: most significant bit

Output data is represented by upper 4 bit and lower 4 bit BCD. Since BCD 9 is the greatest
value able to be represented by 4 bit BCD, it is possible to output data from BCD 00 to 99,
but not possible to output BCD that contain A or greater.

If an output bit which is set up as a REMOTE3 is specified, error will occur. REMOTE3
output bits are turned on or off automatically according to the status of robot controller.

RESET resets all bits to off.

All of output bits will be turned off when emergency stop occurs.
To maintain the current status, turn on bit 6 of software switch SS1. Refer to "9.2 Setting
switches" of SPEL Editor manual or "[Setup] menu" of SPEL for Windows manual.

RELATED INBCD, OUT
COMMANDS

EXAMPLE OPBCD 0,17 'Turn output bits 0, 1, 2, and 4 on, 3, 5, 6, and 7 off

7 6 5 4 3 2 1 0 bit
0 0 0 1 0 1 1 1 &H17

NOTE

177

Command Description

O

OPORT()
Output Port

FUNCTION Returns output bit status

FORMAT OPORT([bit number])

* bit number: integer from 0 to 127

DESCRIPTION Returns specified output bit status as either 0 or 1.

0: Off status
1: On status

OPORT() does not function for bits which set up as REMOTE3 and returns 0.

EXAMPLE >ON 5

>PRINT OPORT(5)

1

>

F

178

Command Description

> SOPUNIT
Operating Unit

FUNCTION Operation mode selection of operating unit

FORMAT OPUNIT {[mode number]}

* mode number: integer from 0 to 3

DESCRIPTION Selects the operation mode of operating unit.
If mode number is omitted, currently selected mode number will be displayed.

In Mode 0 (system mode), various functions are assigned to each key on operating unit for
the use of monitor function, file select function, etc. Also necessary messages for such
various functions are displayed.
It is also possible for customers to assign their own functions to each key in Mode 0. How-
ever, careful attention is necessary in this case since the specified function by customers'
program and original function in Mode 0 may be doubly assigned to one key.

In Mode 3 (user mode), most of originally assigned system functions are ineffective so that
customers can use keys as they like. Screen is for customer use only, it is not used for
system in this mode. Free keys are F1 to F4 MENU .

START PAUSE RESET keys are always reserved for system functions, they are not
free.

In Mode 1 and 2, monitor function is provided. In Mode 2, error message display function is
provided too, so error message will be displayed when error is issued. In Mode 1 and 2, free
keys are F1 to F4 . (They are called Key onward.)

When monitor function is not used, Key are free, however, when monitor function is
used, necessary function is assigned to each key. In this case, specified function by custom-
ers' program and function for monitoring may be doubly assigned to one key, careful atten-
tion is necessary.

In Mode 2, if error is issued, screen will be totally erased once even while customers' mes-
sage is displayed, and error message will be displayed.

179

Command Description

O
mode mode name free/reserved free keysnumber

0 system mode reserved (with all functions)

free1 user mode 1 Key (reserved during monitor)with monitor function
free

2 user mode 2 with monitor function Key (reserved during monitor)
error message display

3 user mode 3 all free Key MENU

Input from operating unit keys are read by DSW() function.

When the power is turned on, initial setting is 0, system mode.

RELATED DSW(), OPU PRINT, CHARSIZE, CLS, CURSOR, NORMAL, REVERSE
COMMANDS

EXAMPLE 1000 OPUNIT 2 'Select mode
1010 OPU PRINT 1,3,"Select operation mode." 'Message display
1020 OPU PRINT 1,4,"F1:Normal operation"

1030 OPU PRINT 1,5,"F2:Dummy operation"

1040 OPU PRINT 1,6,"F4:Operation End"

1050 WAIT (DSW(3) AND &B10110000) <> 0 'Wait for function
key input

1060 IF DSW(3) AND &B10000000 THEN GOTO F4KEY

1070 IF DSW(3) AND &B00100000 THEN GOTO F2KEY

1080 IF DSW(3) AND &B00010000 THEN GOTO F1KEY

180

Command Description

OPU PRINT
Operating Unit Print

FUNCTION Outputs characters to operating unit

FORMAT OPU PRINT [x column],[y line],|"[string]" |{,|"[string]" |}n
[numeric value]		[numeric value]
[variable name]		[variable name]
[function name]		[function name]

DESCRIPTION Outputs specified string to operating unit, and displays it at the specified place by (x,y)
coordinate.

RELATED CHARSIZE, CLS, CURSOR, NORMAL, REVERSE, OPUNIT
COMMANDS

EXAMPLE >CHARSIZE 2

>OPU PRINT 5,2,"ROBOT"

>CHARSIZE 4

>OPU PRINT 5,4,"ROBOT"

>CHARSIZE 9

>OPU PRINT 5,7,"ROBOT"

> S

[y:line]

specified place by (x,y)

[x:column]
 +10 +20 +30

 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2

1

2 ROBOT
3

4

5

6

7 ROBOT
8

ROBOT

181

Command Description

O

S>OUT

FUNCTION Sends data to output port (in 8 bit units)

FORMAT OUT [port number],[output data]

* port number: integer from 0 to 15
output data: integer from 0 to 255

DESCRIPTION Sends data to output specified by port number.

Each port is comprised of 8 I/O bits. Using a standard 16I/16O, there are a total of 2 ports.

The port number, LSB/MSB, and I/O bit number are related as follows:

port MSB LSB
number 7 6 5 4 3 2 1 0

0 7 6 5 4 3 2 1 0
1 15 14 13 12 11 10 9 8

LSB: least significant bit
MSB: most significant bit

Output data can be specified as either decimal or hexadecimal (using &H).

If an output bit which is set up as a REMOTE3 is specified, error will occur. REMOTE3
output bits are turned on or off automatically according to the status of robot controller.

RESET resets all bits to off.

All of output bits will be turned off when emergency stop occurs.
To maintain the current stats, turn on bit 6 of software switch SS1. Refer to "9.2 Setting
switches" of SPEL Editor manual or "[Setup] menu" of SPEL for Windows manual.

RELATED IN, OPBCD, INBCD
COMMANDS

EXAMPLE >OUT 0,28 'Output port bits 2, 3, and 4 are on, the others are off (on port 0)

7 6 5 4 3 2 1 0 bit
0 0 0 1 1 1 0 0 28

>OUT 1,&H66 'Output port bits 9, 10, 13, and 14 are on, the others are off (on port 1)

7 6 5 4 3 2 1 0 bit
0 1 1 0 0 1 1 0 &H66

NOTE

182

Command Description

> SOUT $

FUNCTION Sends data to memory I/O port (in 8 bit units)

FORMAT OUT $[port number],[output data]

* port number: integer from 0 to 63
output data: integer from 0 to 255

DESCRIPTION Sends data to memory I/O port specified by port number.

Each port is comprised of 8 memory I/O bits. Since there are a total of 512 bits, memory
I/O is made up of 64 ports.

The port number, LSB/MSB, and memory I/O bit number are related as follows:

port MSB LSB
number 7 6 5 4 3 2 1 0

0 7 6 5 4 3 2 1 0
1 15 14 13 12 11 10 9 8

62 503 502 501 500 499 498 497 496
63 511 510 509 508 507 506 505 504

LSB: least significant bit
MSB: most significant bit

RELATED IN($)
COMMANDS

EXAMPLE >OUT $3,5

183

Command Description

P

PALET
Pallet

FUNCTION Defines and displays pallets

FORMAT (1) PALET[pallet number] P[point 1],P[point 2],P[point 3]{,P[point 4]},~

[divisions 1],[divisions 2]

* pallet number: integer from 0 to 15
[divisions 1]: number of points from P[point 1] to P[point 2]
[divisions 2]: number of points from P[point 1] to P[point 3]

The product of [divisions 1] times [divisions 2] must be less than 32767.

(2) PALET

DESCRIPTION (1) Defines a pallet by teaching the robot, as a minimum, points 1, 2, 3, and by specifying
the number of points from point 1 to point 2 and from point 1 to point 3.

If the pallet is a well ordered rectangular shape, only three of the four corner points need
to be specified. A less than well ordered pallet must be defined with all four corner
points.

To define a pallet, first teach the robot either 3 or 4 corner points, then define the pallet
as follows:

A pallet with 3 points from point 1 to point 2, and 4 points from point 1 to point 3 is
shown at the lower left on this page. P10 corresponds to point 1, P11 corresponds to
point 2, and P12 corresponds to point 3; there are three points from P10 to P11, and four
points from P10 to P12. Hence, to define this pallet, specify:

PALET1 P10,P11,P12,3,4

> S

P12

(P13) 10 11 12

7 8 9

4 5 6

1 2 3

P10 P11

.

.

.

.

184

Command Description

As shown at the lower right on the previous page, points that represent divisions of a
pallet are automatically assigned division numbers, which, in this example, begin at
P10. These division numbers are also required by the PALETn().

Be aware that mistaking the order of points or the number of divisions between points
will result in an incorrect pallet shape definition.

The pallet plane is defined by the Z axis coordinate values of the three corner points,
P10, P11, and P12. Therefore, an upright pallet can also be defined.

(2) Displays all defined pallets.

RELATED PALETn()
COMMANDS

EXAMPLE 100 PALET1 P1,P2,P3,P4,4,5 'Define a pallet with four points, P1
through P4, specified

110 FOR I=1 TO 20

120 JUMP PALET1(I)

130 NEXT

>PALET

palet 1 P1 ,P2 ,P3 ,P4 , 4, 5

>

A single-row pallet can be defined with a three-point PALET statement or command. To
do so, teach point at each end, and define as follows. Specify 1 as the number of divisions
between the same point.

PALET2 P20,P21,P20,5,1

. .
P20 P21

185

Command Description

P

PALETn()
Pallet

FUNCTION Returns position on specified pallet corresponding to specified division number

FORMAT PALET[pallet number]([division number])

* pallet number: integer from 0 to 15
division number: integer from 1 to 32767

DESCRIPTION Returns position on a specified pallet (pallet number) that corresponds to a specified
division number (division number).

In positioning with PALETn(), operators +, -, and : are allowed.

RELATED PALET
COMMANDS

EXAMPLE This example program causes the robot to move parts from pallet 1 to pallet 2.
10 PALET1 P1,P2,P3,3,5 'Define pallet 1
20 PALET2 P12,P13,P11,5,3 'Define pallet 2
30 FOR I=1 TO 15

40 JUMP PALET1(I) 'Move to pallet 1 division number I
50 ON 1 'Grip part
60 WAIT 0.5

70 JUMP PALET2(I) 'Move to pallet 2 division number I
80 OFF 1 'Release part
90 WAIT 0.5

100 NEXT I

110 END

P3 P11

13 14 15 11 12 13 14 15

10 11 12 6 7 8 9 10

7 8 9 1 2 3 4 5

P12 P134 5 6

1 2 3 pallet 2

P1 P2

pallet 1

F

186

Command Description

>PASS

FUNCTION Executes simultaneous four axis PTP motion, passing near but not through specified points

FORMAT PASS [point series]{, |ON |[bit number],[point series]}n
|OFF|

DESCRIPTION Executes simultaneous four axis PTP motion, passing in order near, but not through,
specified point series points.

To specify point series points, use points (P0,P1, ...) with commas (,) between points.
To specify a continuous series, either in ascending or descending order, use a hyphen (-), as
in (Pi-Pj).

To turn output bits on or off while executing motion, insert an ON or OFF delimited by
commas (,) between points. The ON or OFF is executed before the robot reaches the point
immediately preceding the ON or OFF.

If PASS is immediately followed by another PASS, control passes to the following PASS
without the robot stopping at the preceding PASS final specified point.
If PASS is immediately followed by a motion command other than another PASS, the robot
stops at the preceding PASS final specified point, but FINE positioning will not be ex-
ecuted.

If PASS is immediately followed by a command, statement, or function other than a motion
command, the immediately following command, statement, or function will be executed
prior to the robot reaching the final point of the preceding PASS.

If FINE positioning at the target position is desired, follow the PASS with a GO, specifying
the target position as shown in each of the following examples:

PASS P5;GO P5;ON 1;MOVE P10

PASS is useful for avoiding obstacles or for rough painting with a Cartesian robot.

RELATED SPEED, ACCEL, GO
COMMANDS

EXAMPLE >PASS P0,P2-P5,ON 2,P6,P120-P110

>_

S

187

Command Description

P

PATH

FUNCTION Specifies, cancels and displays path for executing batch file

FORMAT (1) PATH={[path name]{;[path name]}n}

(2) PATH

DESCRIPTION (1) Specifies and cancels path for executing batch file. Also displays current path setting.
When batch filename is inputted, searches specified path, and specified file, then ex-
ecute it.
Batch file cannot be executed if path is not specified. Before executing batch file, set
proper path by PATH.

Several paths can be described by punctuating with " ; ". If several paths are specified,
file is searched in order from the beginning, then is executed when it is found.

If "PATH=" only is specified without any path name, PATH specification is canceled.
Batch file cannot be executed in this condition.

(2) Displays current PATH setting.

PATH specification is effective only for executing batch file.

When the power is turned on, no path is specified.

RELATED SETENV
COMMANDS

EXAMPLE >PATH=\;\BIN 'Two paths are specified
>PATH 'Displays the current PATH setting
PATH=\;\BIN

>PATH=\ 'Route directory is specified as path
>PATH

PATH=\

>

>

188

Command Description

PAUSE

FUNCTION Temporarily stops program execution

FORMAT PAUSE

DESCRIPTION Temporarily stops program execution.

Usually PAUSE is used to temporarily stop all task execution.

However, if any task(s) have been specified with the HTASK, only the HTASK task(s) are
temporarily stopped, execution of all other tasks continue.
If a motion command is in a task which is not specified with HTASK the PAUSE tempo-
rarily stops the task at the motion command.

EXAMPLE 10 JUMP P1

20 ON 1

30 WAIT 0.5
40 PAUSE 'Temporary stop. If subsequent action is to press START switch

then execute from line 50, if subsequent action is to press RESET
switch then execute reset

50 JUMP P2

60 OFF 1

70 WAIT 0.5

80 GOTO 10

S

189

Command Description

P

PDEL
Point Delete

FUNCTION Deletes specified position data

FORMAT PDEL |[point number] |
|[beginning point number]- |
|[beginning point number]-[ending point number] |
| -[ending point number] |

* Point number must be an integer. Allowable range is from 0 to 1 less than the PNTSIZE
value.
Because the initial PNTSIZE value is 200, initial allowable range is from 0 to 199.

DESCRIPTION Deletes position data of specified position data.

Point numbers are specified as follows:

PDEL [point number]

Deletes position data of specified point number.

PDEL [beginning point number]-

Deletes all position data from beginning point number to last point number.

PDEL [beginning point number]-[ending point number]

Deletes all position data from beginning point number up to and including ending point
number.
To prevent Error 2 from occurring, beginning point number must be less than ending
point number.

PDEL -[ending point number]
Deletes all position data up to and including ending point number.

RELATED PLIST, CLEAR, PNTSIZE
COMMANDS

EXAMPLE P1=10,300,-20,0/L

 P2=0,300,-40,0

 P10=-50,350,0,0

>PDEL 1-2 'Delete Point 1 and Point 2
>PLIST

 P10=-50,350,0,0

>PDEL 50 'Delete Point 50
>PDEL 100- 'Delete from Point 100 to last point

>

190

Command Description

PEEK()

FUNCTION Reads data from I/O channel

FORMAT PEEK([address number])

* address number: integer from 0 to 4095

DESCRIPTION Reads data from optional VME-I/O channel board.
Address number is the offset value from the I/O channel base address (FFF000H).

< Example >

address number address

0 FFF000H

1 FFF001H

2 FFF002H

3 FFF003H

Executing PEEK with a non-existent address causes a system error (bus error).

RELATED POKE
COMMANDS

EXAMPLE >PRINT PEEK(0) 'Read data from address FFF000H
5

>

F

191

Command Description

P

>PLIST
Point List

FUNCTION Displays position data

FORMAT PLIST {|[beginning point number]-{[ending point number] |}{/W}
|-[ending point number] |
|* |
|[point number] |

DESCRIPTION Displays specified position data. Displayed data are different depend on the usage of
PLIST.

PLIST
If neither point numbers or asterisk * is specified, all position data in main memory will
be displayed.

PLIST [point number]

To display position data for one point, specify only the point number.

PLIST [beginning point number]-

If ending point number specification is omitted, position data from beginning point
number to last point in memory is displayed.

PLIST [beginning point number]-[ending point number]

Display position data from beginning point number to ending point number.
In this case, the beginning point number must be smaller than the ending point number.
If point number specification is not correct, error 2 will be issued.

PLIST -[ending point number]

If beginning point number specification is omitted, position data from initial point in
memory to ending point number is displayed.

PLIST *
To display position data for current position, specify with asterisk *.

If /W is specified, position data will be displayed in fixed format (see example).

RELATED PDEL, CLEAR, PNTSIZE
COMMANDS

192

Command Description

EXAMPLE >PLIST
P0=450,400,0,0
P1=1.325,330.17,-58.2,-8/L
P11=-200,400,-100,150/1/R
P13=-450.456,200,0,0/2
P14=450.000,-200.000,0,0/2
>
>PLIST /W
P000= 450.000, 400.000, 0.000, 0.000
P001= 1.325, 330.170, -58.200, -8.000 /L
P011= -200.000, 400.000, -100.000, 150.000/1/R
P013= -450.000, 200.000, 0.000, 0.000/2
P014= 450.000, -200.000, 0.000, 0.000/2
>
>PLIST *
 254.3 365.256 '[X coordinate value] [Y coordinate value]
 -82.963 147 '[Z coordinate value] [U coordinate value]
PLIST 8
PLIST 100-/W
PLIST -150
PLIST 50-100

193

Command Description

P

PLS()
Pulse

FUNCTION Returns pulse value of specified axis

FORMAT PLS([axis number])

* axis number: integer from 1 to 4

DESCRIPTION Returns current pulse value (4-byte integer) of specified axis.

PLS() is intended for monitoring the robot orientation.

To use the pulse value of an axis while the robot is in motion, PLS() must be used in a task
(procedure) other than the task for robot control.

PLS() use axis numbers 1 through 4, which correspond to axis names. (Axis numbers 0
through 3 were used in SPEL III Ver. 2.2 and earlier versions.)

RELATED PULSE, AGL()
COMMANDS

EXAMPLE 10 FUNCTION MAIN 'Display the pulse values of axis 1 and axis 2 every 2 seconds
20 LONG J1P,J2P

25 XQT !2,RB

30 J1P=PLS(1)

40 J2P=PLS(2)

50 PRINT J1P,J2P

60 WAIT 2

70 FEND

100 FUNCTION RB

110 SELRB 1

120 GO P1;WAIT 0.3

130 GO P2;WAIT 0.3

140 GOTO 120

150 FEND

F

194

Command Description

S>Pn=Position Specification
Point Number

FUNCTION Defines a point

FORMAT P[point number]=[position specification]

DESCRIPTION Defines a point and includes it in point data.

The position specification can be in any one of the following three forms. These position
specification formats may be used in any command or statement [position specification].

[X coordinate],[Y coordinate],[Z coordinate],[U coordinate]~

{/[local coordinate system number]}{ /|L |}
|R|

P|[point number] |{/[local coordinate system number]}{/|L |}{ |+||X|[coordinate value]}4
| * | |R| |-||Y|

| : ||Z|
|U|

PALET[pallet number]([division number]){ |+||X|[coordinate value]}4
|-||Y|
| : ||Z|

|U|

If /[local coordinate system number] is specified, SPEL III includes the defined point in the
point data for that local coordinate system.

The /L and /R options are effective for SCARA robots only.

Specify /L to define the point as left arm posture point data.
Specify /R to define the point as right arm posture point data.
If omitted, right arm posture point data is assumed (except in some special configuration).

P* refers to the point at which the arm is currently stopped.

The X, Y, Z, or U coordinates of position data can be changed by following a position data

item, such as P[point number], with operators +, -, or : .

195

Command Description

P

X, Y, Z, and U refer to coordinate axes.
Use + to add the specified value [coordinate value] to the specified axis coordinate
value.
Use - to subtract the specified value [coordinate value] from the specified axis coordi-
nate value.
Use : to substitute the specified value [coordinate value], for the specified axis coordi-
nate value.

RELATED PLIST, PDEL, LOCAL, PALET
COMMANDS

EXAMPLE >P1=300,200,-50,100

>P2=-400,200,-80,100/L 'Specify left arm posture
>

>P3=P2+X20 'Add 20 to X coordinate of P2, and define resulting
point as P3

>PLIST 3

P3=-380,200,-80,100/L

>

>P4=P2-Y50:Z-30/R 'Subtract 50 from Y coordinate of P2, substitute -30
for Z coordinate, and define the resulting point P4
as right arm posture

>PLIST 4

P4=-400,150,-30,100/R

>

>P5=P* 'Define current point as P5
>

>P6=PALET3(5)+U90 'Add 90 to U coordinate of PALET3(5), and define
resulting point as P6

>

196

Command Description

>PNTSIZE, PSIZE
Point Size

FUNCTION Specifies and displays the usable number of position data

FORMAT (1) PNTSIZE [number of position data]

* number of position data: integer from 1 to 1000 [default value: 200]

(2) PNTSIZE

DESCRIPTION (1) Specifies usable number of position data stored in the main memory of the controller.

(2) Displays current usable number of position data.

Changing the number of position data does not clear program area, but it does clear
main memory point area, backup variable area, and object area. Therefore changing the
number of position data necessitates the following:

Prior to changing Perform backup of the main memory position data
After changing Restore backup variables

After entering PNTSIZE [number of position data], the following prompt appears:

>Point, Backup Variable, Object all clear --> OK?

To specify a new number of data enter Y or y
To maintain the current number of data enter N or n

Because the robot controller main memory size is fixed, increasing the usable number
of position data correspondingly decreases the object area size. For this reason, usable
data number increases should be minimized.

Usable point numbers are from 0 to one less than the usable number of position data.

Be aware that position data with position data numbers larger than the specified number
of usable points cannot be sent to the robot controller main memory. For example, with
the main memory usable number of position data specification still at its initial value of
200, attempting to send a position data file from programing unit that contains 1000
points will result in point number 0 to 199 being sent, point number 200 to 999 not
being sent, and an error message being displayed.

Neither power off nor executing VERINIT changes PNTSIZE value.

RELATED PRGSIZE, LIBSIZE, FREE, SYS
COMMANDS

EXAMPLE >PNTSIZE 500
>PNTSIZE
 500
>

197

Command Description

P

>POKE

FUNCTION Writes data to I/O channel

FORMAT POKE [address number],[data]

* address number: integer from 0 to 4095

DESCRIPTION Writes data to optional VME-I/O channel board.
Address number is the offset value from the I/O channel base address (FFF000H).

< Example >

address number address

0 FFF000H

1 FFF001H

2 FFF002H

3 FFF003H

Executing POKE with a non-existent address causes a system error (bus error).

RELATED PEEK()
COMMANDS

EXAMPLE >POKE 3,&H10 'Write 10H to address FFF003H
>

S

198

Command Description

> SPOWER

FUNCTION Switches motor power mode and displays current mode and actual status

FORMAT POWER {|LOW|}
|HIGH|

* [default: LOW]

DESCRIPTION Switches motor power mode and displays current status.

With LOW specified, mode switches to low power mode.
With HIGH specified, mode switches to high power mode.
With no LOW/HIGH specification, POWER displays the current mode and the actual
power status.

>POWER

 Mode :Low ← current mode
 State:Low ← actual status

The function of POWER and LP is same.

POWER LOW (LP ON) POWER HIGH (LP OFF)
Low power mode High power mode

when safegurard closed

when safeguard open
Low power state

(regardless of POWER, LP setting)

For the safety reasons, low power state is basic in TEACH mode for the controller.
Therefore, following operations (Reset operations) will turn the power mode to low as
default setting. In this case, speed and acceleration setting also will be initialized to default
value. Refer to "Specifications" in the manipulator manual for default values of speed and
acceleration, which vary from model to model.

initialized commands

SPEED
ACCEL
SPEEDS
ACCELS

· Power on
· AUTO/TEACH mode switching
· RESET command
· MOTOR ON command
· STOP key
· CTRL + C key

POWER LOW

(low power mode)

199

Command Description

P

In low power state, motor power is limited, and effective motion speed setting is lower than
the default value. If higher speed is specified directly or in a program, the speed is set to the
default value.

motor power status actual motion speed
the default value of speed setting command 

Low power state  either lower value
the specified value of speed setting command 

High power state the specified value of speed setting command

If higher speed motion is required in AUTO mode for motion commands described in a
program, specify POWER HIGH in the program.

In low power state, error 173 may occur if robot arm is pushed by hand or operation with
down force is executed because of the limited motor power.

When speed setting command is inputted in low power state, the following message will be
displayed.
It shows the robot is in low power state, and will move in low speed.

Low Power State : xxxxxx is limited to xxx

RELATED LP, SPEED, ACCEL, SPEEDS, ACCELS
COMMANDS

EXAMPLE >SPEED 50 'Specifies higher speed
 Low Power State : SPEED is limited to 5

>ACCEL 100,100

 Low Power State : ACCEL is limited to 10

>JUMP P1 'Moves in low speed
>SPEED; ACCEL 'To display speed setting status
 Low Power State : SPEED is limited to 5

 50

 50 50

 Low Power State : ACCEL is limited to 10

 100 100

 100 100

 100 100

>XQT

>POWER HIGH 'Set high power mode
>JUMP P2 'Moves in high speed

200

Command Description

>PRGNO
Program No.

FUNCTION Determines whether to apply up down count or binary coding to program number selection
through remote connector (REMOTE3)

FORMAT PRGNO |0|
|1|

* 0: up down count, 1: binary coding [default value: 1]

DESCRIPTION If robot controller is connected through its remote connector (REMOTE3) with a sequencer,
various remote control capabilities of the robot controller can be utilized by transmitting
specific sequences of signals from the sequencer to the remote connector REMOTE3. One of
the remote control capabilities is program number selection.
Refer to "7. I/O Remote Set Up" of robot controller manual for details.

Program number selection is executed either through up-down count or through binary coding.

To select up-down count, specify 0. Program numbers 00 through 64 are available for up-down
count. Program number selection input 20 and 21 of REMOTE3 are used to input up-down
count signals, and they are assigned the following functions:

Pin No. Signal I/O No. Function
6 Program number selection input 20 Input 4 UP
7 Program number selection input 21 Input 5 DOWN

To select binary coding, specify 1. Program numbers 00 through 15 are available for binary
coding. Program number selection input 20 - 23 of REMOTE3 are used to input binary code
signals, and they are assigned the functions shown on the following page.

Power off does not change PRGNO setting. Executing VERINIT causes the setting to initialize
to the default, binary coding.

RELATED DSW()
COMMANDS

program number selection input
23 22 21 20

00 0 0 0 0
01 0 0 0 1
02 0 0 1 0
03 0 0 1 1
04 0 1 0 0
05 0 1 0 1
06 0 1 1 0
07 0 1 1 1
08 1 0 0 0
09 1 0 0 1
10 1 0 1 0
11 1 0 1 1
12 1 1 0 0
13 1 1 0 1
14 1 1 1 0
15 1 1 1 1

program
number

201

Command Description

P

PRGSIZE
Program Size

FUNCTION Specifies and displays the program area size

FORMAT PRGSIZE {[area size]}

DESCRIPTION PRGSIZE changes the program area in main memory to specified size (area size).

If area size is omitted, PRGSIZE displays the current program area size.

When PRGSIZE is executed, the following prompt is displayed:

>Program, Point, Backup Variable, Object all clear --> OK?

To execute the command enter Y or y

To cancel the command enter N or n

Completing PRGSIZE clears all of the program area, point area, backup variable area, and
object area in main memory.

Therefore, perform the following steps before and after executing the command.

Before execution Make backup copies of program and point data files that are in
main memory

After execution Reenter backup variables

Increasing the program area size correspondingly reduces the object area size because in
most cases the main memory size is fixed. Therefore, keep program size increases to a
minimum.

Neither power off nor executing VERINIT changes PRGSIZE value.

RELATED PNTSIZE, LIBSIZE, FREE, SYS
COMMANDS

EXAMPLE >PRGSIZE &H10000 'Set the program area size to 64 KB (&H: hexadecimal prefix)
>PRGSIZE

 65536
>

>

202

Command Description

SPEL III maps main memory as diagrammed below. The commands for changing the size
of each area are shown at right.

default settings
area name

No.1 No.2

source program area 64 k 128 k PRGSIZE

point area 200 point data PNTSIZE

backup variables area 10 variables, 0.5 k LIBSIZE

object program area 104 k 240 k Depends on the above settings

total 174 k 374 k

default settings No.2 Applies if controller contains optional expansion RAM, and
the sizes of main memory and file memory have been set with
dipswitch SD2 on the MPU board

No.1 All other cases

203

Command Description

P

PRINT

FUNCTION Outputs data to console display

FORMAT PRINT |[numeric variable name] |{,|[numeric variable name] |}n
[string variable name]		[string variable name]
"[string]"		"[string]"
[function]		[function]

DESCRIPTION Outputs specified data to console display.

RELATED INPUT
COMMANDS

EXAMPLE >PRINT A 'Display value of variable A
>PRINT "LCD" 'Display "LCD"
>PRINT "B=",B 'On the same line, display "B=", then display value of variable B
 B= 9

>

> S

204

Command Description

PRINT #

FUNCTION Outputs data to communication port

FORMAT PRINT #[port number],|[numeric value] |{,|[numeric value] |}n
[numeric variable name]		[numeric variable name]
"[string]"		"[string]"
[string variable name]		[string variable name]

* port number: integer from 20 to 24

DESCRIPTION Outputs numeric values and strings to communication port specified by port number.

Port numbers and communication ports are related as follows:

port number communication port

#20, #21 standard RS-232C port

#22, #23 auxiliary RS-232C port

#24 REMOTE1 (OPU-300)

RELATED INPUT #, CONFIG
COMMANDS

EXAMPLE >PRINT #20,5 'Send numeric value 5 to port 20
>PRINT #20,A 'Send contents of variable A to port 20
>PRINT #21,"PORT" 'Send string "PORT" to port 21
>PRINT #21,A,5 'Send contents of variable A and numeric value 5 to port 21
>PRINT #20,NAME$ 'Send contents of string variable NAME$ to port 20
>

S>

205

Command Description

P

>PULSE

FUNCTION Moves all four axes simultaneously by PTP motion according to specified pulse values, and
displays current position pulse values

FORMAT (1) PULSE [axis #1 pulse value],[axis #2 pulse value],[axis #3 pulse value],~

[axis #4 pulse value] {[!parallel processing statement!]}

* pulse range for axis #1 to #4 : range (integer) defined by RANGE

(2) PULSE

DESCRIPTION (1) Moves all four axes simultaneously by PTP motion according to specified pulse
values, rather than specified with orthogonal coordinate values.

(2) Displays current position pulse values for each axis as follows:

[axis #1 pulse value] [axis #3 pulse value]
[axis #3 pulse value] [axis #4 pulse value]

Refer to manipulator manual for the 0 pulse position and +/- orientation of each axis.
These vary from model to model.

PULSE is intended primarily for use in maintenance.

Unlike JUMP, PULSE moves all axes simultaneously, including axis #3 raising and lower-
ing in traveling to target position. Therefore, when using PULSE, take extreme care so that
the hand can move through an obstacle free path.

RELATED SPEED, ACCEL, ! ... !, RANGE
COMMANDS

EXAMPLE >PULSE 16000,10000,-100,10 'Move axes #1, #2, #3, and #4 to the positions
that correspond to pulse values 16000, 10000,
-100, and 10, respectively

>PULSE

16000 10000 'Display pulse values that correspond to current
position of axes #1 to #4

 -100 -100

>

S

NOTE

206

Command Description

>QP
Quick Pause

FUNCTION Switches quick pause mode on or off and displays current mode status

FORMAT QP { |ON |}
|OFF|

* [default: ON]

DESCRIPTION If during motion command execution either the operating unit PAUSE switch is pressed, or
a pause signal is input to the controller REMOTE3 connector, quick pause mode
determines whether the robot will pause immediately, or will pause after having executed
the motion command.

Immediately decelerating and stopping is referred to as a "quick pause."

With ON specified, QP switches quick pause mode on.
With OFF specified, QP turns quick pause mode off.
With no specification, QP displays current quick pause mode status.

Software reset does not change quick pause mode status.

When the power is turned off and back on, quick pause mode defaults to ON.

Even if OFF is specified, the robot will pause immediately by safety door input.

In teach mode, pressing the [Esc] key on the programing unit (PC) also causes the robot to
pause. However, the robot does not pause immediately, whether quick pause mode is on or
off.

EXAMPLE >QP ON 'Turn quick pause mode on
...
>QP

QP ON 'Quick pause mode is currently on
>

S

207

Command Description

Q

>QUIT

FUNCTION Stops tasks that are currently being executed, or have been temporarily stopped

FORMAT (1) QUIT ![task number]

* task number: integer from 1 to 16

(2) QUIT

DESCRIPTION (1)Stops tasks that are currently being executed, or that have been temporarily stopped.

Use the END to stop the task in which it is included.

(2) In edit mode for text file by EDIT, QUIT is used to exit to programming mode without
saving file.

RELATED RUN, XQT, HALT, RESUME
COMMANDS

EXAMPLE 10 FUNCTION MAIN

20 XQT !2 FLASH1 'Execute FLASH1 at Task 2
30 XQT !3 FLASH2 'Execute FLASH2 at Task 3
40 WAIT 10

50 QUIT !2;QUIT !3 'Stop Task 2 and Task 3
60 FEND

70 '

80 FUNCTION FLASH1 'This task flashes at 0.2 second interval
90 LOOP1:

100 ON 1;WAIT 0.2

110 OFF 1;WAIT 0.2

120 GOTO LOOP1

130 FEND

140 FUNCTION FLASH2 'This task flashes at 0.5 second interval
150 LOOP2:

160 ON 2;WAIT 0.5

170 OFF 2;WAIT 0.5

180 GOTO LOOP2

190 FEND

S

208

Command Description

RANGE

FUNCTION Defines permissible working range of each axis in pulses, and displays current permissible
ranges

FORMAT (1) RANGE [axis #1 lower limit pulse value], [axis #1 upper limit pulse value],~
[axis #2 lower limit pulse value], [axis #2 upper limit pulse value],~
[axis #3 lower limit pulse value], [axis #3 upper limit pulse value],~
[axis #4 lower limit pulse value], [axis #4 upper limit pulse value]

(2) RANGE

DESCRIPTION (1) Defines the permissible working range for each axis by specifying the upper and lower
limit in pulses.

The lower limit must not exceed the upper limit. A lower limit in excess of the upper
limit will cause an error, making it impossible to execute motion.

Neither power off nor executing VERINIT changes RANGE working ranges.

(2) Displays current ranges as follows:

[axis #1 lower limit] [axis #1 upper limit]
[axis #2 lower limit] [axis #2 upper limit]
[axis #3 lower limit] [axis #3 upper limit]
[axis #4 lower limit] [axis #4 upper limit]

Refer to the "Specifications" in the manipulator manual for maximum working ranges,
which vary from model to model.

RELATED XYLIM, VER
COMMANDS

EXAMPLE >RANGE 0,32000,0,32224,-10000,0,-40000,40000

>RANGE

 0 32000 'axis #1 range 0 to 32000
 0 32224 'axis #2 range 0 to 32224
-10000 0 'axis #3 range -10000 to 0
-40000 40000 'axis #4 range -40000 to 40000

S>

209

Command Description

R

REAL
Real

FUNCTION Defines 4-byte REAL type variables

FORMAT REAL [variable name]{(array size 1{,array size 2{,array size 3}})}~
{,[variable name]{(array size 1{,array size 2{,array size 3}})}}n

DESCRIPTION This command defends 4-byte REAL type variables.
It several variables of the same type are declared, use a " , " (comma) and describe several
variable names. When defining an array variable, declare the name and its size enclose
with (). The size can be defined up to 3 dimension.

By default, the variable whose data type is not declared specifically will be treated as
REAL type. Therefore, it should be declared if the integer type is sufficient or the data
type because it has advantage over the REAL type in terms of performance speed and
memory efficiency.

The REAL type supplies 7 valid digits. If the high accuracy is needed, using DOUBLE (an
8-byte REAL number, 14 valid digits) is recommended.

For more details about the variable, refer to "2.3 Variables" in the Elementary section of the
User's manual for SRC-300/320.

The following cites the restrictions on the variable names. The variable may be freely
named within these restrictions.

・The usable characters are alphanumeric and underscores (_). There is no distinc-
tion between capital and small case letters.

・Must be eight characters or under.
・The first character must be an aophabet character other than "P".
・Reserved words (i.e. command, statement, and function) cannot be used. A re-

served word that is followed by an underscore or numeric character is also read as
a reserved word.

The variable type must be declared at the beginning of a line; otherwise, the file will not be
successfully compiled. When declaring another type of variable, a new line must be created.

S

NOTE

210

Command Description

RELATED BYTE, INTEGER, LONG, DOUBLE, STRING, VARIABLE, SYS
COMMANDS

EXAMPLE 10 FUNCTION MAIN

20 REAL I 'Declares a 4-byte REAL type variable "I."
30 REAL ODATA(10,10) 'Declares a 2 dimensional array of 4-byte REAL type

 variable, "ODATA."
 . . .
999 FEND

211

Command Description

R

>RENAME, REN, NAME

FUNCTION Changes file name

FORMAT RENAME {[pathname]}[filename 1] [filename 2]

* filename must include extension

DESCRIPTION Changes name of specified file (filename 1) to filename 2.

If pathname is omitted, RENAME searches for filename 1 in current directory.

Pathname can not be specified for filename 2. Therefore, the renamed file exists in the
same path as prior to its being renamed.

Neither filename 1 or filename 2 may be omitted.
A file may not be renamed to a filename that already exists in the same path.

RENAME allows the use of wildcard characters.
Wildcard characters used in filename 1 cause RENAME to rename all corresponding files.
For example, to change names of all files named A to B, without changing their filename
extensions, use the following:

RENAME A.* B.*

Wildcard characters used in filename 2 cause RENAME to maintain filename 1 characters
in their respective positions in filename 2. For example, to rename all files corresponding to
TEST.* to TEXT.*, use the following:

RENAME TEST.* ??X?.*

To make file with filename 2 into a different directory, use the COPY.

RELATED COPY
COMMANDS

EXAMPLE RENAME A*.* B*.*
RENAME TEST.* ??X?.*
RENAME A.PRG B.PRG

212

Command Description

RENDIR
Rename Directory

FUNCTION Changes directory name

FORMAT RENDIR {[pathname]}[directory name 1] [directory name 2]

DESCRIPTION Changes directory name 1 to directory name 2.
If pathname is omitted, RENDIR searches for directory name 1 in current directory.

Pathname specification is not allowed for directory name 2. Therefore, the renamed direc-
tory exists in the same path as prior to its being renamed.

Neither directory name 1 or directory name 2 may be omitted.

A directory may not be renamed to a directory name that already exists in the same path.

Wildcard characters are not allowed in either directory name 1 or directory name 2.

RELATED DIR
COMMANDS

EXAMPLE RENDIR \BAK USR2

>

213

Command Description

R

RENUM
Re-number

FUNCTION Renumbers program lines

FORMAT RENUM {[first line number]}{,[increment]}

* (first line number)+(total number of program lines)×(increment)≤32767

DESCRIPTION Renumbers program lines. First program line is renumbered to first line number, all
subsequent lines are renumbered at specified increment.

In first line number specification is omitted, first program line is renumbered to 10. If
increment specification is omitted, increment is 10.

Specify increment such that (first line number) plus (total number of program lines times
increment) does not exceed 32767.

RENUM also automatically renumbers line references within GOTO, GUSUB, and
ONERR.

RELATED LIST
COMMANDS

EXAMPLE >RENUM 100,20 'Renumber first line 100, renumber at 20 increment
>

>LIST

100 HOME 10 HOME

120 JUMP P10 20 JUMP P10

140 JUMP P20 30 JUMP P20

160 GOTO 120 40 GOTO 20

>_

>RENUM 'Renumber first line 10, renumber at 10 increment
>

>

214

Command Description

RESET

FUNCTION Resets controller

FORMAT RESET

DESCRIPTION RESET resets the following:

emergency stop status
error status (except for special case errors)
output bit (all bits off)
SPEED, SPEEDS (initialized to default value)
ACCEL, ACCELS (initialized to default value)
LIMZ parameter (initialized to 0)
FINE (initialized to default value)
POWER HIGH, LP OFF (POWER LOW, LP ON)

For servo-related errors, emergency stop status, and any other conditions requiring a RE-
SET reset, no command other than RESET will be accepted. In this case, first execute
RESET, then execute other processing as necessary.

For example, after an emergency stop, first verify safe operating conditions, execute RE-
SET, and then execute MOTOR ON.

RELATED ON, OFF, SPEED, ACCEL, LIMZ, SPEEDS, ACCELS, MOTOR ON
COMMANDS

EXAMPLE >RESET

>

215

Command Description

R

> SRESUME

FUNCTION Resumes execution of tasks temporarily stopped by HALT

FORMAT RESUME ![task number]

* task number: integer from 1 to 16

RELATED RUN, XQT, HALT, QUIT
COMMANDS

EXAMPLE 10 FUNCTION MAIN

20 XQT !2 FLASH 'Execute FLASH at Task2
30 LOOP:

40 WAIT 3 'Set timer interval to 3 seconds (Task 2 is executing)
50 HALT !2 'Halt Task 2 (after line 40 3 seconds has elapsed)
60 WAIT 3 'Set timer interval to 3 seconds (Task 2 is stopped)
70 RESUME !2 'Resume Task 2 (after line 60 3 seconds has elapsed)
80 GOTO LOOP

90 FEND

100 '

110 FUNCTION FLASH 'Flash light on/off at 0.2 seconds intervals
120 LOOP1:

130 ON 1

140 WAIT 0.2

150 OFF 1

160 WAIT 0.2

170 GOTO LOOP1

180 FEND

216

Command Description

REVERSE

FUNCTION Specifies reverse display mode for specified range (on operating unit)

FORMAT REVERSE [x column],[y line],[number of characters]

* x: integer from 1 to 32
y: integer from 1 to 8
number of characters: integer from 1 to 32

DESCRIPTION Specifies reverse display mode for specified number of characters from (x,y) position.

If specified area is longer than the end of one line, extra area does not slide to the next line,
but returns to the beginning of the line, and displays characters in reverse mode.

Characters in specified range are displayed in reverse mode.
If characters are outputted into specified range, those characters are also displayed in re-
verse display mode.

RELATED NORMAL, CHARSIZE, CLS, CURSOR, OPUNIT, OPU PRINT
COMMANDS

EXAMPLE >REVERSE 10,2,3

S>

217

Command Description

R

RIGHT$()

FUNCTION Returns the rightmost characters of specified string

FORMAT RIGHT$(|[string variable name] |,[number of characters])
|"[string]" |

DESCRIPTION Returns the rightmost specified number of characters of specified string.
String may be specified by a string variable.

RELATED LEFT$(), MID$()
COMMANDS

EXAMPLE >PRINT RIGHT$("ABCDE",2)

DE

>

F

218

Command Description

RMDIR, RD
Remove Directory

FUNCTION Removes (deletes) an empty subdirectory

FORMAT RMDIR {[pathname]}[directory name]

DESCRIPTION Removes (deletes) specified subdirectory. Prior to executing RMDIR all of the sub
directory's files except for (.) and (..) must be deleted.

If pathname is omitted, searches for subdirectory in current directory.
If directory name is omitted, an error occurs.

Current directory or parent directory cannot be removed.

EXAMPLE RD \USR2

>

219

Command Description

R

ROPEN...CLOSE
Read Open

FUNCTION Opens file for read-out

FORMAT ROPEN "[file name]" AS #[file number]
...

CLOSE #[file number]

* filename must include extension
file number: integer from 30 to 35

DESCRIPTION Opens specified filename for read-out and identifies it by the specified file number.
This statement is used to open and read data from the specified file. CLOSE closes the file
and releases the file number.

The specified filename must be the name of a file existing on disk.
The file number identifies the file as long as the file is open, it is used by the input statement
for reading (by INPUT #) and for closing (by CLOSE #) the file. Accordingly, until the
current file is closed, its file number can not be used to specify a different file.

A maximum of six files can be open concurrently. As long as 6 files are open, however,
DLOAD and DMERGE cannot be executed.

RELATED INPUT #, AOPEN, WOPEN
COMMANDS

EXAMPLE 100 REAL DATA(200)

110 WOPEN "TEST.VAL" AS #30

120 FOR I=0 TO 100

130 PRINT #30,DATA(I)

140 NEXT

150 CLOSE #30

160 '

170 ROPEN "TEST.VAL" AS #30

180 FOR I=0 TO 100

190 INPUT #30,DATA(I)

200 NEXT

210 CLOSE #30

220 '

S

220

Command Description

RSHIFT()
Right Shift

FUNCTION Shifts numeric value data to right

FORMAT RSHIFT([numeric value data],[number of bits to be shifted])

DESCRIPTION Shifts specified numeric value data specified number of bits to the right (toward least
significant bit). For each place shifted to the right, a 0 is inserted into the vacated space on
the left.

RELATED LSHIFT(), NOT()
COMMANDS

EXAMPLE >PRINT RSHIFT(4,2)

 1

>I=10

>PRINT RSHIFT(I,1)

 5

>

F

221

Command Description

R

>

NOTE

RUN

FUNCTION Compiles and executes source program

FORMAT RUN {"{[pathname]}[filename]"}

* filename extension is not allowed

DESCRIPTION Compiles and executes specified file.

If pathname and filename specifications are omitted, source program in the main memory is
compiled and executed.

If filename is specified, the specified file in file memory is compiled and executed. During
compiling, the following files will be created in file memory:

filename.OBJ
filename.SYM

Just before the program execution, the following files will be loaded into main memory:

filename.OBJ
filename.SYM
filename.PNT

Existing main memory position data will be replaced when the above files are loaded.
Therefore, save main memory files as necessary prior to executing RUN.

If pathname is omitted, RUN searches for specified files in current directory.

Executing RUN is equivalent to executing COMPILE, and then XQT continuously.

Existing main memory position data will be replaced when RUN is executed. Therefore,
save main memory files as necessary prior to executing RUN.

RELATED COMPILE, XQT, HALT, RESUME, QUIT
COMMANDS

EXAMPLE >RUN "TEST"

>

222

Command Description

> SSEL
Select

FUNCTION Selects and displays step jog feed travel settings

FORMAT SEL [bank number]

* bank number : integer from 0 to 3
[default value: 0]

DESCRIPTION Selects a bank (array) that contains the step jog feed travel settings for each axis which are
applied each time a jog key is pressed to operate the robot in step jog mode.

SEL then displays the feed travel settings contained in the specified bank (bank number) in
the following form:

[setting 1] [setting 2]
[setting 3] [setting 4]

Settings contained in each bank can be changed using the SET.

The following table shows, for each of the four settings, the direction and axis of arm
motion, and the unit of feed.

Plus and minus signs refer to the direction of motion.

< feed travel settings for Base mode and Tool mode >

setting 1 setting 2 setting 3 setting 4

Base X axis Y axis Z axis U axis

Tool x axis y axis z axis u axis

direction - + + - + - + -

unit mm ° (degrees)

X through Z axes for Base mode correspond to X through Z axes in the robot coordinate
system.
x through z axes for Tool mode correspond to x through z axes in the tool coordinate sys-
tem.

223

Command Description

S

< feed travel settings for Joint mode >

setting 1 setting 2 setting 3 setting 4

Axis 1st axis 2nd axis 3rd axis 4th axis

direction - + + - + - + -

mm for linear axisunit ° (degrees)° (degrees) for rotary axis

For more information on each jog feed coordinate mode, refer to "Jog Feeding Coordinate
Modes" in User's manual.

RELATED SET
COMMANDS

EXAMPLE *SEL 1
 0.1 1

 10 5

224

Command Description

SELECT...SEND
Select...Select End

FUNCTION Specifies branching formula and corresponding branch instruction sequences

FORMAT SELECT [formula]
CASE [item];[statement]

...
CASE [item];[statement]
{DEFAULT;[statement]}

SEND

* nesting: up to 20 are allowed

DESCRIPTION If any one CASE item is equivalent to SELECT formula result, that CASE item statement is
executed. After execution, program control transfers to command following SEND.

If no CASE item is equivalent to SELECT formula result, DEFAULT statement is ex-
ecuted, and program control transfers to command following SEND.
If DEFAULT is omitted, nothing is executed and program control transfers to command
immediately following SEND.

SELECT formula may include constants, variables, variable formulas, and logical opera-
tors that use AND, OR, or XOR.

CASE item may include constants and variables.

CASE item statements may also be multistatements or multiple line statements.

EXAMPLE 110 FUNCTION MAIN

120 INTEGER I

130 FOR I=0 TO 10

140 SELECT I

150 CASE 0;OFF 1;ON 2;JUMP P1

160 CASE 3;ON 1;OFF 2

170 JUMP P2;MOVE P3;ON 3

180 CASE 7;ON 4

190 DEFAULT;ON 7

200 SEND

210 NEXT

220 FEND

S

225

Command Description

S

SELRB
Select Robot

FUNCTION Selects positioning device

FORMAT SELRB [device number]

* device number: integer from 1 to 3
[default value: 1]

DESCRIPTION Used in a Function (FUNCTION...FEND) that controls a positioning device such as a
manipulator or RAIOC, specifies which device the Function controls.

Device numbers correspond to the addresses of the respective devices.

1 manipulator

2 RAIOC at address #2

3 RAIOC at address #3

In the main task and Task 1, device number defaults to 1 ("SELRB 1"). Therefore, when
only one manipulator is controlled by Task 1, a SELRB statement is not necessary. If
more than one manipulator is controlled, however, the proper positioning device(s) must
be specified with SELRB statement(s).

Once the positioning device has been specified by placing a SELRB statement in a Func-
tion, all position control statements following the SELRB are applied to that device till
you place another SELRB statement.

EXAMPLE 10 FUNCTION MAIN

20 XQT !2 ROBOT

30 FEND

40 '

50 FUNCTION ROBOT

60 SELRB 1

70 JUMP P1
...

500 FEND

> S

226

Command Description

> SSENSE

FUNCTION Specifies and displays input condition that, if satisfied, complete the JUMP in progress by
stopping robot above target position

FORMAT (1) SENSE [input condition]
...

JUMP [position specification] SENSE

* The following functions and operators may be used in input conditions:
functions : SW, IN (either I/O or memory I/O may be used)
operators : AND, OR, XOR, +, *
other : parenthesis for prioritizing operations, and variables

(2) SENSE

DESCRIPTION (1) SENSE command:
Specifies SENSE condition.
SENSE condition must include at least one input or memory I/O input function.
Include in SENSE condition only the operators noted above. (Using any other operator
will result, not in error processing, but in unpredictable motion.)
When variables are included, their values are computed during SENSE execution.

Multiple SENSE statements are permitted, the most recent SENSE condition remains
current until superseded.

At power on, SENSE condition is:

SENSE SW(0)=1 ' Input Bit 0 is on

Use JS(0) or STAT(1) function to verify if SENSE condition is satisfied.

JUMP With SENSE Modifier:
Checks if current SENSE condition is satisfied. If satisfied, this command completes
with robot stopped above target position.

(2) Displays current SENSE Condition.
Because the SENSE condition display format is altered to clearly indicate operation
order, it may differ from the originally input format.

227

Command Description

S

RELATED JUMP, SW(), STAT(1), JS(0)
COMMANDS

EXAMPLE 1000 SENSE SW(1)=0 'Specifies SENSE condition (Input Bit 1
is off)

1010 JUMP P1 SENSE 'Stop above target if current SENSE
condition (line 1000) is satisfied

1020 SENSE SW(1)=1 AND SW($1)=1 'Specifies SENSE condition (Input Bit 1
is on and Memory I/O bit 1 is on)

1030 JUMP P2 SENSE 'Stop above target if current SENSE
condition (line 1020) is satisfied

1040 FOR I=1 TO 2

1050 SENSE SW(I)=1 '(Iteration 1) Specifies SENSE condition
(Input Bit 1 is on)
(Iteration 2) Specifies SENSE condition
(Input Bit 2 is on)

1060 JUMP PI SENSE

1070 NEXT

1080 I=5

1090 JUMP P4 SENSE 'Stop above target if current SENSE
condition (line 1050 Iteration 2) is
satisfied

1110 JUMP P6 SENSE 'Stop above target if current SENSE
condition (line 1050 Iteration 2) is
satisfied

>SENSE SW(1)=1 AND SW($1)=1

>SENSE

 SW(1)=1 AND SW($1)=1

>

>SENSE SW(0) OR SW(1) AND SW($1)

>SENSE

 (SW(0) OR SW(1)) AND SW($1)

>

228

Command Description

> SSET

FUNCTION Sets step jog feed travels

FORMAT SET [bank number],[setting 1],[setting 2],[setting 3],[setting 4]

* bank number: integer from 0 to 3
Feed travels can be specified in units of 0.001

DESCRIPTION Specifies step jog feed travels for each axis. These are applied each time a jog key is
pressed to operate the robot in step jog mode. These settings are stored in an array called
the bank. When specifying the step jog feed travels for each of the four axes, the bank
number must be specified.

To reverse the feed direction of an axis, use a minus sign.

The following table shows the default settings in each bank.

setting 1 setting 2 setting 3 setting 4

SEL 0 0.03 0.03 0.03 0.03

SEL 1 0.1 0.1 0.1 0.1

SEL 2 1 1 1 1

SEL 3 10 10 10 10

To select a bank of settings, specify the bank number with SEL.

For the direction and axis of arm motion that are applied when each jog key is pressed and
the unit of feed travel, refer to SEL.

SEL values are not changed by power off, but they are initialized to the default values
shown in the table above when the VERINIT is executed.

RELATED SEL
COMMANDS

EXAMPLE >SET 1,10,5,3,3 'Sets feed travels in bank 1
>SET 2,0.1,0.5,1,0 'Sets feed travels in bank 2

229

Command Description

S

>SETENV
Set Environment

FUNCTION Specifies, cancels and displays environment variable

FORMAT SETENV { |COM={-V}{-L} |}
|PLI={/W} |
|XQT={[path name]{;[path name]}n} |
|PATH={[path name]{;[path name]}n}|

DESCRIPTION Specifies and cancels environment variable. Also displays the setting values. In the format
above, the left side of = is called environment variable name, and contents of variable is
specified by character strings on the right side.

Environment variable is effective when COMPILE and PLIST is executed, or file is ex-
ecuted.
If environment variable is specified, various settings, which have to be specified each time
when those commands are executed, can be omitted.
If batch file is used, path must be specified in environment variable.

If SETENV only is inputted, the current environment variable contents are displayed.
When the power is turned on, environment variable is not specified at all.

SETENV COM={-V}{-L}

Specifies compiling condition.
If -V only, -L only, or both are specified in environment variable, COMPILE is executed
in specified condition when COMPILE is inputted.
If "COM=" only is specified without -V and -L, it cancels environment variable speci-
fication.
Environment variable name is COM, and it is impossible to describe as COMPILE.

SETENV PLI={/W}

Specifies display format for PLIST.
If /W is specified in environment variable, PLIST/W is executed when PLIST is input-
ted. If "PLI=" only is specified without /W, it cancels environment variable specifica-
tion.
Environment variable name is PLI, and it is impossible to describe as PLIST.

230

Command Description

SETENV XQT={[path name]{;[path name]}n}

Specifies path for executing file.
When XQT "[filename]" is inputted, file is searched in the specified path in order, then
is executed when it is found. If paths are not specified, file is searched in the current
directory.
If "XQT=" only is specified, it cancels environment variable specification.
< NOTE > When path is defined in environment variable, but different path is speci-

fied with filename when XQT "filename" is executed, path setting in
environment variable is invalid.

SETENV PATH={[path name]{;[path name]}n}

Specifies path for execution batch file.
If it is specified in environment variable, searches specified path, and specified file, then
executes the file when batch filename is inputted.
If "PATH=" only is specified, it cancels environment variable specification.
This condition can be specified not only by SETENV but also by PATH.
If PATH condition is not specified, batch file cannot be executed.

RELATED PATH, COMPILE, PLIST, XQT
COMMANDS

EXAMPLE >SETENV PLI=/W

>SETENV XQT=\

>SETENV

PLI=/W

XQT=\

>

>PLIST 'Display in PLIST/W format
 P000= 450.000, 400.000, 0.000, 0.000

 P001= 1.325, 330.170, - 58.200, - 8.000 /L

 P011= -200.000, 400.000, -100.000, 150.000/1/R

 P013= -450.000, 200.000, 0.000, 0.000/2

 P014= 450.000, -200.000, 0.000, 0.000/2

>

231

Command Description

S

SETVER
Set VER

FUNCTION Restores the various setting data, which was saved as a file by MKVER, to the corresponding
memory area

FORMAT SETVER

DESCRIPTION Executes batch file "MK#0.BAT" which is on current directory.

This batch file was made by MKVER. Following commands are described in the file,
however, file contents will be different whether "/A" is specified or not when MKVER is
executed.
Refer to MKVER for details.

CALPLS HOFS MCORDR MCOFS
SEL SET ARCH
TSPEED TSPEEDS HOMESET HORDR
ARM ARMSET TOOL TLSET
RANGE XYLIM BASE 0
CONFIG CONSOLE WIDTH
PRGNO OPUNIT WEIGHT MAXDEV
PRGSIZE PNTSIZE LIBSIZE
Software switch settings REMOTE3 setting

PRG#0.PRG
PNT#0.PNT
LIB#0.BIN Commands for loading these files
SYM#0.BIN
OBJ#0.BIN

When SETVER is executed, various setting data will be specified again and backup vari-
ables will be loaded onto main memory.
If commands for loading other files are described, those files also will be loaded onto main
memory.

>

232

Command Description

Various setting data includes important basic data such as HOFS etc..
It is recommendable to execute MKVER and keep those data as a file when a robot is
installed for the first time.
If you want to know how to backup and restore, refer to "backing up and restoring a file"
in chapter 3 of SPEL Editor manual or "[File] menu" of SPEL for Windows manual.

RELATED MKVER, VER
COMMANDS

EXAMPLE This command will be used when MPU or SPU board in controller is replaced. It is
especially useful for loading various setting data onto a new board.

Save data on the board to be replaced (old board) as a file.

>MKVER 'Following files will be made
MK#0.BAT
LIB#0.BIN

 CPU Data Backup

 Backup Variable Backup

Make backup of all files including above files on file memory onto a disk of programing
unit (PC).

Install a new board into a controller.

Restore all files on the disk of programing unit to controller file memory.

Execute SETVER.

>SETVER

233

Command Description

S

> SSFREE
Servo Free

FUNCTION Disengages motor

FORMAT SFREE {[axis nunber]{,[axis number]}3}

DESCRIPTION Disengages motor. This condition is called "servo free."
It is used when in direct teaching, and for other times when its desirable to cut power to a
specific axis.

If axis number is omitted, frees all axes.
If axis numbers are specified, frees specified axes only.

For the third axis, because the electric brake activates, it cannot be moved by hand, even if
SFREE is specified. Continuously pressing the third axis unit brake release switch allows
manual manipulation.

Executing SFREE initializes the following:

SPEED default value which varies from model to model

ACCEL default value which varies from model to model

LIMZ 0

To engage axis, execute SLOCK or MOTOR ON.

Attempting to execute a motion command while in SFREE condition will cause an error.
Turn on bit 5 of software switch SS6 to avoid this error when executing a motion command.
If you want to know how to set software switch, refer to "9.2 Setting switches" of SPEL
Editor manual or "[Setup] menu" of SPEL for Windows manual.

RELATED SLOCK, MOTOR
COMMANDS

EXAMPLE < Example 1 > < Example 2 >
>SFREE 100 JUMP P1:Z0 'Perform assembly with axes #1 and #2

disengaged, using only axes #3 and #4
>SLOCK 110 SWITCH 1,&H10

>SFREE 1,2 120 SFREE 1,2

>SLOCK 1,2 130 GO P1

140 SLOCK 1,2

234

Command Description

SGN()
Sign

FUNCTION Returns sign of specified numeric value

FORMAT SGN([numeric value])

DESCRIPTION Returns sign of specified numeric value.

If numeric value is positive, returns 1

If numeric value is 0, returns 0

If numeric value is negative, returns -1

RELATED ABS(), INT(), SQR()
COMMANDS

EXAMPLE >PRINT SGN(0.55)

1

>PRINT SGN(-0.55)

-1

>

F

235

Command Description

S

SIN()
Sine

FUNCTION Returns sine of specified angle

FORMAT SIN([radians])

DESCRIPTION Returns sine of the specified angle when specified in radians.

Angles in degrees must be converted to radians, using the following equation:

radian = degrees *π/180 (π = 3.141593)

RELATED COS(), TAN(), ATAN(), ATAN2()
COMMANDS

EXAMPLE >PRINT SIN(0.55) 'Display sine of 0.55 radians
.5226872

>PRINT SIN(30*3.141593/180) 'Display sine of 30 degrees
.5

>A=30*3.141593/180 'Display sine of 30 degrees using variable
>PRINT SIN(A)

.5

>

F

236

Command Description

SLOCK
Servo Lock

FUNCTION Re-engages axis (from "servo free" condition)

FORMAT SLOCK {[axis number]{,[axis number]}3}

* axis number: integer from 1 to 4

DESCRIPTION Re-engages axis from "servo free" caused by executing SFREE.

If axis number is omitted, engages all axes.
If axis number are specified, engages specified axis only.

SLOCK initializes the following:

SPEED default value which varies from model to model

ACCEL default value which varies from model to model

LIMZ 0

Engaging the third axis causes the electric brake to release.

To engage all axes, MOTOR ON may be used instead of SLOCK.
Executing SLOCK while in MOTOR OFF mode will cause an error.

RELATED SFREE, MOTOR
COMMANDS

EXAMPLE < Example 1 >
>SFREE

>SLOCK

>SFREE 1,2

>SLOCK 1,2

< Example 2 >
100 JUMP P1:Z0 'Disengage axes #1 and #2, operate axes #3 and #4 only
110 SWITCH 1,&H10

120 SFREE 1,2

130 GO P1

140 SLOCK 1,2

> S

237

Command Description

S

SPACE$()

FUNCTION Returns a string consisting of specified number of spaces

FORMAT SPACE$([number])

DESCRIPTION Returns a string consisting of specified number of spaces.

EXAMPLE >PRINT "AB"+SPACE$(5)+"CD"

AB_ _ _ _ _CD

5 spaces

F

238

Command Description

> SSPEED

FUNCTION Specifies and displays speed for PTP motion

FORMAT (1) SPEED [speed specification value]{, [axis #3 upward speed specification value],~

[axis #3 downward speed specification value]}

* each speed specification value: integer from 1 to 100 (%)
[default values: refer to the "Specifications" in the manipulator manual]

(2) SPEED

DESCRIPTION (1) Specifies speed for PTP motion (GO, JUMP, PULSE, and related) commands.
Speed specification values to be integers from 1 to 100 (percent maximum speed).
Axis #3 upward and downward speed values apply only to JUMP command. If omitted,
each defaults to speed value.

(2) Displays current SPEED values as follows:
[speed]
[axis #3 upward speed] [axis #3 downward speed]

SPEED value initializes to default value when any one of the following is performed:

Power on
Mode switching (TEACH/AUTO)

Software reset
MOTOR ON

SFREE, SLOCK

VERINIT

 STOP key

 CTRL + C key

While in TEACH mode, actual motion speed differs from low power state to high power
state.

Motor power status actual motion speed

the default value of SPEED 
Low power state  either lower value

the value of SPEED 

High power state the value of SPEED

239

Command Description

S

POWER LOW (LP ON) POWER HIGH (LP OFF)
Low power mode High power mode

when safety door closed

when safety door open

Low power state
(regardless of POWER setting)

If higher speed motion is required, set high power mode using POWER HIGH or LP OFF
and close safety door. If safety door is open speed settings will be changed to default value.

If SPEED is executed when the robot is in low power state, the following message is dis-
played. The value in the message is the default value of SPEED which varies from model
to model. The following example shows that the robot will move at default speed (5)
because it is in low power state even though the speed setting value by SPEED is 80.

>SPEED 80

Low Power State : SPEED is limited to 5

>

>SPEED

Low Power State : SPEED is limited to 5

80

80 80

>

RELATED POWER(LP), TSPEED, ACCEL, GO, JUMP, PASS, PULSE
COMMANDS

EXAMPLE >SPEED 100,100,50 'Only the axis #3 downward speed is specified 50
>SPEED

 100

 100 50

240

Command Description

> SSPEEDS

FUNCTION Specifies and displays speed for CP motion

FORMAT (1) SPEEDS [speed specification value]

* speed specification value: integer from 1 to 1120 (mm/s)
[default value: refer to "Specifications" in tne manipulator manual]

(2) SPEEDS

DESCRIPTION (1) Specifies hand speed in mm/s for CP motion (ARC, MOVE, and CVMOVE and
related) commands.

(2) Displays current SPEEDS value.

SPEEDS value initializes to default value when any one of the following is performed:

Power on

Mode switching (TEACH/AUTO)

Software reset

MOTOR ON

SFREE, SLOCK

VERINIT

 STOP key

 CTRL + C key

While in TEACH mode, actual motion speed differs from low power state to high power
state.

Motor power status actual motion speed

the default value of SPEEDS 
Low power state  either lower value

the value of SPEEDS 

High power state the value of SPEEDS

241

Command Description

S

POWER LOW (LP ON) POWER HIGH (LP OFF)
Low power mode High power mode

when safety door closed

when safety door open

Low power state
(regardless of POWER setting)

If higher speed motion is required, set high power mode using POWER HIGH or LP OFF
and close safety door. If safety door is open speed settings will be changed to default value.

If SPEEDS is executed when the robot is in low power state, the following message is
displayed. The value in the message is the default value of SPEEDS which varies from
model to model. The following example shows that the robot will move at default speed (50)
because it is in low power state even though the speed setting value by SPEEDS is 800.

>SPEEDS 800

Low Power State : SPEEDS is limited to 50

>

>SPEEDS

Low Power State : SPEEDS is limited to 50

 800

>

RELATED POWER(LP), TSPEEDS, ACCELS, MOVE, CMOVE, ARC, CARC, CVMOVE
COMMANDS

EXAMPLE 100 SPEEDS 200 'Specify hand speed (200 mm/s)
110 MOVE P1

120 MOVE P20

130 SPEEDS 100 'Specify hand speed (100 mm/s)
140 MOVE P30

242

Command Description

SQR()
Square Root

FUNCTION Returns square root

FORMAT SQR([numeric value])

DESCRIPTION Returns square root of specified numeric value.

RELATED ABS(), SGN(), INT()
COMMANDS

EXAMPLE >PRINT SQR(2)

 1.414214

>

F

243

Command Description

S

STAT()
Status

FUNCTION Returns status of the controller itself, or of another controller connected through RS-232C

FORMAT STAT([address])

* address: 0 or 1 for the controller itself,
integer (port number) from 20 to 23 for a controller connected through RS-232C

DESCRIPTION If 0 or 1 is specified for address, STAT() returns a 4 byte integer that presents the status of
the controller itself. For detail, refer to Table 1 on the next page.

If an integer from 20 to 23 (number of an RS-232C port) is specified for address, STAT()
returns a 3 byte integer that represents the status of the controller which is connected to the
RS-232C port. For details refer to Table 2 on the next page.

Undefined bits shown in Table 1 and Table 2 must be masked with an AND, or similar
operator.

EXAMPLE >PRINT (STAT(0) AND &HOFF) 'Display the task execution status of
the controller itself

 6 'Only Task 2 and 3 are being executed
>PRINT (STAT(20) AND &H030000)/65536

 1 'Display the execution/pause/error
status of the controller connected to
RS-232C port

F

244

Command Description

address bit controller status indicated by ON bit
0 0 Task 1 is being executed (XQT) or in a halt (HALT)

to to
15 Task 16 is being executed (XQT) or in a halt (HALT)
16 Task(s) is being executed
17 pause condition
18 error condition
19 TEACH mode
20 emergency stop condition
21 low power mode (POWER LOW or LP ON)
22 Safeguard is open
23 SRC-300: undefined

SRC-320: Enable switch is ON

24 to 31undefined

1 0 Log of stop above target position upon satisfaction of condition in
JUMP...SENSE statement. (This log is erased when another JUMP
statement is executed.)

1 Log of stop at intermediate travel position upon satisfaction of con-
dition in GO/JUMP/MOVE...TILL statement. (This log is erased
when another GO/JUMP/MOVE...TILL statement is executed.)

2 Log of execution of MCAL command/statement.

3 Log of stop at intermediate travel position upon satisfaction of con-
dition in TRAP statement.

4 MOTOR ON mode
5 home position
6 low power state
7 undefined
8 Axis #4 motor excited
9 Axis #3 motor excited

10 Axis #2 motor excited
11 Axis #1 motor excited

12 to 31 undefined

Table 1. Results of STAT() with 0 or 1 specified for address

245

Command Description

S

bit controller status indicated by ON bit
0 Memory I/O bit 0 is on

to to
15 Memory I/O bit 15 is on

16 Task(s) is being executed
17 pause condition
18 error condition

19 to 23 undefined

Table 2. Results of STAT() with RS-232C port number specified for address

246

Command Description

STR$()
String$

FUNCTION Returns specified numeric value as a numeric string

FORMAT STR$([numeric value])

DESCRIPTION Returns specified numeric value as a numeric string.

For positive numeric values, the numeric string is returned with a space inserted prior to the
first numeral, and another space inserted after the last numeral.

For negative numeric values, the numeric string is returned with minus sign (-) inserted
prior to the first numeral, and a space inserted after the last numeral.

EXAMPLE >PRINT STR$(5)+""+STR$(6)

_5__ _6_ '_ represents a space
>

10 FUNCTION MAIN

20 STRING LETTER$;LETTER$=""

30 INTEGER I

40 FOR I=1 TO 5

50 LETTER$=LETTER$+STR$(I) 'Adding numeric string to LETTER$
60 NEXT I

70 PRINT LETTER$

80 FEND

>RUN

COMPILE END

_1__2__3__4__5_

>

F

247

Command Description

S

STRING

FUNCTION Defines string variable

FORMAT STRING [variable name]{(array size 1{,array size 2{,array size 3}})}~
{,[variable name]{(array size 1{,array size 2{,array size 3}})}}n

DESCRIPTION Defines string variable.
The last character of the string variable must be a $, to distinguish it from a numeric variable.
String variable name must be 8 characters or less, including $.

If several variables of the same type are declared, use a " , " (comma) and describe several
variable names. When defining an array variable, declare the name and its size enclose with
(). The size can be defined up to 3 dimension. However, specifying a large array may
cause the shortage of the object area because a string variable requires about 80 bytes per
each array element. The use of the array of string variable must be kept at minimum.

Into a string variable, up to 79 characters can be set as data.

The following operations can be performed on string variables:

+ combining string variables
= comparing string variables, is true only if the two string variables are identical
< > comparing string variables, is true if at least one character of the two string vari-

ables are different

For more details about the variable, refer to "2.3 Variables" in the Elementary section of the
User's manual for SRC-300/320.

The following cites the restrictions on the variable names. The variable may be freely
named within these restrictions.

・The usable characters are alphanumeric and underscores (_). There is no distinc-
tion between capital and small case letters.

・Must be eight characters or under.
・The first character must be an aophabet character other than "P".
・Reserved words (i.e. command, statement, and function) cannot be used. A re-

served word that is followed by an underscore or numeric character is also read as
a reserved word.

S

248

Command Description

The variable type must be declared at the beginning of a line; otherwise, the file will not be
successfully compiled. When declaring another type of variable, a new line must be created.

RELATED BYTE, INTEGER, LONG, REAL, DOUBLE, VARIABLE, SYS
COMMANDS

EXAMPLE 10 FUNCTION LETTER

20 STRING LETTER$

30 INTEGER LETTER

40 LETTER$="Letter Count="

50 LETTER=LEN(LETTER$)

60 PRINT LETTER$,LETTER

70 FEND

RUN

COMPILE END

Letter Count=13

10 FUNCTION LETTER

20 STRING LETTER$

30 INPUT LETTER$

40 IF LETTER$="A" THEN GOSUB JOB1

50 IF LETTER$="B" THEN GOSUB JOB2

60 GOTO 30

70 JOB1:
 . . .

NOTE

249

Command Description

S

SW()
Switch

FUNCTION Returns input bit status

FORMAT SW([bit number])

* bit number: integer from 0 to 127

DESCRIPTION Returns specified input bit status as either 0 or 1.

0: Off status
1: On status

RELATED WAIT, IF...THEN
COMMANDS

EXAMPLE 80 A=SW(0) 'Store input bit 0 status at A
90 IF A=0 THEN GOTO 200
 . . .
200 WAIT SW(5) 'Same as specifying WAIT SW(5)=1, waits until

input bit 5 turns on

F

250

Command Description

SW($)
Switch$

FUNCTION Returns memory I/O bit status

FORMAT SW($[bit number])

* bit number: integer from 0 to 511

DESCRIPTION Returns specified memory I/O bit status as either 0 or 1.

0: Off status
1: On status

RELATED ON $, OFF $, WAIT, IF...THEN
COMMANDS

EXAMPLE >A=SW($18) 'Store 1 at A if memory I/O bit 18 is on, store 0 at A if memory I/O
bit 18 is off

F

251

Command Description

S

SYS
System

FUNCTION Declares backup variables

FORMAT SYS [type declaration] [variable name]{,[variable name]}n

DESCRIPTION Declares backup variables and stores them in the backup variable area in main memory.
Backup variables are so called because they are battery backed up when the controller is
turned off. Once a backup variable has been declared it can be used until the backup
variable area is cleared by CLRLIB command.

Variable types include the following:

BYTE 1 byte (-128 to +127) 


INTEGER 2 bytes (-32768 to +32767)  integer


LONG 4 bytes (-2147483648 to +2147483647) 

REAL 4 bytes, 7 digits 
 real number

DOUBLE 8 bytes, 14 digits 

Multiple variable names can be included in a single SYS (type declaration) statement.
However, a new line must be started every time you declare a different variable type.

The SYS instruction must be issued from a SPEL program. This means that a program must
be written and executed by RUN command (or by XQT command after COMPILE) in
order to register (define) backup variables.
The same variable names are not allowed to be registered twice.
Backup variables should be registered in the program, which is not an program for applica-
tion. If the backup variables are registered in the application program, when the program is
executed twice, error occurs.

To compile a source program in which particular variables are treated as backup variables,
those variables must be declared in advance; otherwise, the variables will be treated as non-
backup, real number type.

Backup variables are erased when CLRLIB is executed. Keep in mind that CLRLIB clears
the entire backup variable area without allowing you to specify particular variables.

RELATED LIBRARY, CLRLIB, LIBSIZE, BYTE, INTEGER, LONG, REAL, DOUBLE
COMMANDS

EXAMPLE >10 FUNCTION B_UP

>20 SYS INTEGER V(50)

>30 SYS REAL A(10)

>40 FEND

>RUN

S

252

Command Description

>SYSINIT
System Initialize

FUNCTION Initializes main memory

FORMAT SYSINIT

DESCRIPTION Initializes the sizes in main memory to default value as the following table.
 If SYSINIT is executed all data in the main memory will be erased.

default settings
area name

No.1 No.2

source program area 64 k 128 k

point area 200 point data

backup variables area 10 variables, 0.5 k

object program area 104 k 240 k

total 174 k 374 k

default settings No.2: Applies if controller contains optional expansion RAM, and the
sizes of main memory and file memory have been set with
dipswitch SD2 on the MPU board

No.1: All other cases

SYSINIT is used to initialize the main memory when main memory check error occurs.
All data in the main memory will be erased by the command. Make backup copies of
program and point data in the main memory before the execution of SYSINIT, if necessary.

After the execution, set area sizes if necessary. Backup variables also have to be registered
again.

RELATED PRGSIZE, PNTSIZE, LIBSIZE, SYS
COMMANDS

253

Command Description

T

TAN()
Tangent

FUNCTION Returns tangent of specified angle

FORMAT TAN([radians])

DESCRIPTION Returns tangent of the specified angle when specified in radians.

Angles in degrees must be converted to radians, using the following equation:

radian = degrees *π/180 (π = 3.141593)

RELATED SIN(), COS(), ATAN(), ATAN2()
COMMANDS

EXAMPLE >PRINT TAN(0.55) 'Display tangent of 0.55 radians

.6131052

>PRINT TAN(30*3.141593/180) 'Display tangent of 30 degrees

.5773503

>A=30*3.141593/180 'Display tangent of 30 degrees using variable

>PRINT TAN(A)

.5773503

>

F

254

Command Description

TGO
Tool-coordinate Go

FUNCTION Executes PTP relative motion, in the selected tool coordinate system

FORMAT TGO [position specification] {|/R|} {TILL} {![parallel processing statement]!}
 | /L |

DESCRIPTION Executes PTP relative motion, in the selected tool coordinate system.

In setting the arm’s mode for the horizontal robot, specify either the right or left arm by

declaring “/R” (for the right arm) or ”/L” (for the left arm). Note that “/R” can be omitted

while “/L” for the left arm cannot be omitted. Unless specified with “/L,” all the set mode will

apply only to the right arm.

TILL modifier is used to complete the TGO by decelerating and stopping robot at an inter-

mediate travel position if current TILL condition is satisfied.

RELATED P=, ! ... !, TOOL, SPEED, ACCEL, TILL, TMOVE
COMMANDS

EXAMPLE >TGO 100,0,0,0 'Move currently selected tool 100 mm in the x direction (in tool
coordinate system)

>_

TGO P1

>

> S

x

y

robot coordinate
system

X
tool coordinate
system

Y

robot coordinate system

y

x

X

Y

tool coordinate system

255

Command Description

T

> STILL

FUNCTION Specifies and displays input condition that, if satisfied, complete the (JUMP, GO, or

MOVE)

command in progress by decelerating and stopping robot at an intermediate travel position

FORMAT (1) TILL [input condition(s)]
...

|JUMP| [position specification] TILL
|GO |
|MOVE|

* The following functions and operators may be used in input condition:
functions: SW, IN (either I/O or memory I/O may be used)
operators: AND, OR, XOR, +, *
other: parenthesis for prioritizing operations, and variables

(2) |GO | [position specification] TILL SW([input bit number]){= |0|}
|MOVE| |1|

(3) TILL

DESCRIPTION (1) TILL Command:

Specifies TILL condition.

TILL condition must include at least one input or memory I/O input function. Include in

TILL condition only the operators noted above. (Using any other operator will result,

not in error processing, but in unpredictable motion.)

When variables are included, their values are computed during TILL execution.

Multiple TILL statements are permitted, the most recent TILL condition remains cur-

rent until superseded.

JUMP, GO, or MOVE With TILL Modifier:

Checks if current TILL condition is satisfied. If satisfied, this command completes by

decelerating and stopping robot at an intermediate travel position. Does not check

TILL condition during JUMP Z axis downward motion. Refer to JUMP for details.

At power on, TILL condition is:

TILL SW(0)=1 'Input Bit 0 is on

Use STAT(1) function to verify if TILL condition is satisfied.

256

Command Description

(2) GO or MOVE with TILL Modifier, SW(input bit number) Modifier, and (0 or 1) Input

Condition:

Checks if same line input condition is satisfied. If satisfied, this command completes by

decelerating and stopping robot at an intermediate travel position.

GO or MOVE with TILL Modifier and SW(input bit number) Modifier, but no Input

Condition:

Input condition defaults to 1. If specified input bit is on, this command completes by

decelerating and stopping robot at an intermediate travel position.

(3) Displays current TILL Condition.

Because the TILL condition display format is altered to clearly indicate operation or-

der, it may differ from the originally input format.

RELATED JUMP, GO, MOVE, SW(), STAT(1)
COMMANDS

EXAMPLE 1000 TILL SW(1)=0 'Specifies TILL condition (Input Bit 1 is off)

1010 GO P1 TILL 'Stop if current TILL condition (line 1000) is
satisfied

1020 TILL SW(1)=1 AND SW($1)=1 'Specifies TILL condition (Input Bit 1 is on and
memory I/O bit 1 is on)

1030 MOVE P2 TILL 'Stop if current TILL condition (line 1020) is
satisfied

1040 MOVE P3 TILL 'Stop if current TILL condition (line 1020) is
satisfied

1050 FOR I=1 TO 2
1060 TILL SW(I)=1 '(Iteration 1) Specifies TILL condition (Input

Bit 1 is on)
(Iteration 2) Specifies TILL condition (Input

Bit 2 is on)
1070 MOVE PI TILL '(Iteration 1) Stop if current TILL condition

(line 1060 Iteration 1) is satisfied
(Iteration 2) Stop if current TILL condition

(line 1060 Iteration 2) is satisfied
1080 NEXT

1090 I=5

1100 GO P4 TILL 'Stop if current TILL condition (line 1060
Iteration 2) is satisfied

1110 MOVE P5 TILL SW(10)=1 'Stop if Input Bit 10 is on

1020 MOVE P6 TILL 'Stop if current TILL condition (line 1060
Iteration 2) is satisfied

>TILL SW(1)=1 AND SW($1)=1
>TILL
 SW(1)=1 AND SW($1)=1
>TILL SW(0) OR SW(1) AND SW($1)
>TILL
 (SW(0) OR SW(1)) AND SW($1)

257

Command Description

T

TIME

FUNCTION Specifies and displays current time

FORMAT (1) TIME [hour]:[minute]:[second] |A|
|P|

(2) TIME

DESCRIPTION (1) Specifies current time.

This date is used in internal file record keeping.

Time specification format may be either twelve hour (with A or P) or twenty four.

If neither A or P is specified, time specification 11:59:59 or less will be input as A.

(2) Displays current time in twelve hour (with a or p) format.

RELATED DATE, TIME$(0)
COMMANDS

EXAMPLE >TIME

The current time is 10:15:32a

>TIME 1:05:00P

>TIME

The current time is 1:05:15p

>

>

258

Command Description

TIME()

FUNCTION Returns controller accumulated operating time

FORMAT TIME([unit selection])

* unit selection: 0, 1, or 2

DESCRIPTION Returns controller accumulated operating time as an integer.

0: hours

1: minutes

2: seconds

If seconds are selected by entering 2, the returned integer value will be very large. Prior to

storing TIME() value at a variable, declare the variable type as 4 byte integer (LONG).

RELATED HOUR, TIME, TIME$(0)
COMMANDS

EXAMPLE 10 FUNCTION MAIN

20 LONG A,B,C 'Declare A, B, and C as 4 byte integer

30 A=TIME(0) 'Store time in hours at variable A

40 B=TIME(1) 'Store time in hours at variable B

50 C=TIME(2) 'Store time in hours at variable C

60 PRINT A

70 PRINT B

80 PRINT C

90 FEND

>COM

COMPILE END

>XQT

 100 '100 hours

 6000 '6,000 minutes

 360000 '360,000 seconds

>

F

259

Command Description

T

TIME$(0)

FUNCTION Returns current time

FORMAT TIME$(0)

* The numeral 0 in ()

DESCRIPTION Returns current time as an integer.

RELATED TIME, TIME(), DATE$(0)
COMMANDS

EXAMPLE >PRINT TIME$(0)

5:25:04p

F

260

Command Description

TLSET
Tool Set

FUNCTION Defines and displays tool coordinate system

FORMAT (1) TLSET [tool coordinate system number],[position specification]

* tool coordinate system number: integer from 1 to 3

(2) TLSET

DESCRIPTION (1) Defines tool coordinate systems Tool 1, Tool 2, or Tool 3 by specifying tool coordinate

system origin and rotation angle in relation to Tool 0 coordinate system (hand coordi-

nate system.)

< Example >

TLSET 1,50,100,-20,30

tool coordinate system rotation angle

tool coordinate system origin Z axis position

tool coordinate system origin Y axis position

tool coordinate system origin X axis position

tool coordinate system number

TLSET 2,P10+X20

* In this case, only the X-U axis coordinate values of P10 are referenced, arm

attribute and local coordinate system numbers are ignored.

(2) Displays all current tool coordinate systems, including Tool 0.

To use a defined tool coordinate system, select it with the TOOL.

Power off does not change TLSET values.

Tool 0 origin is the robot center of rotation. Rotating about this point causes Tool 0

coordinate system to rotate, and with it coordinate systems Tool 1, Tool 2, and Tool 3.

S>

261

Command Description

T

Positioning the robot's axis #4 at 0 degrees, the Tool 0 coordinate system (xt0 - yt0)

becomes parallel to the robot coordinate system. The above figure illustrates this. At

this time, with the tool installed on the axis #4 as shown, it is convenient to define

coordinate system Tool 1 (xt1 - yt1) using rotation angle "c" from coordinate system

Tool 0.

Executing VERINIT deletes tool coordinate systems Tool 1, Tool 2, and Tool 3. However,

tool coordinate system Tool 0 cannot be changed.

RELATED TOOL, TGO, TMOVE, VERINIT
COMMANDS

EXAMPLE >TLSET 1,100,0,0,0 'Define tool coordinate system Tool 1 (plus 100 mm in x
direction from Tool 0 coordinate system)

>TOOL 1 'Select tool coordinate system Tool 1

>TGO P5

>

NOTE

F

robot coordinate system
X

Y
b

a

c

yt1

yt0

xt1

xt0
Tool 0 coordinate
system

Tool 1 coordinate
system

a

b c

yt0

yt1
xt1

Tool 1 coordinate
system

Tool 0 coor-
dinate systemxt0

Y

X
robot coordi-
nate system

262

Command Description

TMOUT
Time Out

FUNCTION Specifies time out interval for WAIT

FORMAT TMOUT [time out]

* time out (seconds): integer from 0 to 32767

DESCRIPTION Specifies time interval, in seconds, that the WAIT allows to elapse for WAIT condition to

be satisfied. If after time out interval has elapsed WAIT condition is not satisfied, time out

error occurs.

If time out interval is specified as 0, time out function does not operate, and therefore WAIT

will continue to wait indefinitely for WAIT condition to be satisfied.

RELATED SW(), SW($), IN(), IN($)
COMMANDS

EXAMPLE 10 TMOUT 60 'Time out interval specified 60 seconds
 . . .
100 WAIT SW(0)=1

> S

263

Command Description

T

TMOVE
Tool-coordinate Move

FUNCTION Executes linear interpolar relative motion, in the selected tool coordinate system

FORMAT TMOVE [position specification] {TILL} {![parallel processing statement]!}

DESCRIPTION Executes linear interpolar relative motion, in the selected tool coordinate system.

TILL modifier is used to complete the TMOVE by decelerating and stopping robot at an

intermediate travel position if current TILL condition is satisfied.

RELATED P=, ! ... !, TOOL, SPEEDS, ACCELS, TILL, TGO
COMMANDS

EXAMPLE >TMOVE 100,0,0,0 'Move currently selected tool 100 mm in the x direction (in
tool coordinate system)

>

TMOVE P1

>

S>

Y

robot coordinate
system

x

tool coordinate
system

yrobot coordinate system

Y

X

x

y

tool coordinate system

X

264

Command Description

TMR()
Timer

FUNCTION Timer function

FORMAT TMR([timer number])

* timer number: integer from 0 to 15

returned value: 0 to 21,474,836.47 (&H7FFFFFFF/100)

DESCRIPTION Returns elapsed time in seconds, minimum unit is 0.01 second.

Sixteen timers are available, numbered from 0 to 15.

Timers are reset with TMRESET.

RELATED TMRESET
COMMANDS

EXAMPLE 100 TMRESET 0 'Reset timer 0

110 FOR I=1 TO 10 'Perform operation ten times

120 GOSUB CYCL

130 NEXT

140 PRINT TMR(0)/10 'Calculate and display cycle time

F

265

Command Description

T

TMRESET
Timer Reset

FUNCTION Resets timer

FORMAT TMRESET [timer number]

* timer number: integer from 0 to 15

DESCRIPTION Resets and starts timer specified by timer number.

Sixteen timers are available, numbered from 0 to 15.

Use TMR() function to retrieve timer value (elapsed time).

RELATED TMR()
COMMANDS

EXAMPLE 100 TMRESET 0 'Reset timer 0

110 FOR I=1 TO 10

120 GOSUB CYCL

130 NEXT

140 PRINT TMR(0)/10 'Displays 1/10 of elapsed time

S>

266

Command Description

TOFF
Trace Off

FUNCTION Stops displaying of program line numbers

FORMAT TOFF {![task number]}

DESCRIPTION Stops displaying of program line numbers.

If task number is omitted, TOFF stops displaying of line numbers for only those tasks that
have executed TOFF.

RELATED TON
COMMANDS

S

267

Command Description

T

TON
Trace On

FUNCTION Displays program line numbers

FORMAT TON {![task number],}[device specification]

* task number: integer from 1 to 16 [default value: 1]
device number: integer from 0 to 3 [default value: 1]

DESCRIPTION During program execution, displays specified task program line numbers at specified
device.

If task number is omitted, TON displays line numbers for only a task that has executed
TON.

Devices are specified as follows:

0 No display

1 Display at controller LED line number display

2 Display at console

3 Display at both controller LED line number display and at console

Because specifying multiple tasks results in displaying program line numbers of multiple
tasks simultaneously, usually only one task is specified.

TON default value is TON !1,1. With default value, Task 1 program line numbers are
displayed at controller LED line number display.

Stopping program causes TON value to default.

RELATED TOFF
COMMANDS

EXAMPLE >XQT !2,MAIN 'Necessary for specified task to be started
>TON !2,2

[150]

[160]
 . . .

> S

268

Command Description

> STOOL

FUNCTION Selects and displays tool coordinate system

FORMAT (1) TOOL [tool coordinate system number]

* tool coordinate system number: integer from 0 to 3
[default value: 0]

(2) TOOL

DESCRIPTION (1) Selects tool coordinate system by number.

(2) Displays currently selected tool coordinate system number.

TOOL 0 selects the standard tool coordinate system (hand coordinate system).

Power off does not change tool coordinate system selection.
Executing VERINIT initializes tool coordinate system selection to standard tool (Tool 0).

RELATED TLSET, TGO, TMOVE
COMMANDS

EXAMPLE >TOOL 1 'Selects tool coordinate system Tool 1. Tool 1 needs to have been already
defined by TLSET

>JUMP P1 'Positions Tool 1 at P1
>TOOL 0 'Selects tool coordinate system Tool 0
>JUMP P1 'Positions standard hand at P1

269

Command Description

T

TRAP

FUNCTION Defines the interrupt process

FORMAT (1) TRAP [trap number] {[input motion] |GOTO |[line number] | |}
|[label] |

|GOSUB|[line number] | |
|[label] |

|CALL [function mane]|

* trap number: integer from 1 to 4
the following functions and operators may be used in input condition:
functions: SW, IN (either I/O memory or I/O may be used)
operators: AND, OR, XOR, +, *
others: parenthesis for prioritizing operations, and variables

(2) TRAP |EMERGENCY| {CALL [function name]}
|ERROR |
|PAUSE |
|SGOPEN |
|SGCLOSE |

DESCRIPTION (1) Executes interrupt process which is specified by GOTO, GOSUB, or CALL when input
condition is satisfied. If interrupt process is executed, its TRAP setting is cleared. If
the same interrupt process is necessary, define TRAP again.

If input condition is satisfied while other function by CALL is in execution, interrupt
process by GOTO or GOSUB in TRAP setting is not executed.

If input condition and later is omitted:

Specified TRAP setting is canceled.

If GOTO is specified:

Command being executed will be processed as follows, then branches to the speci-
fied line number or label.
· Arm motion will pause immediately.
· Waiting status by WAIT or INPUT command will discontinue.
· For other commands, wait until the command process will end.

In case of input condition is satisfied simultaneously, only the TRAP which have
the biggest trap number is executed.

S

270

Command Description

If GOSUB is specified:

After executing the same process as GOTO, branches to the specified line number
or label, then executes subroutine that follows. By RETURN statement at the end
of subroutine, program execution returns to the line following GOSUB.

Even if error is issued while subroutine of interrupt process is executed, error pro-
cess subroutine by ONERR is not executed. On the contrary, even if input condi-
tion is satisfied while error process subroutine is executed, trap process subroutine
is not executed. GOSUB and CALL is not allowed to specify in subroutine of trap
process.

In case of input condition is satisfied simultaneously, only the TRAP which have
the biggest trap number is executed.

If CALL is specified:

Executes specified function. In this case, task which executes TRAP command
will keep on operating.

In case of input condition is satisfied simultaneously, the TRAP is executed from
the smallest trap number by turns.

(2) When emergency stop, error, PAUSE input, or safe guard open/close exists, trap pro-
cess function by CALL is executed as privileged task. Be sure to end each trap process
function with END. Do not use XQT in trap process function.

If CALL and later is omitted:

Specified TRAP setting is canceled.

If EMERGENCY is specified:

When emergency stop is inputted, executes trap process function after finishing
system process. If I/O status is specified to be reset when emergency stop is input-
ted, ON, OFF, and OUT command for I/O in trap process function cannot be ex-
ecuted. If I/O is specified to be preserved its status in emergency stop, those com-
mands are available. Turn on bit 6 of software switch SS1 before that, if necessary.

If ERROR is specified:

When error (including error occurred inside system) is issued, executes trap pro-
cess function after finishing system error process. This is not effective when error
is issued by executing command directly.

If PAUSE is specified:

When PAUSE is inputted while a program is being executed in AUTO mode, ex-
ecutes trap process function after pause status is processed. However, the trap
process function is not processed at pause caused by the safe guard open/close.

271

Command Description

T

If SGOPEN is specified:

In TEACH mode
When the safeguard is opened while a program is being executed, executes trap
process function after pause status is processed.
When the safeguard is opened after a pause caused by the closed safeguard while a
program is being executed, executes trap process.

In AUTO mode
When the safeguard is opened while a program is being executed, executes trap
process function after pause status is processed.

If SGCLOSE is specified:

In TEACH mode
When the safeguard is closed while a program is being executed, executes trap
process function after pause status is processed.
When the safe guard is closed after a pause caused by the opened safeguard while
a program is being executed, executes trap process.

In AUTO mode
When the safeguard is closed after a pause caused by the opened safeguard while a
program is being executed, executes trap process.

RELATED ONERR, GOTO, GOSUB, CALL, ERT(), ERR(), ERA(), ERL(), ERRMSG$()
COMMANDS

EXAMPLE < Example 1 > Error process defined by customers
SW(0) input is regarded as an error input defined by customer.
100 FUNCTION MAIN
110 TRAP 1 SW(0)=1 GOTO ERROR 'Defines TRAP
 . . .
500 ERROR:
510 ON 31 'Signal tower lights
520 PRINT #20, "Error is issued."
530 END
540 FEND

< Example 2 > Usage like multi-tasking
100 FUNCTION MAIN
110 TRAP 2 SW($0)=1 OR SW($1)=1 CALL FEEDER
 . . .
540 FEND
 . . .
700 FUNCTION FEEDER
710 IF SW($0)=1 THEN OFF $0;ON #2,$0
720 IF SW($1)=1 THEN OFF $1;ON #3,$1
730 FEND

272

Command Description

< Example 3 > Dummy operation of program
If input SW(31) is turned on, WAIT status is compulsorily discontinued, and branches to
trap process subroutine.
110 FUNCTION MAIN
120 TRAP 1 SW(31)=1 GOSUB SKP_WAIT
 . . .
200 WAIT SW(0)=1
210 WAIT SW(1)=1
 . . .
700 SKP_WAIT:
710 IF (STAT(1) AND &H0008)=1 THEN END 'TRAP condition is satisfied

during robot motion. It does not
restart

720 WAIT SW(31)=0
730 TRAP 1 SW(31)=1 GOSUB SKP_WAIT 'Defines TRAP again
740 RETURN
750 '
760 FEND

< Example 4 > ERROR is specified
10 FUNCTION MAIN
20 TRAP ERROR CALL MSGOUT
 . . .
999 FEND
1000 FUNCTION MSGOUT
1010 PRINT #20, ERRMSG$(ERR(0))
1020 END
1030 FEND

273

Command Description

T

TSPEED
Teach Mode Speed

FUNCTION Specifies and displays maximum speed for PTP motion in TEACH mode

FORMAT (1) TSPEED [speed specification value]

* speed specification value: integer from 1 to 100 (%)
[default value: 100]

(2) TSPEED

DESCRIPTION (1) Specifies speed limit for PTP motion (GO, JUMP, PULSE, or related) commands
while in TEACH mode.

While in low power mode, PTP motion speed will not exceed the currently valid
TSPEED speed value and SPEED default value, regardless of programed or direct
SPEED specifications.

While in high power mode, PTP motion speed will not exceed the currently valid
TSPEED speed value.

TSPEED speed value is maintained when power is off.

Performing VERINIT initializes the value to 100.

While in the AUTO mode, TSPEED speed value is ignored.

(2) Displays the current TSPEED value.

RELATED SPEED, POWER(LP)
COMMANDS

EXAMPLE >TSPEED 20

>COM

COMPILE END

>XQT 'JUMP speed is limited to 20%
by TSPEED specification

>

>SPEED 100

>SPEED

 20 'TSPEED value has priority over specified SPEED value
 20 20

S>

PROGRAM

10 FUNCTION MAIN

20 SPEED 100

30 JUMP P1

40 JUMP P2

50 GOTO 20

60 FEND

274

Command Description

TSPEEDS
Teach Mode Speed S

FUNCTION Specified and displays maximum speed for CP motion in TEACH mode

FORMAT (1) TSPEEDS {[speed specification value]}

* speed specification value: integer from 1 to 1120 (mm/s)
[default value: 1120]

(2) TSPEED

DESCRIPTION (1) Specifies speed limit for CP motion (ARC, MOVE, CVMOVE, and related) commands
while in TEACH mode.

While in low power mode, CP motion speed will not exceed the currently valid
TSPEEDS speed value and SPEEDS default value, regardless of programed or direct
SPEEDS specifications.

TSPEEDS speed value is maintained when power is off.
Performing VERINIT initializes the value to 100 mm/s.

While in the AUTO mode, TSPEEDS speed value is ignored.

(2) Display the current TSPEEDS value.

RELATED SPEEDS, POWER(LP)
COMMANDS

EXAMPLE >TSPEEDS 150

>SPEEDS 500

>SPEEDS

 150 'TSPEEDS value has priority over specified SPEEDS value

> S

275

Command Description

T

TSTAT
Task Status

FUNCTION Displays task status

FORMAT TSTAT

DESCRIPTION Displays current status of Task 1 to 16.

QUIT Stopped (initial condition)

RUN Executing

HALT Temporarily stopped
Line Most recently executed line number

(0 for tasks not executed by program)

RELATED RUN, XQT, HALT, QUIT, RESUME
COMMANDS

EXAMPLE >TSTAT

 Task 1 2 3 4 5 6 7 8

Status QUIT QUIT QUIT QUIT QUIT QUIT QUIT QUIT

 Line 1250 180 60 0 0 0 0 0

 Task 9 10 11 12 13 14 15 16

Status QUIT QUIT QUIT QUIT QUIT QUIT QUIT QUIT

 Line 0 570 0 0 0 0 0 0

>

>

276

Command Description

TW(0)
Timer Wait

FUNCTION Returns status of WAIT condition and WAIT time interval

FORMAT TW(0)

* numeral 0 inside ()

DESCRIPTION Returns status of the preceding WAIT condition and WAIT time interval with a 0 or 1.

If WAIT condition has been satisfied 0

If time interval has elapsed 1

RELATED WAIT, TMOUT
COMMANDS

EXAMPLE 100 WAIT SW(0)=1,5 'Wait up to 5 seconds for Input Bit 0 to
be on

110 IF TW(0)=1 THEN GOTO TIME_UP 'Go to TIME_UP after 5 seconds has
elapsed

F

277

Command Description

T

TYPE

FUNCTION Displays contents of file

FORMAT TYPE {[pathname]}[filename]

* filename must include extension

DESCRIPTION Displays contents of specified file.
Since only ASCII files can be displayed, be sure to specify only ASCII files.
The purpose of TYPE is to display the contents of files, not to edit files. To edit a file, use
the appropriate method for that file.

* ASCII file

source program (.PRG)

point data file (.PNT)

files created in edit mode

files created by ROPEN, WOPEN

* binary files

object program (.OBJ)

symbol table (.SYM)

files created by CURVE

Do not specify binary files.
TYPE does not load files into main memory. The displayed source program and point data
differs from the contents in the main memory.

The enter (or return) key must not be pressed with the cursor placed at any of
the displayed file contents.
Pressing the enter (or return) key would cause the displayed file contents to be
input, possibly causing the robot to move, or causing the main memory pro-
gram or point data to be altered.

EXAMPLE >TYPE TEST.PRG

10 FUNCTION TEST

20 PRINT "TEST Program"

30 FEND

>

CAUTION

278

Command Description

VAL()
Variable

FUNCTION Returns numeric value of specified numeric string

FORMAT VAL(|[string variable name]|)
|"[numeric string]" |

DESCRIPTION Returns numeric value of specified numeric string.

RELATED STR$()
COMMANDS

EXAMPLE >PRINT VAL("1234")

1234

>

F

279

Command Description

V

VARIABLE

FUNCTION Displays variables

FORMAT VARIABLE {-A}

DESCRIPTION Displays variables, along with their types, used in compiled main memory object program.

VARIABLE -A directs that function names also be displayed.

VARIABLE does not display backup variables. To display backup variables, use LIBRARY.

RELATED LIBRARY, BYTE, INTEGER, LONG, REAL, DOUBLE
COMMANDS

EXAMPLE >COMPILE

COMPILE END

>

>VARIABLE

INTEGER I

INTEGER J

REAL DATA

CHR DISPLAY$ 'CHR represents string variable
>

>VARIABLE -A

FUNCTION MAIN

INTEGER I

INTEGER J

REAL DATA

CHR DISPLAY$

>

>

10 FUNCTION MAIN

20 INTEGER I,J

30 REAL DATA

40 STRING DISPLAY$

50 FEND

280

Command Description

VER
Version

FUNCTION Displays system control data

FORMAT (1) VER

(2) VER {/A}

DESCRIPTION Displays currently set system control data.

When robot is delivered or after changing system control data, save the VER data. To save
system control data, use MKVER.

(1) If VER only is inputted, following data will be displayed:
(Following data is for reference since the data will vary with robot model or set condition.)

>VER
<VERSION> < SPEL III version >
 VER 6.2
<ROM> < ROM version >
 MPUas-62a ROM on MPU board
 DSPas-61a ROM for DSP on MPU board
 OPUaa-42 ROM on operating unit
 SCCaa-41 Serial bus (SYS.BUS)
 ERSaa-41 ROM on additional RS-232C board
<OPTION> < Installed options >
 OPU
 I/O 16-31
 SYS.BUS
 RS-232C #22,#23
<CONSOLE> < AUTO mode console >
 OPERATING UNIT
<SD> < Dip switch setting status >
 8 F0 SD1, SD2 on MPU board
 00 SD3 on MPU board
<SS> < Software switch specification status >
 0 0
 0 0
 0 0
<REMOTE> < REMOTE3 setting status >
 0 0
 0 0
<OPUNIT> < Mode of operating unit mode >
 0
<CONFIG> < RS-232C port configuration setting >
 #20 2 1 3 0
 #21 2 1 3 0

>

281

Command Description

V

<SELRB> < Positioning device number >
 1
<MAXDEV> < Serial bus maximum address>
 1
<MANIPULATOR> < Manipulator model >
 SSR-H554BN
<M.CODE> < M.CODE >
 10302
<RANGE> < Allowable motion range (pulse) >
 -36409 364089 axis #1
 -159289 159289 axis #2
 -92160 0 axis #3
 -172032 172032 axis #4
<HORDR> < Axis motion order of home return >
 02 0D
 00 00
<HOFS> < Encoder offset value >
 1234 4567
 0 0
<MCORDR> < Axis motion order of machine calibration >
 02 0D (displayed in case of INC robot)
 00 00
<MCOFS> < Machine calibration offset values >
 04 (displayed in case of INC robot)
 6510 5368
 5662 3830
 -620 -295
<HTEST> < HTEST command values >
 -174 -11 (displayed in case of INC robot)
 0 10
<WEIGHT> (kg,mm) < WEIGHT command values >
 2 225
<ARM> < Setting value of standard and additional arm >
 arm0=225 0 0 325 0
<TOOL> < Setting value of standard and additional tool
 tool0=0 0 0 0 coordinate >
<HOMESET> < HOME position (pulse) >
 0 0
 0 0
<CALPLS> < CALPLS command values >
 65523 43320
 -1550 21351

<FREE> < Free capacity of main memory >
 PRG = 65312 Source program area
 VER = 9 , 458 Backup variable area
 (10 , 512)
 OBJ = 99469 Object area

282

Command Description

<MEMORY> < Capacity of each area in main memory >
 PRGSIZE 65536 Source program area
 PNTSIZE 125 Available number of position data
 LIBSIZE 10 , 512 Object area
<PRGNO> < Program number selection method from
 1 REMOTE2 >
<HOUR> < Accumulated controller operating time >
 100

(2) If VER/A is inputted, data will be displayed as follows:

>VER/A
<DATE & TIME> < Time and date when VER/A is
 1996.12.01/ 14:48:50 executed >
<VERSION>
 Ver 6.2
 .
 . Same as of VER data
 .

<HOUR>
 100
<SELDISK> < Current drive >
 A:
<WIDTH> < Display format of FILES >
 80 , 25
<ARCH> < Arch shape >
arch0=30 30
arch1=40 40
arch2=50 50
arch3=60 60
arch4=70 70
arch5=80 80
arch6=90 90
<TSPEED> < TSPEED value >
 70
<TSPEEDS> < TSPEEDS value >
 1120
<XYLIM> < Allowable motion range on XY
 0 0 plane >
 0 0
<LOCAL> < Local coordinate >
 local0 (p***:p***),(p***:p***)

RELATED VERINIT, MKVER, SETVER
COMMANDS

283

Command Description

V

VERINIT
Version Data Initialization

FUNCTION Initializes system control data

FORMAT VERINIT

DESCRIPTION Initializes system control data.
Executing VERINIT changes each command values to predetermined initial values.

VERINIT initializes values for the commands shown on the next page.

After entering VERINIT, the following prompt appears:

Version data initialize --> OK?

?

To initialize values enter Y or y

To maintain present values enter N or n

This command is intended to be used for maintenance purposes. VERINIT initializes val-
ues as described on next page. Therefore, for cases in which initial command values are not
desired, be sure to revise those values after executing VERINIT. You can save those values
by MKVER on file memory.

RELATED VER, MKVER, SETVER
COMMANDS

>

NOTE

284

Command Description

command initial value

PRG. No. 00

SELDISK A:
CONFIG 2, 1, 3, 0 (All RS-232C ports)
CONSOLE OP
MAXDEV 1

WIDTH 20, 23
PRGNO 1

SEL 0

SET 0, 0.03, 0.03, 0.03, 0.03

1, 0.1, 0.1, 0.1, 0.1

2, 1, 1, 1, 1

3, 10, 10, 10, 10

SPEED Varies according to manipulator type
ACCEL Varies according to manipulator type
WEIGHT Varies according to manipulator type
TSPEED 100
TSPEEDS 1120
SPEEDS Varies according to manipulator type
ACCELS Varies according to manipulator type
FINE Varies according to manipulator type

LIMZ 0

ARCH 0, 30, 30 1, 40, 40 2, 50, 50

3, 60, 60 4, 70, 70 5, 80, 80

6, 90, 90

HOMESET Delete
HORDR Varies according to manipulator type
MCORDR Varies according to manipulator type

XYLIM 0, 0, 0, 0

ARM 0
ARMSET Delete (except for ARM 0)
TOOL 0
TLSET Delete (except for TOOL 0)
LOCAL0 Equivalent to original robot coordinate system
LOCAL1-15 Delete
BASE 0 Equivalent to original robot coordinate system
BASE 1-15 Delete

285

Command Description

V

VLOAD
Variable Load

FUNCTION Loads variable data

FORMAT VLOAD "{[pathname]}[filename]"

DESCRIPTION Loads a variable definition file created by VSAVE, and specifies the variable to the value
contained in the file.

If pathname is omitted, the current directory is assumed.

Be sure that filename is identical to the name specified when saving the variable data by
using the VSAVE. If the file name contains an extension, the filename, complete with the
extension, must be specified.

VLOAD requires that the variable name referenced by the specified definition file be
already contained in the symbol table file in the main memory.

RELATED VSAVE
COMMANDS

EXAMPLE I(0)=1

I(1)=2

I(2)=3

The above array is contained in a variable definition file named IDATA.DAT. In this
case, the variable I can be specified as follows:

>PRINT I(0),I(1),I(2)

 0 0 0

>VLOAD "IDATA.DAT"

>PRINT I(0),I(1),I(2)

 1 2 3

>

S>

286

Command Description

VSAVE
Variable Save

FUNCTION Saves variable data

FORMAT VSAVE [variable name],"{[pathname]}[filename]"

DESCRIPTION Saves data to be assigned to a specified variable name under a specified filename (thus
creating a variable definition file).

If pathname is omitted, the current directory is assumed.

The specified filename may include an arbitrary extension (up to 3 characters). If no exten-
sion is specified VSAVE appends no extension to the filename. In order to distinguish
variable definition files from other files, however, it is recommended to use an extension,
such as ".DAT", which is common to many variable definition files.

One variable definition file can store the data for only one variable.

To delete a file without any extension by using the KILL, be sure to append a period (.) to
the end of the filename that follows KILL.

< Example >
KILL "VARIABLE."

RELATED VLOAD
COMMANDS

EXAMPLE >I(0)=1;I(1)=2;I(2)=3

>VSAVE I,"IDATA.DAT"

>

Following are the resulting contents of the file "IDATA.DAT".

I(0)=1

I(1)=2

I(2)=3

>

287

Command Description

WAIT

FUNCTION Specifies timer interval, stops program execution until specified condition is satisfied

FORMAT (1) WAIT [time interval]

(2) WAIT [input condition]

(3) WAIT [input condition],[time interval]

* time interval units: seconds, minimum unit is 0.01
The following functions and operators may be used in input condition:
functions: SW(), IN(), (either I/O or memory I/O may be used), DSW()
operators: AND, OR, XOR, +, *
others: parenthesis for prioritizing operations, and variables

DESCRIPTION (1) WAIT with time interval:
Specifies time interval. After specified time interval elapses, program control transfers
to next command.

(2) WAIT and input condition without time interval:
Specifies WAIT condition. Program execution stops until WAIT condition is satisfied,
then transfers to next command.
If after the TMOUT time interval has elapsed WAIT condition has not yet been satis-
fied, an error occurs.

(3) WAIT and input condition with time interval:
Specifies WAIT condition and time interval. After either WAIT condition is satisfied,
or time interval has elapsed, program control transfers to next command. Use TW(0) to
verify if WAIT condition has been satisfied or if the time interval has elapsed.

RELATED TMOUT, TW(0), SW(), IN(), DSW()
COMMANDS

S>

W

288

Command Description

EXAMPLE >WAIT 1;ON 1 'Wait one second, then turn output bit 1 on
>WAIT SW(1)=1 'wait until input bit 1 is on
>WAIT SW(1)=1,5 'Wait 5 seconds for input bit 1 to be on. If

after 5 seconds input bit 1 has not become
on, go to next command

>WAIT SW(5)=1 AND SW(6)=1 'Wait until both input bit 5 and 6 are on
100 CHK:

110 WAIT SW(1)=1,5

120 IF TW(0)=1 THEN GOSUB ERRPRC;GOTO CHK 'If input bit 1 does not
become on, execute
ERRPRC, then re-check
status of input bit 1

200 ERRPRC:

210 PRINT "TURN ON SW(2) IF OK"

220 WAIT SW(2)=1

230 RETURN
 . . .

< Select operation mode by using function keys on OPU-300 >

1000 OPUNIT 2 'Mode selection
1010 OPU PRINT 1,3,"Select operation mode." 'Message display
1020 OPU PRINT 1,4,"F1:Normal operation"

1030 OPU PRINT 1,5,"F2:Dummy operation"

1040 OPU PRINT 1,6,"F4:Operation End"

1050 WAIT (DSW(3) AND &B10110000) <> 0 'Wait for function key
input

1060 IF DSW(3) AND &B10000000 THEN GOTO F4KEY

1070 IF DSW(3) AND &B00100000 THEN GOTO F2KEY

1080 IF DSW(3) AND &B00010000 THEN GOTO F1KEY

289

Command Description

WEIGHT

FUNCTION Specifies and displays parameters for calculating PTP motion maximum acceleration/
deceleration.

FORMAT (1) WEIGHT [hand weight]{,[arm length]}

(2) WEIGHT

DESCRIPTION (1) Specifies parameters for calculating PTP motion maximum acceleration/deceleration.
Refer to the section "The hand and operating accelereation/deceleration speed" of the
manipulator manual for details.

Hand weight includes workpiece weight.

Arm length specification is necessary only for SCARA type robot, it is the distance
from the second arm rotation axis center line to the hand/workpiece combined center
of gravity.

If the equivalent value workpiece weight calculated from specified parameters ex-
ceeds the maximum allowable payload, an error occurs.

(2) Displays current WEIGHT parameters.

Take note that specifying a WEIGHT hand weight significantly less than the actual
workpiece weight can result in excessive accelerations and decelerations. These, in turn,
may cause severe damage to the manipulator.

WEIGHT value are not changed by power off, but are initialized by executing VERINIT.
Since initial values vary with each manipulator type, refer to "Specifications" of manipu-
lator manual for WEIGHT initial values.

RELATED ACCEL, VERINIT
COMMANDS

EXAMPLE >WEIGHT

 2, 225

>WEIGHT 5

>WEIGHT

 5, 225

> S

NOTE

W

290

Command Description

WHILE...WEND
While...While End

FUNCTION Executes specified statements while specified condition is satisfied

FORMAT WHILE [condition]
...

WEND

* nesting: up to 20 is allowed
(For definition of nesting, refer to #include command.)

DESCRIPTION Specifies WHILE condition. If satisfied, executes statements between WHILE and WEND,
then once again checks WHILE condition. Executing WHILE...WEND statements and
rechecking WHILE condition continues as long as WHILE condition is satisfied.

If WHILE condition is not satisfied, program control transfers to command following
WEND. For WHILE condition that is not satisfied at the first check, WHILE...WEND
statements are never executed.

Every WHILE must be followed by a WEND.

Up to 20 WHILE...WEND loops may be nested into one WHILE...WEND loop. Each
WEND corresponds to the preceding WHILE, a WEND without a preceding WHILE will
result in an error.

Any valid operator may be included in WHILE condition.

EXAMPLE 100 I=1

110 WHILE I<60 'Execute statements between WHILE and WEND if I<60
 . . .
300 I=I+2

310 WEND

S

291

Command Description

WIDTH

FUNCTION Specifies number or characters per line and lines per screen displayed on programing unit
CRT

FORMAT WIDTH [number of characters per line]{[,number of lines per screen]}

* number of characters per line: 20, 40, or 80 [default value: 20]
number of lines per screen: from 4 to 23 [default value: 23]

DESCRIPTION The number of characters per line above becomes the format for displaying file names
with FILES.

When executing FILES, file names are displayed according to the WIDTH number of
characters per line.

Number of lines per screen specifies the number of lines per page for DIR/P command.

WIDTH values are not changed by turning power off, but are initialized by executing
VERINIT.

RELATED FILES
COMMANDS

EXAMPLE >WIDTH 20

>FILES

AAAA PRG 1

AAAA OBJ 1

AAAA SYM 1

 space 59

>

>WIDTH 80

>FILES

AAAA PRG AAAA OBJ AAAA SYM

 space 59

>

>

W

292

Command Description

WOPEN...CLOSE
Write Open

FUNCTION Opens a file for writing to it

FORMAT WOPEN "[filename]" AS #[file number]
...

CLOSE #[file number]

* Filename must include extension
file number: integer from 30 to 35

DESCRIPTION Opens specified file and identifies it by the specified file number. This statement is used to
write data to the specified file. (To append data, refer to AOPEN explanation.) CLOSE
closes the file and releases the file number.

If the specified file does not exist on current directory, WOPEN creates the file and writes
to it.
If the specified file exists, WOPEN erases all of its data, and writes to it.

The file number identifies the file as long as the file is open, it is used by the output state-
ment for writing (by PRINT #) and for closing (by CLOSE #) the file. Accordingly, until
the current file is closed, its file number can not be used to specify different file.

A maximum of six files can be open concurrently. As long as 6 files are open, however,
DLOAD and DMERGE cannot be executed.

RELATED PRINT #, AOPEN, ROPEN
COMMANDS

EXAMPLE 100 REAL DATA(200)

110 WOPEN "TEST.VAL" AS #30

120 FOR I=0 TO 100

130 PRINT #30,DATA(I)

140 NEXT

150 CLOSE #30

160 '

170 ROPEN "TEST.VAL" AS #30

180 FOR I=0 TO 100

190 INPUT #30,DATA(I)

200 NEXT

210 CLOSE #30

220 '

S

293

Command Description

XQT
Execute

FUNCTION Executes program

FORMAT (1) XQT {"{[pathname]}[filename]"}

* Filename extensions are not allowed

(2) XQT ![task number] [function name] |[beginning line number] - |
|[beginning line number] -[ending line number]|
| -[ending line number]|

(3) XQT ![task number] [function name]

DESCRIPTION Executes object program. The object program first needs to be created by compiling the
source program execution.

(1) If pathname and filename are omitted, XQT executes program in the main memory.

XQT in this format cannot be used as a statement.

If filename is specified, XQT executes program in file memory. In doing so, the
following files are loaded into main memory:

filename.OBJ
filename.SYM
filename.PNT

Accordingly, position data previously in main memory will be erased. Therefore prior
to executing XQT, save position data as necessary.

If pathname is omitted, XQT searches for file in current directory.

S>

X

294

Command Description

(2) Executes specified Function (previously loaded in main memory) as specified task.

XQT in this format cannot be used as a statement.

If line number(s) are specified, executes as follows:

XQT ![task number],[function name][beginning line number]-

all lines from beginning line number to end of program

XQT ![task number],[function name][beginning line number]-[ending line number]

all lines from beginning line number up to and including ending line number

XQT ![task number],[function name]-[ending line number]

all line up to and including ending line number

(3) Executes specified Function as specified task.

XQT in this format can be used as a statement. To do so, include it in the main Func-
tion.

When XQT is executed in low power mode, the following message will be displayed.
It shows the robot is in low power mode, and will move in low speed.

Low Power Mode (--> LP Command)

RELATED COMPILE, HALT, RESUME, QUIT, TSTAT, RUN, FUNCTION...FEND
COMMANDS

295

Command Description

XYLIM
XY Limit

FUNCTION Specifies and displays allowable X and Y axis coordinate motion range

FORMAT (1) XYLIM [X axis lower limit],[X axis upper limit],[Y axis lower limit],[Y axis upper limit]

(2) XYLIM

DESCRIPTION (1) Specifies robot coordinate system X and Y axis coordinate lower and upper limits that
establish allowable motion range.

The motion range established with XYLIM values applies to motion command target
positions only, and not to motion paths from starting position to target position. There-
fore, arm may move out from XYLIM range during motion.

XYLIM range does not affect PULSE or CVMOVE.

(2) Displays current XYLIM values.

XYLIM values are not changed by power off.

XYLIM values are initialized by executing VERINIT, or by specifying XYLIM 0,0,0,0.
Doing so deletes motion range limits.

RELATED RANGE
COMMANDS

EXAMPLE >XYLIM 'Display current XYLIM values
 0 0

 0 0

>XYLIM -200,300,0,500 'Specify robot motion range
-200≦X≦300
0≦Y≦500

> S

NOTE

X

296

Command Description

ZEROFLG(0)
Zero Flag

FUNCTION Returns value of memory I/O previous to it last being switched on or off

FORMAT ZEROFLG(0)

* The numeral 0 in ()

DESCRIPTION Returns value of memory I/O previous to it last being switched on or off.

ZEROFLG(0) is for exclusive control, used for sharing use of a single resource (such as an
RS-232C port) while running multiple task programs.

RELATED ON $, OFF $
COMMANDS

EXAMPLE 40 OFF $0

50 XQT !2,SUB
 . . .
300 ON $0 'Requests use of RS-232C port
310 IF ZEROFLG(0)=1 THEN WAIT SW($0)=0;GOTO 300

320 PRINT #20,1

330 OFF $0 'Releases RS-232C port
 . . .
1000 FUNCTION SUB

1010 ON $0 'Requests use of RS-232C port
1020 IF ZEROFLG(0)=1 THEN WAIT SW($0)=0;GOTO 1010

1030 FOR I=0 TO 100

1040 PRINT #20,I

1050 NEXT

1060 OFF $0 'Releases RS-232C port
 . . .

F

Z

297

ERROR CODE TABLE

Number Meaning Remedy
ERROR CODE TABLE

There are three major categories of errors. In this table, they are indicated as follows:

code Errors that do not require RESET to be executed to recover.

code Errors that RESET command should be executed to recover.

code Errors that the power should be turned off once and on again to recover.

298

ERROR CODE TABLE

Number Meaning Remedy

Make FOR statement.

Make WHILE statement.

Make SELECT statement.

Make IF statement.

Correct syntax.
Use the variables which were already
compiled and registered.
Use the variables which were already
compiled and registered.
Make path for the batch file.

Make GOSUB statement or delete RETURN
statement.

Reduce GOTO or GOSUB statement.

Reduce label.

Reduce numeral or variable.

Reduce nesting levels. Maximum
number of GOSUB...RETURN nest-
ing levels is 10.
Refer to PRGSIZE.

Correct program.

Do not specify the same name.
Reserved words are not allowed to use.

First letter should be other than P.

0

1

2

3

4

5

6

7

8

9

10

No errors

FOR statement corresponding to NEXT statement
is missing.
WHILE statement corresponding to WEND state-
ment is missing.
SELECT statement corresponding to SEND state-
ment is missing.
IF statement corresponding to ELSE, ENDIF state-
ment is missing.

Syntax error.
Undefined variable is used in command.

Undefined array is used as an array.

Batch file is attempted to execute without specify-
ing path.

GOSUB statement is absent, while RETURN statement
is present.

Program contains 851 or more GOTO and GOSUB
statements in total.
Program contains 410 or more labels.

Too large parameter is entered.
Numeral beyond specified range is entered.
Argument is abnormal.
Undefined parameter is used.
Undefined PALET is used.
Null string is specified.

Numeral or variable is overflowed.
Undefined address is specified.

GOSUB...RETURN program has too many nesting
levels.

Too large source program is saved.

Line called by GOTO or GOSUB does not exist.

Subscription of array variable is beyond specified size.

Same names of variable, label or function exist.
Reserved words are used for variable, label or func-
tion.
Name of variable, label or function starts with P.

299

ERROR CODE TABLE

Number Meaning Remedy

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Division by 0 (zero) is attempted.
Undefined PALET function is used.

Command is used as a statement, or statement is used
as a command.

Number of parentheses on the left " (" and on the right
") " are not equal.

Number of parameters does not match.

Program line is not within FUNCTION...FEND.

FUNCTION declaration exists between FUNCTION
... FEND.

Variable declaration is not at a head of statement line.

Number of characters on one line is 80 and over.

Structured program has too many nesting loops.

Overflow occurred in converting variable.

Parameter specification table exceeds allowable range.

Too many characters are on one line. (intermediate
code)

Mixed operation of character and numerical value is
attempted.
Data tag error of object program.

Numerical variable error. Entry of too many digits is
attempted.
ASCII character in INPUT statement cannot be con-
verted to numeral.

Specified address does not exist.
Robot operation command is executed as Task 2 to
16, without SELRB declaration.

Correct program.

Correct program.

Correct the number of parameters of ex-
ecuted command.

Include program lines between FUNC-
TION ...FEND.

Describe FEND so that FUNCTION cor-
responds to FEND.

Variable declaration is not allowed after
multi-statements. When variable type is
different, be sure to change statement
line.

Number of characters on one line is up to
79.

Reduce nesting loops. Maximum total
number of nesting loops is 40.

Change the value to allowable variable
type.

Subscription of PALET is 0 to 15.

Maximum address is 19.
Set robot operation task with SELRB
command.

300

ERROR CODE TABLE

Number Meaning Remedy

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Confirm I/O board address setting.
Open the file. Confirm the file name.

Make NEXT statement.

Make WEND statement.

Make SEND statement.

Make ENDIF statement.

Make #endif statement.

Execute DMERGE, DLOAD commands
as Task 1.

Check the cable connection, and change
to TEACH mode.
Check the cable connection, and con-
figuration of RS-232C.

Number of characters per line is up to 79.

Reduce the number of FUNCTION...
FEND up to 70.

Specified I/O bit number does not exist.
File not opened is attempted to access.

NEXT statement corresponding to FOR statement is
missing.
WEND statement corresponding to WHILE state-
ment is missing.
SEND statement corresponding to SELECT state-
ment is missing.
ENDIF statement corresponding to IF statement is
missing.
#endif statement corresponding to #ifdef is missing.

DMERGE, DLOAD commands are executed as Task 2
to 16.

Number of received data and that of variable for IN-
PUT is not equal.

Communication from a personal computer con-
nected to TEACH port is not possible.
Devices connected to RS-232C port cannot commu-
nicate.

Buffer memory overflow (receiving buffer is filled up
and data continues to be transferred to RS-232C.)

Parity, overrun, or framing error due to RS-232C com-
munication.

Data over 80 characters is transferred to RS-232C port.

Overtime error of RS-232C communication

The number of FUNCTION...FEND is more than 70.

Specified task does not exist.

Cannot begin a task that has already begun.

Command cannot be executed due to either insuffi-
cient memory, or memory malfunction.

301

ERROR CODE TABLE

Number Meaning Remedy

Prohibited command is executed during task execu-
tion.
Edit mode is selected.

Improper voltage of DC 24 V for customer use.

Instantaneous power loss or power failure.

Warning - Low battery voltage.

Optional designation of command is invalid.

Specified file does not exist.

File with same name already exists.

Filename is incorrect.
Filename cannot be changed by NAME command.
(Same name already exists.)

No available space in file memory.

Press BREAK (STOP) key or RESET
switch.
Exit Edit mode. Refer to EDIT.

Check +24 V output at PSU unit.

Backup all of the data immediately before
they are lost. Then, replace the lithium
battery on MPU board with new one.

Check the file name.
Check whether the specified file exists
or not in file memory.

Change file name, or delete existed file in
file memory, and save it.

Backup the files on disk if necessary, de-
lete the unnecessary files. Refer to the
SPEL Editor or SPEL for Windows
manual for the details of backup operation.

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

302

ERROR CODE TABLE

Number Meaning Remedy

Filename is more than 8 characters.
File cannot be opened.

Disk reading error.

Disk writing error.

Improper disk drive is selected.

Invalid file format.

Check sum error of position data.

Check sum error of source program.

Check sum error of object program.

Undeclared or undefined Function or variable is
used.
Specified function is not supported.

Invalid commands executed.

Point number is improper.

Use of undefined position data is attempted.

System error of internal process.

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

File cannot be loaded. Delete (DEL) the
erroneous file. If same error occurs in
other files reformat the file memory by
FORMAT.

File cannot be saved. Reformat the file
memory with FORMAT.

Omit the drive name or specify drive "A:".

Define point. Refer to PNTSIZE.

Eliminate external noise source.
Check storage condition of the MPU
board and looseness of connectors on

303

ERROR CODE TABLE

Number Meaning Remedy

the board. If this error frequently oc-
curs, replace or repair MPU board.

Number of variables is up to 399.
Refer to LIBSIZE.

Reduce size of program.

Initialize MPU board by SYSINIT.

Delete (DEL) the erroneous file.
If this error frequently occurs, replace
MPU board.

Input RESET command.

D parameters should be 5 or less.

Check +12 V output at PSU unit.

Eliminate external noise source and
execute VERINIT.
Check the voltage of the lithium bat-
tery on MPU board. Replace it if the
voltage is less than 3.4 V. If this error
frequently occurs, replace or repair
MPU board.

Replace ROMs on MPU board.

Check device address, connections, or
MAXDEV setting.

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

Program contains 400 or more variables.
Registration of backup variables is too many.

Compiled object program is too long.

Restored file by RESTORE command is too long.

Memory check error in system work area.

Check sum error of file.

The I/O bit is assigned as REMOTE3.

I/O board communication error.

Use of invalid statements in parallel processing is at-
tempted.

No D parameter is returned from internal process.

Safeguard circuit malfunction.(SRC-320 only)

Number of parameters for command is improper.

In WAIT SW command, specified condition is not sat-
isfied within specified period of time.

5 V for encoder is improper.

I/F board communication error.

Memory error of system control parameter.

Parameter check sum error of RAIOC.

Memory check error of ROM.

Device (RAIOC etc.) communication error.

304

ERROR CODE TABLE

Number Meaning Remedy

MPU error by malfunction of hardware.

Incorrect voltage of DC 7 V or DC 24 V.

Malfunction of robot control.

Improper voltage of DC 12 V.

Communication error in internal process.

Communication buffer overflow of internal process.

Check sum error of robot model data.

Memory check error of internal process.

Parameter is abnormal, cannot display.

Improper voltage of DC 24 V.

Coprocessor error. (code error)

Coprocessor error. (overflow)

Coprocessor error. (underflow)

Coprocessor error. (division by zero)

Eliminate external noise source and ex-
ecute VERINIT.
If this error frequently occurs, replace
MPU board.

Check +12 V output at PSU unit.

Eliminate external noise source.
If this error frequently occurs, replace
MPU board.

Check ±12 V output at PSU unit.

Eliminate external noise source.
If this error frequently occurs, replace
MPU board.

Same as error 105.

Check the setting of the DIP switch
SD1 on the MPU board. (Refer to the
specifications table of the maniulator
manual.)
If the setting is correct, replace the MPU
board.

If you replaced ROM, initialize MPU
board.
Check the voltage of the lithium battery
on MPU board. Replace it if the volt-
age is less than 3.4 V, and initialize the
controller.
If this error frequently occurs, replace
or repair MPU board.

Turn off and on the controller, execute
VERINIT. If this error still exists, re-
place the MPU board.

Check +24 V output at PSU unit.

Turn off and on the controller, execute
VERINIT. If this error still exists, re-
place the MPU board.

Same as error 111.

Same as error 111.

Same as error 111.

101

102

103

104

105

106

107

108

109

110

111

112

113

114

305

ERROR CODE TABLE

Number Meaning Remedy

Improper voltage or temperature of motor power sup-
ply unit.

Malfunction of Servo CPU dual port RAM.

Improper voltage of DC 5 V

Arm is moved too much after switching off the power
of controller.

Invalid commands is executed.

Executed invalid command under emergency stop con-
dition.

Improper type of data is used.

Specified command is not supported.

Numeric value is out of allowable range.

Arm reached the limit of motion range.

Arm reached the limit of motion range specified by
XYLIM command.

Specified ARM is not defined.

Specified TOOL is not defined.

Clean the filter of cooling fan and in-
spect the cooling fan, replace it if nec-
essary.
If ambient temperature of the controller
is over 40°C, cool the place where the
controller is.
Check the motor power unit and replace
if necessary.

Eliminate external noise source.
If this error frequently occurs, replace or
repair MPU board.

Check -12 V output at PSU unit.

If you moved the arm manually after
switching off the power, turn off and on
the controller or input RESET.
Check arm position data. Move the
arms to a taught point manually and
display the numbers of pulse of this
point. If the values of current are dif-
ferent too much from the numbers of
pulse of taught point, calibrate the ma-
nipulator.

Release emergency stop status. (One of
TEACH, REMOTE1 or REMOTE2.)

Use already defined arm number.
Define Arm by ARMSET.

Use already defined tool number.
Define Tool by TLSET.

115

116

117

118

119

120

121

122

123

124

125

126

127

128

306

ERROR CODE TABLE

Number Meaning Remedy

LIMZ error.

Different LOCAL attribute is specified.

Specified LOCAL is not defined.

HOFS value is out of allowable range.

HOME command is attempted even though certain
axes are not engaged.

Change of arm attribute in CP control.

SFREE is attempted for axis that cannot be disengaged
by SFREE.

Improper number (many or few) of point data is speci-
fied by CURVE.

Point data specified by CURVE contain point which
has different arm attribute.

Free curve cannot be made by CURVE.

Restart of CVMOVE motion after quick pause is at-
tempted.

Only axis #4 movement is attempted in CP control.

Improper point data for ARC command.

HOME position is not defined.

Improper number of parameters for command.

Malfunction of CVMOVE command file.

Motion command is executed under SFREE condition.

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

Set lower Z axis value of current or target
position than LIMZ value.

Define LOCAL by LOCAL command.

Specify already defined LOCAL num-
ber.
Define LOCAL by LOCAL command.

HOFS should be in the range of -40960 to
40960.

Engage all axes by SLOCK command be-
fore HOME.

Arm attribute cannot be changed in CP
control.

Check the setting of software switch SS6.

Refer to CURVE.

Refer to CURVE.

Verify that no two successive points over-
lap one another.

Restarting CVMOVE motion after quick
pause is impossible.

In ARC command, specified points are
too close, or points are on straight line.
Refer to ARC.

Define home position by HOMESET.

Engage all axes by SLOCK.

307

ERROR CODE TABLE

Number Meaning Remedy

The value of 4th and 6th parameter in BASE 0 com-
mand is different.

Function not supported for this manipulator.

The command can not be used in MOTOR ON condi-
tion.

Motion command is executed under MOTOR OFF
condition.

Positioning cannot be completed by specified FINE.

Arm motion exceeds maximum speed or acceleration.

CP motion cannot decelerate and stop in specified dis-
tance.

The axis #4 movement exceeds limit of its movement.

Communication error with Servo CPU at internal pro-
cess.

Malfunction of Servo CPU.

Robot moved in improper speed.

Refer to BASE.

Check disconnection of motor power
circuit, or loose connection. Then,
check the motor power unit and the
voltage of AC servo driver.
Check each axis motion moving by
hand. Secure the arm locking bolts
tightly if looseness of them are found.
Also, check each reduction gear.
Verify appropriate lubrication or re-
place if necessary.
Eliminate binding factor such as an ob-
stacle if arm is bound.
Other than the above, replace motor,
AC servo driver or MPU board.

Prepare enough deceleration distance.
Don't finish operation with CP motion
without deceleration.

There is limit for axis #4 movement of the
robot which has ballscrew spline unit.

Replace or repair MPU board.

Replace or repair MPU board.

Turn off and on the controller.
Check arm position data. Move the
arms to a taught point manually and
display the numbers of pulse of this
point. If the value of current are differ-
ent too much from the numbers of pulse
of taught point, calibrate the manipula-
tor.
If this error frequently occurs, replace
or repair MPU board.

147

148

149

150

151

152

153

154

155

156

157

308

ERROR CODE TABLE

Number Meaning Remedy

158

159

160

161

162

163

164

165

166

167

168

Reading error of encoder revolution data.
External noise exists.
Disconnection of encoder signal line.

Voltage of encoder power source is abnormal.

Other than the above.

Encoder signal disconnection of A phase.

Encoder signal disconnection of B phase.

Encoder signal disconnection of Z phase.

Encoder signal disconnection of S phase.

Character error of absolute encoder.

< NOTICE > Encoder is initialized.

Servo calculation overflow.

Malfunction of Servo CPU hardware.

Servo CPU's communication error with Sub CPU.

Eliminate external noise source.
Check disconnection or miscontact of
signal line between controller rear
panel and mother board, and servo
driver.
If ALARM LED(red) on servo driver is
on, check signal line shown below also.
· in manipulator
· signal cable
Check ENC+5V voltage at signal con-
nector of motor. If voltage is not
proper, inspect PSU board and wiring.
If POWER LED(green) on servo driver
is off, check the connection of signal
connector of servo driver.
Consider the following.
· Connection of MPU board
· Replace U15 and U16 (SCC) on MPU

board.
· Replace MPU board.
· Replace servo driver.
· Replace motor.

Same as error 159.

Same as error 159.

Same as error 159.

Same as error 159.

Same as error 159.

This error is displayed when encoder is
initialized and controller power is
switched on. Repeat turning the power
off and on twice.
In other case than the above, check
whether RES wire of encoder shorted
with other line or not.

Replace or repair MPU board.

Replace or repair MPU board.

Replace or repair MPU board.

309

ERROR CODE TABLE

Number Meaning Remedy

169

170

171

172

Servo overspeed.

Servo overflow.
Motor power line has problem.

Encoder signal line has problem.

Motor power unit is not outputting correctly to servo
driver.
Mechanical load is added on axis.

Tension of timing belt is not proper.

Arm is bound.

Axis #3 brake cannot be released.

Arm hit an obstacle.
Manipulator moved unexpectedly.

External noise source exists.
⑪⑪⑪⑪⑪Other than the above.

Communication check sum error of Servo CPU.

Instructive motor torque is abnormal.

Check whether signal cable is surely
connected.
Check disconnection or miscontact of
encoder line in manipulator.
Check cable damage or loose connec-
tion between controller rear panel and
mother board, and servo driver.
Eliminate external noise source.
Other than the above, replace MPU
board.

Try the following remedies to ⑪.
Check motor power line in manipulator
and controller.
If ALARM LED(red) on servo driver is
on, check disconnection or miscontact
of signal line in the following :
· in manipulator
· signal cable
· between controller rear panel and

mother board, and AC servo driver.
Inspect motor power unit.

Check each axis motion moving by the
hand. Verify appropriate lubrication or
replace reduction gear.
Check tension of timing belt. Tighten
or replace if necessary.
Eliminate binding factor such as an ob-
stacle.
If brake cannot be released with a brake
release button at MOTOR OFF, check
the wire of brake. If brake does not re-
lease at MOTOR ON, inspect brake
control signal circuit.
Prevent arm from hitting.
Take the same remedy as . If there is
no problem in , replace AC servo
driver and/or MPU board.
Eliminate external noise source.

⑪⑪⑪⑪⑪ Replace MPU board or AC servo
driver.

Eliminate external noise source.
If this error frequently occurs, replace
MPU board.

Same as error 170.

310

ERROR CODE TABLE

Number Meaning Remedy

173

174

175

176

177

178

179

180

181

Robot is in low power state. Motor output power is
limited.

Hardware malfunction related Servo CPU.

Servo adjustment mode is selected.

Driver overheat /overcurrent.
When the red LED on the front of the AC servo
driver is off.
External noise source exists.

When the red LED on the front of the AC servo
driver is on.
Weight of the end effector(s) and work piece(s) ex-
ceeds rated payload.
Motion duty of manipulator is too much.

Mechanical load is added on axis.

Tension of timing belt is not proper.

Cooling fan is not functioning.

Filter is clogged.
Ambient temperature around controller is over 40°C.
Motor power line is shorted or grounded.

Other than the above.

Driver overload.
When the red LED on the front of the AC servo
driver is off.
External noise source exists.

Same as error 170.

Replace MPU board.
Check disconnection or miscontact of
the power and signal line in manipula-
tor and controller.

Eliminate external noise source. Refer
to the controller manual.
If no external noise source exists, replace
MPU board.

Check actual weight, and set proper
WEIGHT.
Reduce operation speed of robot. Re-
fer to ACCEL, SPEED, WEIGHT.
Check each axis motion moving by the
hand. Verify appropriate lubrication or
replace reduction gear.
Check tension of timing belt. Tighten
or replace if necessary.
Inspect the cooling fan. Replace it if
necessary.
Clean the filter of cooling fan.
Cool the place where the controller is.
Check motor power line in manipulator
and controller.
Replace AC servo driver.

Eliminate external noise source.
If no external noise source exists, replace
MPU board.

311

ERROR CODE TABLE

Number Meaning Remedy

When the red LED on the front of the AC servo
driver is on.
Weight of the end effector(s) and work piece(s) ex-
ceeds rated payload.
Motion duty of manipulator is too much.

Mechanical load is added on axis.

Tension of timing belt is not proper.

Arm is bound.

Arm hit an obstacle.
Axis #3 brake cannot be released.

Motor power line is shorted or grounded.

Other than the above.

Driver detected overspeed.

Driver detected locked motor.
When the red LED on the front of the AC servo
driver is off.
External noise source exists.

When the red LED on the front of the AC servo
driver is on.
Motor power line is shorted or grounded.

Mechanical load is added on axis.

Tension of timing belt is not proper.

Arm is bound.

Axis #3 brake cannot be released.

182

183

Check actual weight, and set proper
WEIGHT.
Reduce operation speed of robot. Re-
fer to ACCEL, SPEED, WEIGHT.
Check each axis motion moving by the
hand. Verify appropriate lubrication or
replace reduction gear.
Check tension of timing belt. Tighten
or replace if necessary.
Eliminate binding factor such as an ob-
stacle.
Prevent arm from hitting.
If brake cannot be released with a brake
release button at MOTOR OFF, check
the wire of brake.
If brake does not release at MOTOR
ON, inspect brake control signal cir-
cuit.
Check motor power line in manipulator
and controller.
Replace the AC servo driver.

Replace the AC servo driver.
Replace the motor.

Eliminate external noise source.
If no external noise source exists, replace
MPU board.

Check motor power line in manipulator
and controller.
Check each axis motion moving by the
hand. Verify appropriate lubrication or
replace reduction gear.
Check tension of timing belt. Tighten
or replace if necessary.
Eliminate binding factor such as an ob-
stacle.
If brake cannot be released with a brake
release button at MOTOR OFF, check
the wire of brake.
If brake does not release at MOTOR
ON, inspect brake control signal cir-
cuit.

312

ERROR CODE TABLE

Number Meaning Remedy

184

185

186

187

188

189

190

191

Arm hit an obstacle.
Other than the above.

Driver detected improper motion.
When the red LED on the front of the AC servo
driver is off.
External noise source exists.

When the red LED on the front of the AC servo
driver is on.
Encoder signal line has problem.

Other than the above.

Encoder signal disconnection.

Malfunction of driver's CPU.
When the red LED on the front of the AC servo
driver is off.
External noise source exists.

When the red LED on the front of the AC servo
driver is on.
Cable between AC servo driver and mother board
has problem.

+24 V output at PSU unit is improper.

Over than the above.

Driver detected improper torque/speed.

Encoder S phase signal is not transmitted within prede-
termined period of time.

Encoder overheat.

Encoder overspeed.

Prevent arm from hitting.
Replace AC servo driver.

Eliminate external noise source.
If no external noise source exists, re-
place MPU board.

Check disconnection or miscontact of
signal line in the following :
· in manipulator
· signal cable
· between controller rear panel and

mother board, and AC servo driver.
Replace motor or AC servo driver.

Same as error 184.

Eliminate external noise source.
If no external noise source exists, re-
place MPU board.

Check disconnection of the line or
looseness of the connectors between
AC servo driver and mother board.
Check whether POWER LED (green)
on the front of AC servo driver is on or
not. If the LED is off, check +24 V out-
put at PSU unit.
Replace the AC servo driver.

Input RESET.
Replace the AC servo driver.

Check disconnection or miscontact of the
encoder S phase signal line.

Confirm whether any axis moved at power
on. If axis #3 moved, inspect the axis #3
brake.

313

ERROR CODE TABLE

Number Meaning Remedy

192

193

194

195

196

197

198

199

200

Encoder data error.

Encoder battery error.

Encoder check sum error.

Encoder backup error.
This is the error shown after replacing the motor
with absolute encoder.
The battery voltage on signal relay board is im-
proper.
The voltage of encoder power (ENC+5V) is im-
proper.

Other than the above.

Framing error of encoder data.
This is the error shown after replacing the motor
with absolute encoder.
Strong external noise source exists.
Other than the above.

Overrun error of encoder data.

Parity error of encoder data.

Replace the motor.

Check the voltage of the battery on sig-
nal relay board. Replace it if the volt-
age is less than 2.8 V.
Check disconnection of line between
motor encoder and signal relay board.

Calibrate the axis.
If this problem still exists, replace the
motor.

Refer to the manipulator's maintenance
manual.
Replace the battery if the voltage is
low.
Check the voltage at signal connector
closest to motor. If the voltage is low
or improper, check PSU board or wir-
ing.
Replace motor.

Refer to the section "Calibration" of
the manipulator's maintenance manual.
Eliminate external noise source.
Take the following procedures :
· Check inserted condition of MPU

board.
· Replace MPU board.
· Replace motor.

Same as error 197.

Same as error 197.

314

ERROR CODE TABLE

Number Meaning Remedy

230

231

232

233

234

235

236

237

238

239

240

MCORG command has not executed.

MCAL command has not executed.

Home sensor detection error.

Encoder Z phase signal detection error.

Quick pause interrupted MCORG execution.

Incorrect ballscrew spline axis setting.

Current position calculated by the sensor and encoder
Z phase is out of the default RANGE value.

HTEST data is improper.

Check whether home sensor LED at the
rear of manipulator lights or not while
moving the arm by hand. If the LED does
not light, execute MCORG command. If
the LED lights, check disconnection of
signal cable.

Check signal line of Z phase.
If the line has no problem, replace the
motor.

Set the bit 7 and 8 of SD2 on MPU board
to on.

Connect the manipulator and the con-
troller with the same M. CODE.
If arm hit an obstacle, enter MCORG.
Other than the above, contact autho-
rized dealer with its VER data.

Confirm the M. CODE of manipulator
and controller. If they are different,
connect the ones with same M. CODE.
If axis #4 has rotated more than 180°
while the power is off, turn off the con-
troller power once, and return axis #4
around the previous position.
If the arm has been hit, there is a possi-
bility of mechanical position deviation.
Execute MCORG command. Refer to
MCORG.

315

ERROR CODE TABLE

Number Meaning Remedy

300

301

302

303

304

305

306

307

308

309

310

Specified directory does not exist.

Cannot delete specified directory because does not
exist.
Cannot delete specified directory because includes
files.

Unable to create directory.

Specified file or directory does not exist.

Date designation method is incorrect.

Time designation method is incorrect.

Specified drive does not exist.

Memory shortage for environment string.

Batch file is too large.

File cannot be copied onto itself.

Specified directory already exist.
Change name.
Disk is full.

Maximum memory for environment
string is 512 bytes.

Maximum memory for batch file is 4
KB.

316

ERROR CODE TABLE

Number Meaning Remedy

	Reference Manual for SRC-3** SPEL III Ver. 6.2
	PREFACE
	WARRANTY
	SERVICE CENTER
	MANUFACTURER
	NOTICE
	INTRODUCTION
	IMPORTANT
	Motor Engagement
	Calibration
	HOME Command
	Motion Speed in the TEACH Mode

	HOW THIS MANUAL IS ORGANIZED
	Command Description Organization
	FORMAT
	SYMBOLS

	SUMMARY OF COMMANDS, STATEMENTS, AND FUNCTIONS
	Commands, Statements, and Functions Related to System Management
	Commands, Statements, and Functions Related to Robot Control
	Commands and Statements Related to Editing
	Commands, Statements, and Functions Related to Input/Output
	Commands and Statements Related to Coordinate Changes
	Statements and Functions Related to Program Control
	Commands and Statements Related to Program Execution
	Pseudo Statements
	Commands and Statements Related to File Management
	Commands and Statements Related to Variables
	Functions Related to Numeric Values
	Statements and Functions Related to Strings
	Commands Related to Operating Unit
	New or Altered commands in this version

	!
	!
	! ... !

	#
	#define
	#ifdef...#endif #ifndef...#endif
	#include

	A
	ABS()
	ACCEL
	ACCELS
	AGL()
	AOPEN...CLOSE
	ARC
	ARCH
	ARM
	ARMSET
	ASC()
	ATAN()
	ATAN2()

	B
	BASE
	BASE 0
	BASE()
	BYTE

	C
	CALIB
	CALL
	CALPLS
	CARC
	CHAIN
	CHARSIZE
	CHDIR, CD
	CHR$()
	CLEAR
	CLRLIB
	CLS
	CMOVE
	COMPILE, COM
	CONFIG, CNFG
	CONSOLE, CNSOL
	COPY
	COS()
	CTR()
	CTRESET
	CURSOR
	CURVE
	CVMOVE
	CX(P)

	D
	DATE
	DATE$(0)
	DEL, ERASE
	DELETE, DELET
	DIR
	DLOAD, DLO
	DMERGE
	DOUBLE
	DSAVE, DSA
	DSW()

	E
	ECLR
	EDIT
	END
	ENTRY
	ERA(0)
	ERL(0)
	ERR(0)
	ERRHIST
	ERRMSG$
	ERT(0)
	EXTERN

	F
	FILES
	FIND
	FINE
	FOR...NEXT
	FORMAT
	FREE
	FUNCTION...FEND

	G
	GO
	GOSUB...RETURN
	GOTO

	H
	HALT
	HOFS
	HOME
	HOMESET
	HORDR
	HOUR
	HTASK
	HTEST

	I
	IF...THEN...ELSE...ENDIF
	IN()
	IN($)
	INBCD()
	INBIN
	INIBIT
	INPUT
	INPUT #
	INT()
	INTEGER

	J
	JRANGE
	JS(0)
	JUMP

	K
	KILL

	L
	LEFT$()
	LEN()
	LIBRARY
	LIBSIZE, SIZE
	LIMZ
	LINEHIST
	LINE INPUT
	LINE INPUT #
	LINK
	LIST
	LOCAL
	LOCAL0
	LOF()
	LONG
	LP, POWER
	LSHIFT()

	M
	MCAL
	MCOFS
	MCORDR
	MCORG
	MID$()
	MKDIR, MD
	MKVER
	MOTOR
	MOVE
	MYTASK(0)

	N
	NEW
	NORMAL
	NOT()

	O
	OFF
	OFF $
	ON
	ON $
	ONERR...RETURN
	ONGOTO
	OPBCD
	OPORT()
	OPUNIT
	OPU PRINT
	OUT
	OUT $

	P
	PALET
	PALETn()
	PASS
	PATH
	PAUSE
	PDEL
	PEEK()
	PLIST
	PLS()
	Pn=Position Specification
	PNTSIZE, PSIZE
	POKE
	POWER
	PRGNO
	PRGSIZE
	PRINT
	PRINT #
	PULSE

	Q
	QP
	QUIT

	R
	RANGE
	REAL
	RENAME, REN, NAME
	RENDIR
	RENUM
	RESET
	RESUME
	REVERSE
	RIGHT$()
	RMDIR, RD
	ROPEN...CLOSE
	RSHIFT()
	RUN

	S
	SEL
	SELECT...SEND
	SELRB
	SENSE
	SET
	SETENV
	SETVER
	SFREE
	SGN()
	SIN()
	SLOCK
	SPACE$()
	SPEED
	SPEEDS
	SQR()
	STAT()
	STR$()
	STRING
	SW()
	SW($)
	SYS
	SYSINIT

	T
	TAN()
	TGO
	TILL
	TIME
	TIME()
	TIME$(0)
	TLSET
	TMOUT
	TMOVE
	TMR()
	TMRESET
	TOFF
	TON
	TOOL
	TRAP
	TSPEED
	TSPEEDS
	TSTAT
	TW(0)
	TYPE

	V
	VAL()
	VARIABLE
	VER
	VERINIT
	VLOAD
	VSAVE

	W
	WAIT
	WEIGHT
	WHILE...WEND
	WIDTH
	WOPEN...CLOSE

	X
	XQT
	XYLIM

	Z
	ZEROFLG(0)

	ERROR CODE TABLE

